活性污泥法中污泥产率的计算
国家精品课程《水污染控制工程》3-活性污泥法

第四章、污水的生物处理
教学要求
1、掌握活性污泥法的基本原理及其反应机理 2、理解活性污泥法的重要概念与指标参数:如活性 污泥、剩余污泥、MLSS、MLVSS、SV、SVI、Qc、 容积负荷、污泥产率等。 3、理解活性污泥反应动力学基础及其应用。 4、掌握活性污泥的工艺技术或运行方式; 5、掌握曝气理论。 6、熟练掌握活性污泥系统的计算与设计; 时间安排 20h(其中机动2h)
7
后生动物(主要指轮虫),捕食菌胶团和原生动物,是水质稳 定的标志。因而利用镜检生物相评价活性污泥质量与污水处 理的质量。
• 思考题:后生动物的出现反映了处理水质较好,因此能否说 明出水氨氮较低,氨氮在生物处理过程中被硝化?
③微生物增殖与活性污泥的增长:
a、微生物增值:在污水处理系统或曝气池内微生物的增殖规 律与纯菌种的增殖规律相同,即停滞期(适应期),对数期, 静止期(也减速增殖期)和衰亡期(内源呼吸期)。
③泥龄(Sludge age)Qc:生物固体平均停留时间或活性污泥在 曝气池的平均停留时间,即曝气池内活性污泥总量与每日排 放污泥量之比,用公式表示:θc=VX/⊿X=VX/QwXr 。式中: ⊿X为曝气池内每日增长的活性污泥量,即要排放的活性污泥 量。
Qw为排放的剩余污泥体积。 Xr为剩余污泥浓度。其与SVI的关系为(Xr) max=106 /SVI • Qc是活性污混处理系统设计、运行的重要参数,在理论上也 具重要意义。因为不同泥龄代表不同微生物的组成,泥龄越 长,微生物世代长,则微生物增殖慢,但其个体大;反之, 增长速度快,个体小,出水水质相对差。 Qc长短与工艺组合 密切相关,不同的工艺微生物的组合、比例、个体特征有所 不同。污水处理就是通过控制泥龄或排泥,优选或驯化微生 物的组合,实现污染物的降解和转化。
SBR处理技术

SBR是一种利用微生物反应器中一定时间顺序进行间歇式操作的废水处理技术,具有净化效果好、运行费用低、易于操作管理、适用范围广、投资费用少等特点,目前在工业废水、城市污水、有毒有害有机物废水和富含营养元素废水处理等方面得到了广泛的应用。
SBR污水处理技术SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。
与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。
它的主要特征是在运行上的有序和间歇操作,SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。
正是SBR工艺这些特殊性使其具有以下优点:1、理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。
2、运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。
3、耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。
4、工艺过程中的各工序可根据水质、水量进行调整,运行灵活。
5、处理设备少,构造简单,便于操作和维护管理。
6、反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。
7、SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。
8、脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。
9、工艺流程简单、造价低。
主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。
SBR系统的适用范围由于上述技术特点,SBR系统进一步拓宽了活性污泥法的使用范围。
就近期的技术条件,SBR系统更适合以下情况:1) 中小城镇生活污水和厂矿企业的工业废水,尤其是间歇排放和流量变化较大的地方。
水处理计算公式

θ——温度系数,取值范围1.008~1.047,一般取值为1.024
C——T℃时工艺系统中污水的溶解氧浓度,mg/L,多数情况为2
CS(T)——T℃时曝气池混合液的平均饱和溶解氧浓度,mg/L,如未告知取值,则查三废P501
CS(20)——20℃时清水中氧的溶解度,9.17mg/L
需氧量计算公式
除碳需氧量
O2——需氧量,kg/d
a′——氧化每kgBOD5所需氧量,取值:生活污水0.42~0.53,有机工业废水0.35~0.75
b′——污泥自身氧化需氧率,d-1,取值:生活污水0.09~0.11,有机工业废水0.06~0.34
1.47——碳的氧当量,当含碳物质以BOD5计时,取1.47,符号为a
θ——温度系数,取值范围1.008~1.047,一般取值为1.024
污水因素
α——氧转移折算系数,其值小于1取值范围0.2~1.0
KLa——清水中氧的总转移系数,1/h
KLa′——污水中氧的总转移系数,1/h
其他组分对饱和溶解度的影响
β——氧溶解度折算系数,其值小于1取值范围0.8~1.0
CS——清水中氧的溶解度,kgO2/m3
q——有机物比降解速率,d-1,
有些手册上q=LS′(即kgBOD5/kgMLVSS·d)
稳态条件下的完全混合式曝气池
K2——动力学参数(参见上面公式,Se单位为mg/L)
Kd——污泥内源呼吸率,d-1
污泥产量
ΔX——每日排出污泥量即污泥产量(MLSS),gMLSS/d
ΔXV——每日排出挥发性污泥量即挥发性污泥产量(MLVSS),gMLVSS/d
Sr——进出水BOD5浓度差,mg/L
序列间歇式(序批式)活性污泥(SBR)反应器的设计

序列间歇式(序批式)活性污泥(SBR)反应器的设计SBR是序列间歇式活性污泥法的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。
与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。
它的主要特征是在运行上的有序和间歇操作,SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。
一、SBR工艺的优点1、理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。
