简谐运动及其图象

合集下载

教科版高中物理选择性必修第一册第二章第1节简谐运动及其图像

教科版高中物理选择性必修第一册第二章第1节简谐运动及其图像
(2n 1) (n=0,1,2,3,...)
说明:一切复杂的振动都不是简谐振动,但它们 都可以看作是若干个振幅和频率不同的简谐振动 的合成。因而它们的振动曲线是正弦或余弦曲线 的合成。
课堂练习
1.
x/m
写出振动方程 x=10sin(2π t)cm .
2.某一弹簧振子的振动图象如图所示,则由图象 判断下列说法正确的是( A)B
五、简谐运动的图像
方案一:在水平弹簧振子的小球上安置一支记 录用的笔,在下面放一条白纸带,当小球振动时, 沿垂直于振动方向匀速拉动纸带,笔就在带上画 出一条振动图线。(动画模拟)
方案二:(演示)做一个盛沙的锥摆,让其摆 动,同时在下边拉动一块木板,则摆中漏下的 沙子就显示出振动的图象。
方案三:频闪照片(介绍)
x=0时,F回=0 、a=0; x=±A时,F回和a达最大值.
说明:
1、简谐运动的图像是质点做简谐运动时,质点的位 移随时间变化的图象. 2、简谐运动的图像是正弦曲线还是余弦曲线,这决
定于t=0时刻的选择。即图像形状与计时起点有关.
3、从图中可得振幅A 、周期T 、任意时刻的位移x; 注:相邻两个振动情况完全相同的位置之间的时间 为一个周期T . 4振动图象不是运动轨迹.
两个摆长、周期与振幅都相同的单摆,它们振动步调总一 致时,我们就说它们的相位相同,振动同相.
当它们的位移总相反时,我们可以从振动表达式推知它们 的相位一定相差π,就说它们的相位相反,振动反相.
两个单摆的振动步调不相同,就是因为它们具有相位差.
所以用来描述简谐运动的物理量有:周期、频率、相位与 相位差.
几种常见图形的表达式
x Asin(t)
x Asin(t )
2
x Asin(t )

简谐运动简谐运动的图象

简谐运动简谐运动的图象

简谐运动简谐运动的图象1、简谐运动简谐运动的图象2、简谐运动的能量特征受迫振动共振3、实验:用单摆测定重力加速度简谐运动简谐运动的图象:1、简谐运动:简谐运动是物体偏离平衡位置的位移随时间做正弦或余弦规律而变化的运动,是一种变加速运动。

2、弹簧振子(1)弹簧的质量比小球的质量小得多,可以认为质量集中于振子(小球)。

(2)当与弹簧振子相接的小球体积较小时,可以认为小球是一个质点。

(3)当水平杆足够光滑时,可以忽略弹簧以及小球与水平杆之间的摩擦力。

(4)小球从平衡位置拉开的位移在弹簧的弹性限度内。

3、单摆:悬挂物体的细线的伸缩和质量可以忽略,线长比物体的直径大得多。

单摆是实际摆的理想模型。

单摆摆动的振幅很小即偏角很小时,单摆做简谐运动。

4、描述简谐运动特征的物理量(1)位移、简谐运动的位移,以平衡位置为起点,方向背离平衡位置。

(2)回复力:回复力的作用效果是使振子回到平衡位置。

简谐运动中,,负号表示力的方向总是与位移的方向相反。

(3)周期:做简谐运动的物体完成一次全振动所需的时间。

用T表示,单位秒(s)。

单摆周期弹簧振子的频率只与弹簧的劲度系数和振子质量有关。

(4)频率:单位时间内完成全振动的次数。

用f表示,单位赫兹(Hz)。

周期与频率的关系:(5)振幅:振动物体离开平衡位置的最大距离。

5、简谐运动的公式描述:,A是简谐运动的振幅,ω是圆频率(或角频率),叫简谐运动在t时刻的相位,是初相位。

6、简谐运动的图象简谐运动的图象是正弦(或余弦)函数图象(注意简谐运动的具体图象形状,取决于t=0时振动物体的位置和正方向的选取,可参看“例1”)。

简谐运动图象的应用如下:(1)可直观地读取振幅A、周期T、各时刻的位移x及各时刻的振动速度的方向和加速度的方向;(2)能判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。

