脱氮除磷活性污泥法计算

合集下载

活性污泥定义与计算公式

活性污泥定义与计算公式

一、微生物的生长环境(1)微生物的营养好氧微生物BOD:N:P=100:5:1厌氧微生物BOD:N:P=200:5:1(2)温度好氧微生物20~37℃厌氧微生物中温:25~40℃高温:50~60℃(3)pH活性污泥法曝气池中的适宜pH为6.5~8.5(4)溶解氧好氧生物处理的溶解氧一般以2-3mg/L为宜。

缺氧反硝化一般控制DO在0.5mg/L以下,厌氧释磷则要求DO低于0.3mg/L。

二、生物脱氮含氮有机物氨(亚)硝酸盐氮气三、生物除磷厌氧放磷,好氧吸磷。

通过剩余污泥的排放实现高效生物除磷。

四、定义VSS:VSS指活性污泥中在600摄氏度的燃烧炉中能被燃烧,并以气体逸出的那部分固体。

它通常用于表示污泥中的有机物的量,常用mg/L表示,有时也用重量百分数表示。

VSS也反映污泥的稳定化程度。

MLVSS:表示混合液活性污泥中有机性固体物质部分的浓度。

相对于MLSS而言,在表示活性污泥活性部分数量上,本项指标在精度方面进了一步。

MLSS:表示曝气池单位容积混合液内所含有的活性污泥固体物的总重量(mg/L)。

生活污水一般MLVSS/MLSS=0.7-0.8,曝气池中MLSS在2000-4000mg/L是适宜的。

反硝化菌缺氧有氧(亚)硝化菌氨化微生物有氧或无氧污泥龄 ()()c =t TTX Xθ∆∆;()cw e w 1=RX VQ Q X Q X θ-+;()0e d c1=Q S S YK XVθ--;c w =R XV XVQ X Xθ=∆;出水BOD 值()()s d c e c maxd 1=r 1K K S Y K θθ+--与污泥龄和动力学参数有关回流污泥的最高浓度 ()6max 10=R X SVI(X R 为MLSS ,需折算成MLVSS)城镇污水的典型动力学参数值(20℃)供气量ss =0.28AO G E (E A 为供气设备的氧利用效率)表观产率系数 obs d c=1YY K θ+活性污泥法过程设计: I.曝气池容积设计()()()0e 0e c d c 1SQ S S YQ S S V L X X K θθ--==⋅+II.剩余污泥量计算()0e d c=VV XX Y S S Q K V X θ∆=--III.需氧量计算()0e 21.420.68VQ S S O X -=-∆。

脱氮除磷活性污泥法工艺

脱氮除磷活性污泥法工艺

提高水质:脱氮除磷活性污泥法可以有效去除废水中的氮、磷等污染物,提高水质。
促进水生态平衡:通过脱氮除磷活性污泥法处理废水,可以减少废水对水生态平衡的破坏。
降低环境污染:脱氮除磷活性污泥法可以减少废水中的污染物排放,降低环境污染。
促进可持续发展:脱氮除磷活性污泥法是一种可持续发展的污水处理技术,具有很好的经济效 益、社会效益和环境效益。
工艺流程:简单,易于操作 脱氮除磷效果显著 去除有机物效率高 适应性强,可处理各种类型的污水
适用于处理城 市污水、工业 废水和自然水

在不同的脱氮 除磷活性污泥 法工艺中,适 用范围和条件
也不同
一般情况下, 脱氮除磷活性 污泥法适用于 处理低浓度、 大水量的废水 或处理高浓度、 高负荷的废水
处理效果受水 质、水量、温 度、pH值等因
脱氮除磷活性污泥法的基本 原理
脱氮除磷活性污泥法的工艺 特点
脱氮除磷活性污泥法的应用 范围
曝气池:将活性污泥与废水混合,进行好氧反应 缺氧池:进行反硝化反应,去除硝酸盐和亚硝酸盐 沉淀池:分离固体和液体,去除污泥中的污染物 回流泵:将部分污泥回流到曝气池,维持污泥浓度和活性 出水:经过处理后的废水达标排放
起源:20世纪80年代
背景:为了解决水体富营应用领域:污水处理、水体修 复等领域
起源:20世纪 80年代
应用领域:污水 处理领域
发展趋势:逐渐 被广泛应用
技术突破:近年 来技术不断得到 改进和完善
当前应用广泛,技术成熟 未来发展方向:提高脱氮除磷效率、减少污泥产生、降低成本 技术创新:开发新型脱氮除磷工艺,提高处理效率 政策支持:政府加大对脱氮除磷技术的支持力度
素影响较大
城市污水处理厂: 去除氮、磷等污 染物,提高水质