2、运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。
3、耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。
4、工艺过程中的各工序可根据水质、水量进行调整,运行灵活。
5、处理设备少,构造简单,便于操作和维护管理。
6、反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。
7、SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。
8、脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。
9、工艺流程简单、造价低。
主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。
二、SBR系统的适用范围由于上述技术特点,SBR系统进一步拓宽了活性污泥法的使用范围。
就近期的技术条件,SBR系统更适合以下情况:1、中小城镇生活污水和厂矿企业的工业废水,尤其是间歇排放和流量变化较大的地方。
2、需要较高出水水质的地方,如风景游览区、湖泊和港湾等,不但要去除有机物,还要求出水中除磷脱氮,防止河湖富营养化。
3、水资源紧缺的地方。
SBR系统可在生物处理后进行物化处理,不需要增加设施,便于水的回收利用。
4、用地紧张的地方。
5、对已建连续流污水处理厂的改造等。
第四章 (4.3)活性污泥反应动力学

图中的生化反应可以用下式表示:
S yX zP
及
dX dS y dt dt
即
dS 1 dX dt y dt
式中:反应系数 y 又称产率系数,mg(生物量)/mg(降解的 dS 底物)。 该式反映了底物减少速率和细胞增长速率之间的关系,是废水生物处理 中研究生化反应过程的一个重要规律。
(4-29)
V
1 ds X dt
∵
r V max r Vmax Vmax max r
V
V:比降解速率
∴
1 maxS max S S Vmax r r KS S r KS S KS S
(4-30)
∴
有机底物降解速度
XS e ds Vmax dt K S Se
(4-41)
(4-42)
将( 4 42) 代入( 4 40) 式后:
并在等式两边同时除以X得出:
Vmax
XSe Q( S 0 S e ) K S Se V
Vmax
Se Q(S 0 S e ) (S 0 S e ) K S Se XV Xt
的变化
∴动力学是研究讨论下列函数关系:
S V Vmax KS S ds f s, x XS dt ds V max dt KS S
S max KS S dx g(S, X) XS dt dx max dt KS S
S0 Se K 2Se Xt S0 Se K 2Se Xt Se (1 K 2 Xt )
有机物地残留率
去除率
SBR工艺原理及运行参数

SBR工艺原理及运行参数SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。
与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。
它的主要特征是在运行上的有序和间歇操作,SBR技术的核心是SBR 反应池,该池集均化、初沉、生物降解、二沉等功能于一池,没有污泥回流系统。
正是SBR工艺这些特殊性使其具有以下优点:1、理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。
2、运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。
3、耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。
4、工艺过程中的各工序可根据水质、水量进行调整,运行灵活。
5、处理设备少,构造简单,便于操作和维护管理。
6、反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。
7、SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。
8、脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。
9、工艺流程简单、造价低。
主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。
SBR系统的适用范围:1) 中小城镇生活污水和厂矿企业的工业废水,尤其是间歇排放和流量变化较大的地方。
同时也非常适合处理小水量,间歇排放的工业废水与分散点源污染的治理。
2) 需要较高出水水质的地方,如风景游览区、湖泊和港湾等,不但要去除有机物,还要求出水中除磷脱氮,防止河湖富营养化。
3) 水资源紧缺的地方。
SBR系统可在生物处理后进行物化处理,不需要增加设施,便于水的回收利用。
活性污泥法
MLSS (mg/l) MLVSS (mg/l)
回流比 (%) 曝气时间HRT (h) BOD5去除率 (%)
0.20.4
0.30.6 515
15003000 12002400
2550 48 8595
2. 阶段曝气法(分段进水法)
有机物降解与需氧:
氧在微生物代谢过程中的用途:
(1)氧化分解有机物;
(2)氧化分解自身的细胞物质。
O2 a'Q Sr b'V X v
式中:O2——曝气池中混合液的需氧量,kgO2/d; a’——代谢每kgBOD所需的氧量, kgO2/kgBOD.d; b’——每kgVSS每天进行自身氧化所需的氧量, kgO2/kgVSS.d 。
0.76
制药废水
0.77
酿造废水
0.93
亚硫酸浆粕废水
0.55
b 0.10 0.13 0.016
0.13
a、b经验值的获得:
(3)通过实验获得:
x aQS r bVX v 可 改 写 为 :
x a QS r b
VX v
VX v
x/VXv( /d)
1
b
a
+
+
+
+
+
QSr/VXv(kgBOD/kgVSS.d)
思考题:如何解释单位质量污泥的需氧量与负荷成正比,而去除单位 质量BOD的需要量与负荷成反比?