7、简谐运动的能量:如忽略摩擦力,只有弹力做功,那么振动系统的动能与势能互相转换,在任意时刻动能和势能的总和,即系统的机械能保持不变,机械能由振幅决定。

《简谐运动的图象》课件

《简谐运动的图象》课件
利用弹簧的伸缩产生简谐运动, 可以用于测量时间、频率等物理
量。
振动机械
在机械制造中,可以利用简谐运动 的原理设计振动机械,如振动筛、 振动磨等。
声波产生
声音是由物体的振动产生的,而物 体的振动可以看作是简谐运动,因 此声波的产生也可以用简谐运动来 描述。
02
简谐运动的图象
简谐运动的振动图象
振动图象的概念
实例二
一个复杂的振动信号可以通过傅里叶级数分解为若干个简谐运动的合成,通过 调整各次谐波的幅度和相位,可以实现对复杂振动信号的控制和调制。
THANKS
感谢观看
简谐运动的波形图象
波形图象的概念
波形图象是描述简谐运动中所有质点在同一时刻的位移分布情况 ,即振动过程中某一时刻的波的形状。
波形图象的特点
波形图象是一条正弦曲线,其形状取决于波长和振幅。
波形图象的物理意义
通过波形图象可以直观地了解波的传播方向、波长、振幅和频率等 参数,进而分析波的叠加、干涉和衍射等现象。
《简谐运动的图象》ppt课件
contents
目录
• 简谐运动简介 • 简谐运动的图象 • 简谐运动的周期性 • 简谐运动的能量 • 简谐运动的合成与分解
01
简谐运动简介
简谐运动的定义
简谐运动:物体在跟偏离平衡位置的 位移大小成正比,并且总指向平衡位 置的回复力的作用下的振动,其轨迹 是正弦或余弦函数图象的运动。
振动图象与波形图象的比较
相同点
振动图象和波形图象都是正弦或余弦曲线,其形状取决于振动的周期、振幅和初 相位。
不同点
振动图象是描述质点在不同时刻的位移,而波形图象是描述所有质点在同一时刻 的位移分布情况。此外,振动图象可以分析质点的速度和加速度变化情况,而波 形图象则可以分析波的传播方向、波长、振幅和频率等参数。

第一章 第3节 简谐运动的图像和公式

第一章 第3节 简谐运动的图像和公式

第3节简谐运动的图像和公式1.简谐运动图像是一条正弦(或余弦)曲线,描述了质点做简谐运动时位移x 随时间t 的变化规律,并不是质点运动的轨迹。

2.由简谐运动图像可以直接得出物体振动的振幅、周期、某时刻的位移及振动方向。

3.简谐运动的表达式为x =A sin(2πTt +φ)或x =A sin(2πft+φ),其中A 为质点振幅、(2πTt +φ)为相位,φ为初相位。

1.建立坐标系以横轴表示做简谐运动的物体的时间t ,纵轴表示做简谐运动的物体运动过程中相对平衡位置的位移x 。

2.图像的特点一条正弦(或余弦)曲线,如图所示。

3.图像意义表示物体做简谐运动时位移随时间的变化规律。

4.应用由简谐运动的图像可找出物体振动的周期和振幅。

[跟随名师·解疑难]1.图像的含义表示某一做简谐运动的质点在各个时刻的位移,不是振动质点的运动轨迹。

2.由图像可以获取哪些信息? (1)可直接读取振幅、周期。

(2)任意时刻质点的位移的大小和方向。

如图甲所示,质点在t 1、t 2时刻的位移分别为x 1和-x 2。

甲 乙(3)任意时刻质点的振动方向:看下一时刻质点的位置,如图乙中a 点,下一时刻离平衡位置更远,故a 此刻向上振动。

(4)任意时刻质点的速度、加速度、位移的变化情况及大小比较:看下一时刻质点的位置,判断是远离还是靠近平衡位置,若远离平衡位置,则速度越来越小,加速度、位移越来越大,若靠近平衡位置,则速度越来越大,加速度、位移越来越小。

如图乙中b 点,从正位移向着平衡位置运动,则速度 为负且增大,位移、加速度正在减小;c 点从负位移远离平衡位置运动,则速度为负且减小,位移、加速度正在增大。

[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手)如图所示为某质点做简谐运动的图像,则质点在前6 s 内通过的路程为________ cm ,在6~8 s 内的平均速度大小为________ cm/s ,方向________。