脱氮除磷活性污泥法

脱氮除磷活性污泥法

备注
h-缺氧池有效水深,m S1单-单组曝气池有效积,m2
B-缺氧池总宽宽度,m
缺氧池分隔格数 格
单组缺氧池长度,m
水池超高 m 取值0.5-1
缺氧池总高度 m
输入 6
26.20827489
157.2496493 3
52.41654978 60.27903225
备注
1m³废水所需功率,W/m³ 取值一般在5-10W/m³ V2单-单组缺氧池容积,m³
qdn,T-温度T℃反硝化速率。(kgNO3-N)/(kgMLVSS·d) V2=NT×1000/qdn,T×Xv
备注 qdn,T-温度T℃反硝化速率。(kgNO3-N)/(kgMLVSS·d) NT-需要去除(还原)的硝酸氮量,kg(NO3-N)/d (注意:此处为kg/d) Xv-挥发性悬浮固体浓度 MLVSS,kg/m³ V2-缺氧池容积 m
θc=θcm×F
θcm=1/μn
输入
备注
0.655441125 μn-硝化速率,d-1
3.5
F-设计安全系数 此处为城镇污水在1.5-3.0之间,工业废水实验确定
1.525690046 θmc-硝化反应所需最小泥龄。d
5.33991516 θc-设计污泥泥龄。 d V1=YθcQ(S0-Se)/Xv(1+Kdθc)
指标 P-所在地区大气压力。Pa
α-氧总转移系数,α=0.85
ρ-海拔高度差压力修正系数,
β-氧在污水中饱和溶解度修正系数,β=0.95
ρ
ρ-因海拔高度的不同引起的压力修正系数,
C-曝气池内平均溶解氧浓度,mg/l,取C=2mg/l.
设计水温曝气池内溶解氧
Csb(T)-设计水温条件下曝气池内平均溶解氧饱和度,mg/l,最不利温度(取30℃)

传统活性污泥脱氮除磷限度

传统活性污泥脱氮除磷限度

传统活性污泥工艺运行方式的改进来源:中国论文下载中心更新时间:08-9-1 14:29 作者: 黄甦刘瑾1 传统工艺低负荷运行除磷脱氮的限度由于传统工艺运行的污水厂没有深度净化功能,也没有更多资金新建大规模污水处理厂,因此对老厂原工艺进行改进,使其成为AO或连续流间隙曝气工艺是十分必要的。

常规的活性污泥法采用的污泥负荷为0.2~0.3kgBOD5/(kgMLSS·d),曝气池活性污泥浓度控制在2~3g/L之间,泥龄维持在4~5d以内。

由于泥龄短,活性污泥中硝化菌的增殖速率小于其随剩余污泥排出的速率,因而常规活性污泥法在满负荷的条件下,氨氮去除率低,一般仅为20%~30%。

为使按常规法设计的污水厂获得满意的硝化效果,必须减小污泥负荷,提高污泥泥龄。

在不增加曝气池容积的前提下,可采用的办法就是提高曝气池污泥浓度。

为了达到这一目标,要保证做到以下两点:一是活性污泥具有良好的沉降性能;二是曝气系统具有足够的供氧能力。

为了改善污泥的沉降性能,可采用超越初沉池的办法,这样进水中悬浮颗粒可能成为细菌絮凝的核心。

某污水处理厂采用超越初沉池的低负荷活性污泥法,严格控制曝气池溶解氧(前段1.1mg/L,中段1.6mg/L,后段2.8mg/L),运行结果表明,BOD5的去除很好,出水平均值<10mg/L,去除率达95.4%;NH3-N硝化相当完全,出水为0.1mg/L,硝化率为99.6%;氮磷的去除情况见表1。