a’、b’值的确定:
活性污泥法处理城市污水:
运行方式 完全混合式 生物吸附法 传统曝气法 延时曝气法
O2
0.71.1 0.71.1 0.81.1 1.41.8
a’
b’
0.42 0.11
SBR计算
4.5。
3 反应池运行周期各工序计算 (1)曝气时间(T A )0A s 24S 24400T =3L mX 0.244000⨯==⨯⨯(h) (2)沉淀时间(T S ) 初期沉降速度4 1.264 1.26max 4.610 4.6104000 1.33A V C --=⨯⨯=⨯⨯=(m 3/h )则max 11() 3.50.54 1.031.33S H m T V ε+⨯+===(h ) (3)排出时间(T D )本设计拟定排除多余的活性污泥、撇水时间为0.5h,则沉淀与排出时间合计为1.5h 。
(4)进水时间(T F ) 本设计拟定缺氧进水1.5h[23]。
则一个周期所需要的时间为:T c = T A + T S + T D + T F =3 + 1.5 + 1。
5 = 6(h )4.5。
4 反应池池体平面尺寸计算周期数242446n Tc ===池个数641.5F T N T ===反应池有效池容4250062544m V Q n N =⨯=⨯=⨯⨯(m 3) 由进水时间和进水量的变动理论,求得一个循环周期的最大流量变动比max1.5Q r Q ==平均超过一个周期,进水量△Q 与V 的对比为△Q/v 1 1.510.1254r m --=== 考虑流量比,反应池的修正容量为V’=V(1+△Q/v)625(10.125)703.125=⨯+=(m 3)取反应池水深为3.5m ,则所需水面积'703.125200.8953.5V A H ===(m 2)取200(m 2) 取反应器长L=20(m ),则宽为b=10 (m) SBR 反应池设计运行水位如图3所示。
排水结束时水位h 2=H/(1+△Q/v)1133.5 2.310.1254m m -⨯=⨯⨯=+(m ) 基准水位h 3=H/(1+△Q/v)13.5 3.110.125=⨯=+(m )高峰水位4h =3.5(m )警报溢流水位540.5 3.50.54h h =+=+=(m )污泥界面120.5 2.30.5 1.8h h =-=-=(m )4。
SBR污水处理工艺总结
SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。
与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。
它的主要特征是在运行上的有序和间歇操作,SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。
正是SBR工艺这些特殊性使其具有以下优点:1、理想的推流过程使生化反应推动力增大,效率提高,池内厌氧、好氧处于交替状态,净化效果好。
2、运行效果稳定,污水在理想的静止状态下沉淀,需要时间短、效率高,出水水质好。
3、耐冲击负荷,池内有滞留的处理水,对污水有稀释、缓冲作用,有效抵抗水量和有机污物的冲击。
4、工艺过程中的各工序可根据水质、水量进行调整,运行灵活。
5、处理设备少,构造简单,便于操作和维护管理。
6、反应池内存在DO、BOD5浓度梯度,有效控制活性污泥膨胀。
7、 SBR法系统本身也适合于组合式构造方法,利于废水处理厂的扩建和改造。
8、脱氮除磷,适当控制运行方式,实现好氧、缺氧、厌氧状态交替,具有良好的脱氮除磷效果。
9、工艺流程简单、造价低。
主体设备只有一个序批式间歇反应器,无二沉池、污泥回流系统,调节池、初沉池也可省略,布置紧凑、占地面积省。
SBR系统的适用范围由于上述技术特点,SBR系统进一步拓宽了活性污泥法的使用范围。
就近期的技术条件,SBR系统更适合以下情况:1) 中小城镇生活污水和厂矿企业的工业废水,尤其是间歇排放和流量变化较大的地方。
2) 需要较高出水水质的地方,如风景游览区、湖泊和港湾等,不但要去除有机物,还要求出水中除磷脱氮,防止河湖富营养化。
3) 水资源紧缺的地方。