简谐运动及其图像

简谐运动及其图像

专题一:简谐运动及其图象知识点一:弹簧振子1.弹簧振子如图,把连在一起的弹簧和小球穿在水平杆上,弹簧左端固定在支架上,小球可以在杆上滑动。

小球滑动时的摩擦力可以忽略,弹簧的质量比小球的质量小得多,也可忽略。

这样就成了一个弹簧振子。

注意:①小球原来静止的位置就是平衡位置。

小球在平衡位置附近所做的往复运动,是一种机械振动。

②小球的运动是平动,可以看作质点。

③弹簧振子是一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子(金属小球)的大小和形状的理想化的物理模型。

2.弹簧振子的位移——时间图象(1)振动物体的位移是指由平衡位置指向振子所在处的有向线段,可以说某时刻的位移。

说明:振动物体的位移与运动学中位移的含义不同,振子的位移总是相对于平衡位置而言的,即初位置是平衡位置,末位置是振子所在的位置。

因而振子对平衡位置的位移方向始终背离平衡位置。

(2)振子位移的变化规律(3)弹簧振子的位移-时间图象是一条正(余)弦曲线。

知识点二:简谐运动1.简谐运动如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动,叫做简谐运动。

简谐运动是机械振动中最简单、最基本的振动。

弹簧振子的运动就是简谐运动。

2.描述简谐运动的物理量(1)振幅(A)振幅是指振动物体离开平衡位置的最大距离,是表征振动强弱的物理量。

(2)周期(T)和频率(f)周期和频率的关系是:(3)相位(φ)相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。

3. 固有周期、固有频率简谐运动的周期只由系统本身的特性决定,与振幅无关,因此T叫系统的固有周期,f叫固有频率。

弹簧振子的周期公式:,其中m是振动物体的质量,k为弹簧的劲度系数。

4.简谐运动的表达式y=Asin(ωt+φ),其中A是振幅,,φ是t=0时的相位,即初相位或初相。

知识点三:简谐运动的回复力和能量1.回复力:使振动物体回到平衡位置的力。

简谐运动的图像和公式

简谐运动的图像和公式

2.
x/m
写出振动方程 x=10sin(2π t)cm .
3.某弹簧振子的振动图象如图所示,根据图象判断。下列说法正 确的是( D ) A、第1s内振子相对于平衡位置的位移与速度方向相反 B、第2s末振子相对于平衡位置的位移为-20cm C、第2s末和第3s末振子相对于平衡位置的位移均相同,但瞬时 速度方向相反 D、第1s内和第2s内振子相对于平衡位置的位移方向相同,瞬时 速度方向相反。
周期、路程、振动情况关系
①1T内,路程s=4A
②T/2内,路程s=2A
③T/4内,路程s有可能大于A,也可能小于A,也
可能等于A
④t2 - t1=NT时,两时刻物体的运动情况一样 ⑤t2 - t1=(2n+1)T/2时,两时刻物体以相反的速 度通过两对称点。
例1.如图所示为某质点简谐运动的振动图像,根据图像回答:
⑴振幅、周期; ⑵具有正向最大速度的时刻; ⑶具有正向最大加速度的时刻; ⑷在3~4s内,质点的运动情况; ⑸1~4s内质点通过的路程。
二、简谐运动的表达式
简谐运动的图像为正弦(或余弦)曲线,也 就是说振动物体离开平衡位置的位移x与时间t的关 系可用正弦函数(或余弦函数)来表示,即
x A sin(t )
x/cm
1 2 3 4 5 6 t/s
-5
-10
【板书设计】
1.3 简谐运动的图像和公式 1.简谐运动的振动图像 都是正弦或余弦曲线。 表示振动物体相对平衡位置的位移随时间变化的规律。 2、图像中的信息:
(1)任一时刻的位移
(2)T、A、f (3)回复力和加速度大小方向的变化 (4)速度方向和大小的变化 3.简谐运动的表达式:
x A sin(t )