超越初沉池,提高曝气池污泥浓度的运行结果表明,硝化的效果相当好,氨氮去除率达99%,但出水的总氮在20mg/L以上,去除效果还不是很理想。

某污水厂设计处理能力27 000 m3/d,实际水量为15 000m3/d,进水中很大部分为工业废水。

超越初沉池低负荷活性污泥法运行数据表明,在平均水温为26.6 ℃,MLSS为4.98 g/L,SVI为50.5 mL/g时,COD、BOD5的去除率达90%以上,出水NH3-N为3.0mg/L,硝化率为85.3%,当BOD5/TN为4.4时,总氮去除率为48.5%。

活性污泥法脱氮除磷数学模型的发展

活性污泥法脱氮除磷数学模型的发展

活性污泥法脱氮除磷数学模型的发展徐伟锋顾国维张芳(同济大学污染控制与资源化研究国家重点实验室,上海200092)摘要:利用聚磷菌在缺氧条件下的吸磷和反硝化作用,实现氮、磷的同时去除,是具有实用前景的城市污水处理方法,而建立活性污泥法脱氮、除磷的数学模型则有利于该项技术的推广应用。

文中对ASM2d模型、Barkerand Dold 模型、Delft模型作了较为详细的介绍,提出了由聚磷菌引起的缺氧吸磷和反硝化作用中需要解决的 2个问题:反硝化聚磷菌浓度的确定和由反硝化聚磷菌吸磷所引起的磷的减少量。

关键词:模型;生物营养物去除;生物过量除磷作用;缺氧吸磷中图分类号:X703.1 文献标识码:A 文章编号:1009-2455(2004)02-0001-04Development of Mathematical Modelsof Demtrihcation and Dephosphorization by Activated Sludge ProcessXU Wei-feng GU Guo-wei ZHANG Fang(She Key Lab of Pollution Control and Resource Reuse,Tongji UniversiryShanthe 200092,China)Abstract:The use of the phosphorus uptake and denltrification of PAOs under anoxic conditions for the realization of the simultaneous removal of nltrogen and phosphorus is a method with practical prospect for munic-ipal sewage treatment,and the establishment of the mathematical models of denitrlfication and dephosphorization by activated-sludge process benefits the popularization and application of this technofogy.Models ASM2d,Barker and Dold and Delft are presented in a detailed way in this paper,with two issues raised which need to be re-solved in the anoxic phosphorus uptake and denitrificatlon caused by PAOs,i.e.the determination of the concen-tration of denitrification PAOs and the decrease of phosphorus caused by the phosphorus uptake of denitrification-PAOs.Key words: model; biological nutrient removal; biological excess phosphrus removal;anoxic phosphrus uptake自1990 年以来,许多学者相继报道有缺氧吸磷现象[1],即所谓的反硝化除磷作用。

生物处理2(活性污泥法、厌氧、脱氮除磷)

生物处理2(活性污泥法、厌氧、脱氮除磷)
生物除磷法
利用聚磷菌在好氧条件下过量摄取磷, 并在缺氧条件下释放磷的原理,通过 排放富磷污泥达到除磷目的。
同步脱氮除磷技术
A2/O工艺
即厌氧-缺氧-好氧工艺,是最典型的同步脱氮除磷工艺。在厌氧区,聚磷菌释放磷并摄取有机物;在 缺氧区,反硝化菌将硝酸盐还原为氮气;在好氧区,聚磷菌过量摄取磷,同时硝化菌将氨氮氧化为硝 酸盐。
脱氮原理及方法
氨化作用
01
将有机氮转化为氨氮。
硝化作用
02
在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧
化为亚硝酸盐氮和硝酸盐氮。
反硝化作用
03
在缺氧条件下,反硝化菌将硝酸盐氮和亚硝酸盐氮还原为氮气,
达到脱氮目的。
除磷原理及方法
化学沉淀法
通过投加化学药剂,使磷酸根离子与 钙、镁等离子反应生成难溶性的磷酸 钙、磷酸镁等沉淀物,从而去除磷。
02
生物强化技术
通过投加特效菌种或基因工程菌,提)
结合活性污泥法和生物膜法的优点,具有高效、节能、占地面积小等优
点。
生物处理与膜技术结合
膜生物反应器(MBR)
将膜分离技术与生物处理相结合,实现高效固液分离,提高出水水质。
动态膜生物反应器(DMBR)
采用动态膜代替静态膜,降低膜污染,提高膜通量和使用寿命。
影响因素及优化措施
影响因素
包括污泥浓度、曝气量、污水水质、 温度等。
优化措施
通过合理控制污泥回流量和剩余污泥 排放量,调整曝气量,提高污水水质 稳定性等措施来优化活性污泥法的运 行效果。
应用实例
城市污水处理
活性污泥法广泛应用于城市污水处理中,可有效去除污水中的有机污染物和营 养盐,提高出水水质。