SBR系统可在生物处理后进行物化处理,不需要增加设施,便于水的回收利用。
污水处理设计计算
污水处理设计计算一、引言污水处理是保护环境和人类健康的重要环节。
本文将详细介绍污水处理设计计算的相关内容,包括设计原则、计算方法以及实际案例分析。
二、设计原则1. 污水处理目标:根据污水的性质和排放要求,确定处理目标,如去除悬浮物、有机物、氮磷等。
2. 处理工艺选择:根据污水特性和处理目标,选择适当的处理工艺,如活性污泥法、厌氧消化法等。
3. 设计流量计算:根据污水产生量和排放要求,计算设计流量,以确定处理设施的规模。
4. 设计负荷计算:根据处理目标和设计流量,计算各种污染物的设计负荷,以确定处理设施的处理能力。
5. 设计参数确定:根据处理工艺和设计负荷,确定各项设计参数,如污泥产率、曝气量等。
三、计算方法1. 设计流量计算:根据污水的产生量和排放要求,通过实地调查和统计数据,计算出设计流量。
例如,某工业区的日均污水产生量为1000m³,根据排放标准要求去除COD为80%,则设计流量为1000m³/0.8=1250m³。
2. 设计负荷计算:根据处理目标和设计流量,计算各种污染物的设计负荷。
例如,某污水处理厂的设计目标是去除COD,设计流量为5000m³/d,COD浓度为300mg/L,则COD的设计负荷为5000m³/d * 300mg/L = 1500kg/d。
3. 设计参数确定:根据处理工艺和设计负荷,确定各项设计参数。
例如,某活性污泥法处理工艺的污泥产率为0.5kgSS/kgCOD,设计负荷为1500kg/d,则污泥产量为1500kg/d / 0.5 = 3000kg/d。
四、实际案例分析以某城市污水处理厂为例,该厂的设计流量为10000m³/d,主要采用活性污泥法进行处理。
根据实际情况,设计负荷如下:1. COD设计负荷:设计流量为10000m³/d,COD浓度为200mg/L,去除率要求为90%。
计算得到COD设计负荷为10000m³/d * 200mg/L * (1-0.9) = 2000kg/d。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1
活性污泥法中污泥产率的计算
吴凡松 彭永臻
(中国市政工程华北设计研究院)(北京工业大学环境与能源工程学院)
提 要:根据IAWQ活性污泥模型确定的原理,推导出活性污泥系统中污泥产率的计算公式,并通过
实例验证,当系统中设置初沉池或不设初沉池时应采用不同的计算公式。
关键词:IAWQ活性污泥模型 ATV A131标准 污泥产率 初沉池
引言
文中的污泥产率是指污泥的净产率,而非表观产率,它是生物处理系统产生的污泥量(MLSS)与进入生
物系统的BOD5数量的比值。对于按泥龄法设计的活性污泥系统,污泥产率是最重要的设计参数之一。在
泥龄和MLSS浓度确定的情况下,按照以下公式即可计算出生物池容积:
V=Q·BOD5·Yt·θc/X
式中: Q——生物处理系统设计流量,m3/d;
BOD5—进入生物处理系统的BOD5浓度,kg/m3;
Yt——污泥产率,kgMLSS/kgBOD5;
θc——泥龄,d;
X——混合液悬浮固体(MLSS)浓度,g/L;
设计中污泥产率通常按公式法求算,有时也可按经验选取。
1 污泥产率公式的推导
关于活性污泥产率的计算方法,可依据IAWQ活性污泥模型进行推导。该模型中有机物和污泥挥发性
组分均采用COD作为计量参数,考虑到习惯性问题和实用化,这里仍采用BOD5作为可生物降解有机物
的计量参数,采用SS或VSS作为污泥的计量参数。对于特定污水,这些参数与COD之间存在定量换算关
系。
(1)根据IAWQ活性污泥模型确定的原理,来自进水中的固定性悬浮固体(FSS)和不可生物降解
VSS将全部截留在活性污泥絮体内,由此产生的污泥量(XI)可由下式求得:
XI=Q·SS·(1-fV+fV·fNV) (1)
式中: fV——进水SS中挥发份所占比例,我国城市污水典型实测值为0.5~0.65;
fNV——进水VSS中不可好氧生物降解部分所占比例,典型值为0.2~0.4。
SS——进入生物处理系统的SS 浓度,kg/m3;