《简谐运动的图像》课件

《简谐运动的图像》课件
《简谐运动的图像》PPT 课件
简谐运动是一种重要的物理现象,它在各个领域都有广泛的应用。这个PPT 课件将带您深入了解简谐运动的图像展示和应用实例。
简谐运动简介
1 什么是简谐运动
简谐运动是一种物体以 固定频率和振幅围绕平 衡位置做周期性往复运 动的现象。
2 简谐运动的特点
3 简谐运动的实例
具有周期性、振幅恒定、 频率恒定和相位关系确 定等特点。
ห้องสมุดไป่ตู้ 总结
简谐运动的图像展示了物体随时间的变化规律,可以通过不同的图像形式更好地理解和分析简谐运动的 特点和应用。简谐运动在机械、声学、光学等领域中发挥了重要作用,对我们的生活和科学研究带来了 巨大影响。
简谐振动的加速度图像
简谐振动的加速度随时间的变化可以通过图像 呈现出来。
应用实例
单摆的简谐运动
单摆的摆动运动可以近似看作简谐运动,例 如钟摆。
声波的简谐振动
声波是一种机械波,可以看作是分子在空气 中的简谐振动。
弹簧的简谐振动
弹簧的振动实际上是一种简谐振动,广泛应 用于各种机械设备。
光波的简谐性质
光波具有波动性,并且可以通过干涉和衍射 现象来解释光的简谐性质。
弹簧振子、摆锤、声波 等都可以视为简谐运动。
简谐运动图像展示
椭圆轨迹的简谐运动图像
简谐运动在行星轨道运动中以椭圆轨迹的形式 展现。
余弦函数和正弦函数简谐运动图像
余弦函数和正弦函数可以精确描述简谐运动的 位置随时间的变化。
简谐振动的位移和速度图像
简谐振动的位移和速度随时间的变化可以由图 像直观地表示。

简谐运动的图像和公式课件

简谐运动的图像和公式课件
π π π (2)x=10sin( t+ ) cm,初相位 φ= . 2 2 2
答案 (1)5 2 cm -5 2 cm
π π (2)x=10sin2t+2
π cm 2
一、简谐运动的图像
(1)白纸不动时,甲同学画出的轨迹是怎样的? (2)乙同学匀速向右拖动白纸时,甲同学画出的轨迹又是怎 样的? 答案 (1)是一条垂直于OO′的直线.
返回
(2)轨迹如图,类似于正弦曲线.
一、简谐运动的图像
2.绘制简谐运动的x-t图像
如图2所示,使漏斗在竖直平面内做小角度摆动, 并垂直于摆动平面匀速拉动薄板,则细沙在薄板 上形成曲线.若以振子的平衡位置为坐标原点,沿 着振动方向建立x轴,垂直于振动方向建立t轴,
5.相位差
φ2),则相位差为Δφ= 当Δφ= 当Δφ= 0 π =
若两个简谐运动的表达式为x1=A1sin (ωt+φ1),x2=A2sin (ωt+ . 时,两振动质点振动步调一致. (ωt+φ2)-(ωt+φ1) φ2-φ1 时,两振动质点振动步调完全相反.
典例精析 一、对简谐运动的图像的理解
T
x=Asin
2π t+φ或 x=Asin (2πft+φ). T
二、简谐运动的表达式及相位差
返回
4.ωt+φ代表了做简谐运动的质点在 t时刻处在一个运动周期中的
哪个状态,所以ωt+φ代表简谐运动的相位;其中φ是t=0时的相 位,称为初相位或初相.相位是一个角度,单位是 或 弧度 度 .
4
1
中正确的是( )
2
3
4
1.(对简谐运动的图像的理解)关于简谐运动的图像,下列说法 BCD A.表示质点振动的轨迹,是正弦或余弦曲线 B.由图像可判断任一时刻质点相对平衡位置的位移方向 C.表示质点的位移随时间变化的规律 D.由图像可判断任一时刻质点的速度方向 解析 振动图像表示质点的位移随时间的变化规律,不是运 动轨迹,A错,C对; 由图像可以判断某时刻质点的位移和速度方向,B、D正确.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简谐运动及其图象【学习目标】1.知道什么是弹簧振子以及弹簧振子是理想化模型。