活性污泥法过程设计计算

活性污泥法过程设计计算
存在,实际上推流和完全混合处理效果相近。若能克服上述缺点, 则推流比完全混合好。 • 完全混合抗冲击负荷的能力强。 • 根据进水负荷变化情况、曝气设备的选择、场地布置、设计者的 经验综合确定。 • 在可能条件下,曝气池的设计要既能按推流方式运行,也能按完 全混合方式运行,或者两种运行方式结合,增加运行灵活性。
• 例12-1 • (3)计算曝气池水力停留时间 • 停留时间:
H
20
§12-5 活性污泥法过程设计
• 例12-1 • (4) 计算每天排除的剩余活性污泥量 • ①按表观污泥产率计算:
• 系统排除的以挥发性悬浮固体计的干污泥量(12-67式)
• 计算总排泥量MLVSS/MLSS=80%:
H
21
§12-5 活性污泥法过程设计
• 一、曝气池容积设计计算 • 3. 池容积设计计算 • ②容积负荷法 • 容积负荷:单位容积曝气区单位时间内所能承受的BOD5
量,即:
• 曝气池容积:
• Q、 S0 已知,X、LS、LV 参考规范
H
6
§12-5 活性污泥法过程设计
• 一、曝气池容积设计计算 • 3. 池容积设计计算 • (2)污泥龄法
H
28
感谢下 载
H
29
• ④确定生物处理后要求的出水溶解性BOD5,即Se: • Se+7.5mg/L ≤ 20mg /L,Se ≤ 12.5mg/L
H
17
§12-5 活性污泥法过程设计
• 例12-1 • (2)计算曝气池的体积 • ①按污泥负荷计算 • 参考表12-1(p118),污泥负荷取
0.25kg(BOD5)/kg(MLSS)·d,按平均流量计算:
• 例12-1 • (4) 计算每天排除的剩余活性污泥量 • ② 按污泥泥龄计算(12-63式)

SBR工艺设计及计算

SBR工艺设计及计算

1、普通SBR
SBR工艺的优化
1.反应池数量与运行周期的优化 对反应池数量(原则上大于2座)、运行周期、排水比 进行核算
2.曝气系统的优化 控制各组反应池的曝气时间,尽可能实现交替曝气, 提高风机的利用率
3.出水的优化 控制出水时间和周期,实现均匀出水,提高后续设备 的利用率
1、普通SBR 主要设备
组合式构造方法,利于废水处理厂的扩建和改造 处理后出水水质好
良好的自控系统,良好的脱氮除磷效果
1、序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process, SBR)
局限性:
①由于工艺过程对自控系统要求较高,所以自控仪表、元件 质量的好坏直接影响到工艺的正常运行,并对操作和维护人 员的技术水平要求很高;
SBR工艺设计及计算
目录
一、SBR工艺介绍 二、预处理段设计 三、生化阶段设计
一、 SBR工艺介绍
1、序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process, SBR)
1.1 概述
1914年,由英国学者Ardern和Locket发明。是一种 比较成熟的污水处理工艺。
2、 常见SBR工艺的变种
2.4 DAT—IAT工艺------连续和间歇曝气工艺
200-400%
3h
连续
连续 溶氧1.5-2.5mg/L
间歇
2、 常见SBR工艺的变种
2.5AICS工艺------交替式内循环活性污泥法
沉淀区负荷宜在1.52.5m3/(m2.h)
2、 常见SBR工艺的变种
沉淀区负荷宜在1.02.0m3/(m2.h)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3247.6 m3/h 10 m/s
管径d= 4 Q v
0.339 m
取DN=
350 mm
10、缺氧池设备选 择 缺氧池分三格串 联,每格内设一台 机械搅拌器。所需 功率按
每个缺氧池有效容 积V单缺=
混合全池污水所需 功率N= 11、污泥回流设备 选择 污泥回流比R=
污泥回流量QR=
设回流污泥泵房1 座,内设
座缺氧 池,每 2 座容积V 单= V/n=
8、进出水口设计
(1)进水管。两
组反应池合建,进
水与回流污泥进入
进水竖井,经混合
后经配水渠、
进水潜孔进入缺氧
池。
单组反应池进水管
设计流量Q1=
(
mb
q
2g
)
2
/
3
进水管设计流速
v1=
0.347 m3/s 0.8 m/s
3725.96 m3
4m 931.49 m2