(2)活性污泥中的活性部分包括异养微生物和自养微生物。异养微生物(XB·H)由可生物降解有机
物转化而来,其产生量为:
XB·H=Q·BOD5·YH/(1+Θc·bH) (2)
式中:YH——异养微生物产率系数kgVSS/kgBOD5,典型取值范围0.6~0.75
bH——异养微生物内源衰减系数,15℃时取值0.08d-1,温度系数1.072。
如有硝化发生,可用下式求算硝化菌量(自养菌XB·A)
XB·A=Q·TKN·YA/(1+Θc·bA) (kgVSS/d) (3)
式中:TKN——在生物处理系统中,通过硝化作用去除的TKN浓度,kg/m3。
YA——硝化菌的产率系数,0.1kgVSS/kgNH3-N
2 2
bA——硝化菌衰减系数,20℃时取值0.04d-1,温度修正系数1.03
(3)微生物进入内源呼吸状态后产生的内源衰减残留物含量(XP),由下式求得:
Xp= fp·bHΘc·XB·H (kg VSS/d) (4)
式中:fp——微生物体不可生物降解部分所占比例
忽略微生物体的无机成份含量和硝化菌的内源残留物含量,生物处理系统的活性污泥产量XT为:
XT=XI+XB·H+XB·A+XP (5)
由于XB·A数值较小,XB·A/XT=2~3%,可以忽略,则
XT=XI+XB·H+XP (6)
把(1)、(2)、(4)式代入(6)式得:
XT=Q.SS.(1-fv+fv.fNV)+(1+fp.bH.θc)[(Q.BOD5.Yh)/1+θc.bH
(7)
用进水BOD5总量除XT,可得到单位BOD5去除所产生的活性污泥量,即
Yt=(1+fp.bH.θc([YH/1+θc.bH)]+[SS/BOD5](1-fv+fv.fNV) (8)
对(8)式右边第一项进行变形得:
(1+fp.bH.θc)[YH/(1+θc.bH)]=YH-[(1-fp)θc.bH.YH]/(1+θ
c
.bH) (9)
(8)式变为:
(10)
根据经验,fp=0.1,bH=0.08×1.072T-15,YH=0.6,因此,(10)式变为:
(11)
若令1-fV+fV·fNV=0.6,则(11)式变为:
(12)
该式即为德国水污染控制联合会推荐的污泥产率计算公式(ATV A131标准),在设计的前期阶段可用于
估算系统的污泥产率。
2 问题与讨论
从(11)式可以看出,系统污泥产率与温度和泥龄相关,温度升高、泥龄增大,微生物分解加剧,从而
导致污泥产率降低。
污泥产率不仅同SS/BOD5的比值有关,还同悬浮物(SS)的组成有关。若悬浮物中可生化组分比例高,
3 3
则系统污泥产率低。由于我国地域辽阔,生活污水水质相差较多,再加上污水厂进水中工业污水比例各不
相同,因此若想准确预测污泥产率,除了掌握进水SS和BOD5,尚需准确测定fV和fNV的值。
另外,系统中是否设置初次沉淀池,对生物处理系统污泥产率也有影响。这一点通过下面的例子可以
看出。
已知某城市污水,BOD5=200mg/L,SS=250mg/L,fV=0.6,fNV=0.3SS中可沉部分占50%,可沉部分
fV=0.5,fNV=0.3,不可沉部分占50%,不可沉部分fV=0.7,fNV=0.3。另外假设BOD5可沉部分占25%,
系统设计水温10℃,设计泥龄17天。分别计算有、无初沉池时生物系统的污泥产率。
(1)系统不设初沉池
按照ATV A131计算公式(即公式(12)):
Yt=1.09 kgMLSS/kgBOD5
按照公式(11):
1-fV+fV·fNV=1-0.6+0.6x0.3=0.58
Yt=1.07 kgMLSS/kgBOD5
系统设初沉池
按照ATV A131计算公式:
Yt=0.84 kgMLSS/kgBOD5
按照公式(11):
1-fV+fV·fNV=1-0.7+0.7·0.3=0.51
Yt=0.77 kgMLSS/kgBOD5
从上例可以看出,对城市污水,当系统不设初沉池时,可以直接用公式(12)估算污泥产率;但当系
统中设有初沉池时,由于此时进入生物池的悬浮物中挥发性组分比例增高,按公式(12)计算的污泥产率偏
大。根据笔者经验,此时可采用如下的计算公式:
对公式(11),取(1-fV+fV·fNV)=0.5,得到:
(13)