2.知道什么样的振动是简谐运动。

3.明确简谐运动图像的意义及表示方法。

4.知道什么是振动的振幅、周期和频率。

5.理解周期和频率的关系及固有周期、固有频率的意义。

6.知道简谐运动的图像是一条正弦或余弦曲线,明确图像的物理意义及图像信息。

7.能用公式描述简谐运动的特征。

【要点梳理】要点一、机械振动1.弹簧振子弹簧振子是小球和弹簧所组成的系统,这是一种理想化模型.如图所示装置,如果球与杆之间的摩擦可以忽略,且弹簧的质量与小球的质量相比也可以忽略,则该装置为弹簧振子.2.平衡位置平衡位置是指物体所受回复力为零的位置.3.振动物体(或物体的一部分)在平衡位置附近所做的往复运动,叫做机械振动.振动的特征是运动具有重复性.要点诠释:振动的轨迹可以是直线也可以是曲线.4.振动图像(1)图像的建立:用横坐标表示振动物体运动的时间t ,纵坐标表示振动物体运动过程中对平衡位置的位移x ,建立坐标系,如图所示.(2)图像意义:反映了振动物体相对于平衡位置的位移x 随时间t 变化的规律.(3)振动位移:通常以平衡位置为位移起点,所以振动位移的方向总是背离平衡位置的.如图所示,在x t -图像中,某时刻质点位置在t 轴上方,表示位移为正(如图中12t t 、时刻),某时刻质点位置在t 轴下方,表示位移为负(如图中34t t 、时刻).(4)速度:跟运动学中的含义相同,在所建立的坐标轴(也称为“一维坐标系”)上,速度的正负号表示振子运动方向与坐标轴的正方向相同或相反.如图所示,在x 坐标轴上,设O 点为平衡位置。

A B 、为位移最大处,则在O 点速度最大,在A B 、两点速度为零.在前面的x t -图像中,14t t 、时刻速度为正,23t t 、时刻速度为负.要点二、简谐运动1.简谐运动如果质点的位移与时间的关系遵从正弦函数规律,即它的振动图像是一条正弦曲线,这样的振动叫做简谐运动.简谐运动是物体偏离平衡位置的位移随时间做正弦或余弦规律而变化的运动,它是一种非匀变速运动.物体在跟位移的大小成正比,方向总是指向平衡位置的力的作用下的振动,叫做简谐运动. 简谐运动是最简单、最基本的振动.2.实际物体看做理想振子的条件(1)弹簧的质量比小球的质量小得多,可以认为质量集中于振子(小球);(2)当与弹簧相接的小球体积足够小时,可以认为小球是一个质点;(3)当水平杆足够光滑时,可以忽略弹簧以及小球与水平杆之间的摩擦力;(4)小球从平衡位置拉开的位移在弹簧的弹性限度内.3.理解简谐运动的对称性如图所示,物体在A 与B 间运动,O 点为平衡位置,C 和D 两点关于O 点对称,则有:(1)时间的对称:(2)速度的对称:①物体连续两次经过同一点(如D 点)的速度大小相等,方向相反.②物体经过关于O 点对称的两点(如C 与D 两点)的速度大小相等,方向可能相同,也可能相反.4.从振动图像分析速度的方法(1)从振动位移变化情况分析:如图所示,例如欲确定质点1P 在1t 时刻的速度方向,取大于1t 一小段时间的另一时刻1t ',并使11t t '-极小,考查质点在1t '时刻的位置1P '(11t x ,''),可知11x x <',即1P '位于1P 的下方,也就是经过很短的时间,质点的位移将减小,说明1t 时刻质点速度方向沿x 轴的负方向.同理可判定2t 时刻质点沿x 轴负方向运动,正在离开平衡位置向负最大位移处运动. 若12x x <,由简谐运动的对称特点,还可判断1t 和2t 时刻对应的速度大小关系为12v v >。

(2)从图像斜率分析:图像切线斜率为正,速度方向为正方向,图像切线斜率为负,速度方向为负方向,斜率绝对值表示速度大小.斜率大、速度大.要点三、描述简谐运动的基本概念1.全振动一个完整的振动过程,称为一次全振动.不管以哪里作为开始研究的起点,弹簧振子完成一次全振动的时间总是相同的.2.周期(1)定义:做简谐运动的物体完成一次全振动所需要的时间叫做振动的周期,用T 表示.(2)单位:在国际单位制中,周期的单位是秒(s ).(3)意义:周期是表示振动快慢的物理量.周期越长表示物体运动得越慢,周期越短表示物体运动得越快.(4)简谐运动的周期公式:2T =. 要点诠释:公式中m 为做简谐运动物体的质量,k 为做简谐运动物体受到的合外力跟位移的大小的比例常数.3.振幅(1)定义:振动物体离开平衡位置的最大距离,叫做振幅,用A 表示.(2)单位:在国际单位制中,振幅的单位是米(m ).(3)意义:振幅是表示振动强弱的物理量.要点诠释:①振幅是一个标量,是指物体偏离平衡位置的最大距离.它没有负值,也无方向,所以振幅不同于最大位移.②在简谐运动中,振幅跟频率或周期无关.在一个稳定的振动中,物体的振幅是不变的.③振动物体在一个全振动过程通过的路程等于4个振幅,在半个周期内通过的路程是两个振幅,但14个周期内通过的路程不一定等于一个振幅.可以比一个振幅大,也可以比一个振幅小. 4.频率(1)定义:单位时间内完成的全振动的次数,叫故振动的频率,用f 表示.常把物体在1 s 内完成的全振动次数叫做频率.(2)单位:在国际单位制中,频率的单位是赫兹(Hz ).(3)意义:频率是表示物体振动快慢的物理量.频率越大表示振动得越快,频率越小表示振动得越慢.(4)周期与频率的关系:1T f=。