混合液悬浮固体浓 度X(MLSS)=
污泥回流比R=X/ (XR-X)=
(2)混合液回流 比R内计算
总氮率ηN=(进水 TN-出水TN)/进水
TN=
混合液回流比R内=
η/(1η)=
6、剩余污泥量 (1)生物污泥产 量
8000
mg/L(r为考虑污泥在沉淀池中停留时间、池深、污 泥厚度等因素的系数,取
1.2
4000 mg/L
100%
(一般取50 ~100%)
62.50% 167%
PX
YQ(S0 S) 1 Kdc
(2)非生物污泥量PS
PS=Q(X1-Xe)=
(3)剩余污泥量ΔX
ΔX=PX+PS=
设剩余污泥含水率

1525.5 kg/d
1020 kg/d 2545.5 kg/d
99.20% 计算
7、反应池主要尺 寸计算 (1)好氧反应池
曝气池内平均溶解
氧浓度C=
所在地区大气压力
p=
因海拔高度不高引
起的压力系数ρ=
p/101300=
曝气池水深H=
4m
曝气头距池底距离
0.2 m
曝气头淹没深度=
3.8 m
曝气头处绝对压力 pb=p+9800H=
138540 Pa
曝气头氧转移效率 EA=
20%
0.85 0.95
2 mg/L 101300 Pa
Δh: p= (8)曝气器数量 计算 A、按供氧能力计 算 曝气器供氧能力 qc: 曝气器数量 n1=SORmax/qc=
供风管 道沿程 阻力 供风管 道局部 阻力 曝气器 淹没水 头 曝气器 阻力, 取 富余水 头取
p=h1+h2+h3 +h4+Δh
9742.75 m3/h= 0.001 MPa
0.001 MPa
1534.57 kgO2/d
6875.89 kgO2/d=
9754.96 kgO2/d=
1.64
kgO2/kgB OD5
286.50
kgO2/ h
406.46
kgO2/ h
(6)标准需氧量
SOR
AOR Cs(20) (Csb(T ) C) 1.024(t20)
氧总转
0.038 MPa
0.004 MPa
0.005 MPa 0.049 MPa=
0.14
kgO2/(h· 个)
4175 个
114.45 m3/mi n
162.38 m3/mi n
49 Kpa
B、以曝气器服务 面积校核 单个曝气器服务面 积f=F/n1= (9)供风管道计 算 A、干管。供风干 管采用环状布置 流速v=
一、生物脱氮工艺 设计计算 (一)设计条件:
设计处理水量Q= 总变化系数Kz= 进水水质: 进水CODCr= BOD5=S0= TN= NH4+-N= 碱度SALK= SS= VSS=
f=VSS/SS=
夏季平均温度T1=
冬季平均温度T2=
30000 m3/d= 1.42
350 mg/L 160 mg/L
硝化反应所需的最
小泥龄θcm=
设计污泥龄θc=
(3)好氧区容积V1
V1
Y cQ(S0 S ) X V (1 K d c )
=
4.041 d 12.122 d
7451.9 m3
好氧区水力停留时 间t1=
5.96 h
2、缺氧区容积V2
(1)需还原的硝 酸盐氮量计算
V2
NT 1000 qdn,T X V
(1)估算出水溶 解性BOD5(Se)
S
Sz
1.42
VSS TSS
TSS(1
ekt
)
(2)设计污泥龄
6.41 mg/L
计算
硝化速率
N
0.47e0.098(T 15)
N
N 10(0.05T
1.158)
O2 kO2
O2
1
0.833(7.2
pH)
低温时μN(14)=
0.247 d-1
2 mg/L 3
3
矩形堰流量公式: Q3 0.42 2gbH 2 1.866b H3/2
出水流量Q3=
堰宽b=
堰上水头H=
出水孔孔口流速v3=
孔口过水断面积A3=
(5)出水管。
管道流速v4=
(
m b
q
2
g
)
2
/
3
管道过水断面积A4=
0.347 m3/s 6m
0.099 m 0.6 m/s
0.579 m2
0.8 ms/ 0.434 m2
40 mg/L 30 mg/L 280 mg/L 180 mg/L 126 mg/L 0.7
25 ℃ 14 ℃
1250.00 m3/h=
出水水质: CODCr= BOD5=Sz= TN= NH4+-N= pH= SS=Ce=
曝气池出 水溶解氧 硝化反应 安全系数
0.35 m3/s
100 mg/L 20 mg/L 15 mg/L 8 mg/L 7.2 20 mg/L
6m 51.7 m 1.50 8.62 5m
1267.05 m3
4.1 m 309.04 m2
18.0 m 17.2 m
进水管管径d1=
4Q1 v
0.743 m
校核管道流速 v=Q/A
=
(2)回流污泥入
口:
0.902 m/s
设计流量Q2=Q=
(
mb
q
2g
)
2
/
3
污泥回流渠道设计
流速v2=
0.347 m3/s 0.7 m/s
出水管管径d4= 4 Q 4
v
校核管道流速v= 9、设计需氧量 AOR=碳化需氧量+ 硝化需氧量-反硝 化脱氮产氧量=
0.743 m 0.902 m/s
取d4=
0.7 m
(去除BOD需氧量剩余污泥中BOD氧 当量)+(氨氮硝化 需氧量-剩余污泥 中氨氮的氧当量)
反硝化 - 脱氮产
氧量
(1)碳化需氧量 D1:
NW
0.124
Y(S0 S) (1 K d c )
=
(θ为温度 系数,取 1.08)
2534.1 m3 2.03 h
9986.0 m3
7.14 mg碱度; 0.1 mg碱度;
7.11 mg/L 24.89 mg/L
17.89 mg/L 536.56 kg/d
kgNO3-0.076 N/kgMLVS
渠道断面积A= QR/v2=
渠道断面b×h= 校核流速v= (3)进水竖井 进水孔过流量:Q' =(1+R)×Q/n= 孔口流速v'= 孔口过水断面积 A'=Q'/v'=
0.496 m2 1×
0.694 m/s
0.6 m/s 0.579 m2
取d1=
0.7 m
0.5 m 0.347 m3/s
(4)出水堰及出水 竖井
1.00
气泡离开水面时含 氧量Qt=
夏季清水氧饱和度 CS(25)= Cs(20)= 冬季清水氧饱和度 Cs(10)=
曝气池内平均溶解 氧饱和度
夏季平均标准需氧 量SOR(25)= 最大时标准需氧量 SORmax=
夏季平均空气用量 QF(25)= SOR(25)/0.3/EA=
21(1 - E A ) 79 21 (1 E A )