(5)固有频率和固有周期:振子获得能量后,物体开始振动.物体的振动频率,只是由振动系统本身的性质决定,与其他因素无关,其振动频率叫固有频率,振动周期也叫固有周期.要点四、简谐运动的描述1.简谐运动的表达式:sin()x A t ωϕ=+(1)式中x 表示振动质点相对于平衡位置的位移,t 表示振动的时间.(2)A 表示振动质点偏离平衡位置的最大距离,即振幅.(3)ω叫做简谐运动的圆频率,它也表示简谐运动物体振动的快慢.与周期T 及频率f 的关系:所以表达式也可写成:2sin x A t T πϕ⎛⎫=+ ⎪⎝⎭或sin(2)x A f t πϕ=+. (4)ϕ表示0t =时,简谐运动质点所处的状态,称为初相位或初相.t ωϕ+代表了简谐运动的质点在t 时刻处在一个运动周期中的哪个状态,所以代表简谐运动的相位.(5)简谐运动的位移和时间的关系也可用余弦函数表示成:cos ()2x A t πωϕ⎡⎤=-+⎢⎥⎣⎦,注意同一振动用不同函数表示时相位不同,而且相位t ωϕ+ 是随时间变化的量.(6)相位每增加2π就意味着完成了一次全振动.2.测量弹簧振子周期的方法弹簧振子的周期一般较小,测定其周期时,一般是用秒表测出振子完成n 次全振动所用的时间t ,则n 值取大一些(如50)可以减小周期的测量误差.3.计算振动物体通过的路程的方法一个周期内,振子的运动路程为4A .若全振动的次数为n ,则振动物体通过的路程为4nA .4.对一次全振动的认识对简谐运动的物体,某一阶段的振动是否为一次全振动,可以从以下两个角度判断:一是从物体经过某点时的特征物理量看,如果物体的位移和速度都回到原值(大小、方向两方面),即物体完成了一次全振动;二是看物体在这段时间内通过的路程是否等于振幅的四倍.5.相位差是指两个相位之差,在实际中经常用到的是两个具有相同频率的简谐运动的相位差,反映出两简谐运动的步调差异.设两简谐运动A 和B 的振动方程分别为:它们的相位差为可见,其相位差恰好等于它们的初相之差,因为初相是确定的,所以频率相同的两个简谐运动有确定的相位差.若则称B 的相位比A 的相位超前ϕ∆,或A 的相位比B 的相位落后ϕ∆;若则称B 的相位比A 的相位落后ϕ∆,或A 的相位比B 的相位超前ϕ∆.(1)同相:相位差为零,一般的为(2)反相:相位差为π,一般的为要点诠释:比较相位或计算相位差时,要用同种函数来表示振动方程,相位差的取值范围:πϕπ-<∆≤.6.振动图像的信息如图所示,则(1)从图像上可知振动的振幅为A ;(2)从图像上可知振动的周期为T ;(3)从图像上可知质点在不同时刻的位移,1t 时刻对应位移1x ,2t 时刻对应位移2x ;(4)从图像上可以比较质点在各个时刻速度的大小及符号(表示方向),如1t 时刻质点的速度较2t 时刻质点的速度小,1t 时刻质点的速度为负,2t 时刻质点的速度也为负(1t 时刻是质点由最大位移处向平衡位置运动过程的某一时刻,而2t 时刻是质点由平衡位置向负的最大位移运动过程中的某一时刻);(5)从图像上可以比较质点在各个时刻加速度的大小及符号,如1t 时刻的加速度较质点在2t 时刻的加速度大,1t 时刻质点加速度符号为负,2t 时刻质点加速度符号为正;(6)从图像可以看出质点在不同时刻之间的相位差.7.简谐运动的周期性简谐运动是一种周而复始的周期性的运动,按其周期性可作如下判断:(1)若则12t t 、两时刻振动物体在同一位置,运动情况相同.(2)若则12t t 、两时刻,描述运动的物理量x F a v (、、、)均大小相等,方向相反.(3)若或则当1t 时刻物体到达最大位移处时,2t 时刻物体到达平衡位置;当1t 时刻物体在平衡位置时,2t 时刻到达最大位移处;若1t 时刻,物体在其他位置,2t 时刻物体到达何处就要视具体情况而定.【典型例题】类型一、简谐运动的基本概念例1.关于机械振动的位移和平衡位置,以下说法中正确的是( ).A .平衡位置就是物体振动范围的中心位置B .机械振动的位移总是以平衡位置为起点的位移C .机械振动的物体运动的路程越大,发生的位移也越大D .机械振动的位移是指振动物体偏离平衡位置最远时的位移【思路点拨】平衡位置是物体所受回复力为零时所在的位置.【答案】B【解析】平衡位置是物体可以静止时的位置,所以应与受力有关,与是否为振动范围的中心位置无关.如乒乓球竖直落在台面上的运动是一个机械振动,显然其运动过程的中心位置应在台面上,所以A 项不正确;振动位移是以平衡位置为初始点,到质点所在位置的有向线段,振动位移随时间而变,振子偏离平衡位置最远时,振动物体振动位移最大,所以只有选项B 正确.【总结升华】位移和平衡位置是机械振动问题中非常重要的概念.位移的正负方向应该作出规定,平衡位置则是物体所受回复力为零时所在的位置.举一反三:【高清课堂:简谐振动及其图像例1】【变式1】一质点做简谐运动,其振动图象如图所示,则( ).A .振幅是2cmB .振动频率为4HzC .3s t =时,质点速度为正且最大D .4s t =时,质点速度为正且最大【答案】A C【变式2】一质点作简谐运动,图象如图所示,在0.2s 到0.3s 这段时间内,质点的运动情况是( ).A .沿负方向运动,且速度不断增大B .沿负方向运动的位移不断增大C .沿正方向运动,且速度不断增大D .沿正方向的加速度不断减小【答案】C D类型二、振动图像的理解例2.如图是用频闪照相的方法获得的弹簧振子的位移一时间图像,下列有关该图像的说法正确的是( ).A .该图像的坐标原点建立在弹簧振子小球的平衡位置B .从图像可以看出小球在振动过程中是沿t 轴方向移动的C .为了显示小球在不同时刻偏离平衡位置的位移,让底片沿垂直x 轴方向匀速运动D .图像中小球的疏密显示出相同时间内小球位置变化快慢不同【答案】A 、C 、D【解析】由图可直观地获得以下信息:①0时刻振子的位置.②振子的振动方向.③底片的运动方向(t 轴负方向).④振动速度的变化等.由图像可见,0时刻振子位移为0,故位于平衡位置,A 项正确;小球只在x 轴上振动,横轴虽是由底片匀速运动得到的位移,但x vt =,已转化成了时间轴,B 项错误,C 项正确;图像中两相邻小球之间的时间间隔相同,疏处说明其位置变化快,密处说明其位置变化慢,故D 项正确.类型三、根据质点振动判断振动图像例3.一弹簧振子沿x 轴振动,振幅为4 cm ,振子的平衡位置位于x 轴上的0点.如图甲中的a b c d 、、、为四个不同的振动状态:黑点表示振子的位置,黑点上的箭头表示运动的方向.如图乙给出的①②③④四条振动曲线,可用于表示振子的振动图像的是( ).A .若规定状态a 时0t =,则图像为①B .若规定状态b 时0t =,则图像为②C .若规定状态c 时0t =,则图像为③D .若规定状态d 时0t =,则图像为④【思路点拨】把振动图像和振动的情景结合起来,由图像获取信息形成物理情景,或由实际运动情景转化为振动图像.并注意规定正方向和零时刻不同。

相关文档
最新文档