曝气池有效水深h= 曝气池单座有效面 积A单=V单/h=
采用
曝气池长度L=A单 /B= 校核宽深比b/h= 校核长宽比L/b=
曝气池超高取
座曝气 池,每 2 座容积V 单= V/n=
廊道, 3 廊道宽
b=
m,曝气 1 池总高
度H=
(2)缺氧池尺寸

缺氧池有效水深h= 缺氧池单座有效面 积A单=V单/h= 缺氧池长度L=好 氧池宽度= 缺氧池宽度B= A/L=
微生物同化作用去 除的总氮
被氧化的氨氮=进 水总氮量-出水氨 氮量-用于合成的 总氮量= 所需脱硝量=进水 总氮量-出水总氮 量-用于合成的总 氮量= 需还原的硝酸盐氮 量NT= (2)反硝化速率 qdn,T=qdn,20θT-20 = (3)缺氧区容积V2 =
缺氧区水力停留时 间t2=V2/Q=
3、曝气池总容积V =V1+V2= 系统总污泥龄=好 氧污泥龄+缺氧池 泥龄= 4、碱度校核 每氧化1mgNH4+-N需 消耗 去除1mgBOD5产生
10 m/s
管径d= 4 Q v
B、支管。单侧供 气支管(布气横 管) 支管空气流量Q= 流速v=
相关文档
最新文档