2018届高三文科数学一轮复习 平面向量的概念及其线性运算

合集下载

高考数学大一轮复习 第五章 平面向量、复数 5.1 平面向量的概念及线性运算教案(含解析)

高考数学大一轮复习 第五章 平面向量、复数 5.1 平面向量的概念及线性运算教案(含解析)

第五章平面向量、复数考试内容等级要求平面向量的概念 B平面向量的加法、减法及数乘运算 B平面向量的坐标表示 B平面向量的数量积 C平面向量的平行与垂直 B平面向量的应用 A复数的概念 B复数的四则运算 B复数的几何意义 A§5.1平面向量的概念及线性运算考情考向分析主要考查平面向量的线性运算(加法、减法、数乘向量)及其几何意义、共线向量定理,常与三角函数、解析几何交汇考查,有时也会有新定义问题;题型以填空题为主,属于中低档题目.偶尔会在解答题中作为工具出现.1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或称模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位长度的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量平行或共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算a-b=a+(-b)数乘求实数λ与向量a的积的运算|λa|=|λ||a|,当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb口诀:(加法三角形)首尾连,连首尾;(加法平行四边形)起点相同连对角;(减法三角形)共起点,连终点,指向被减.3.向量共线定理向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.概念方法微思考1.若b与a共线,则存在实数λ使得b=λa,对吗?提示不对,因为当a=0,b≠0时,不存在λ满足b=λa.2.如何理解数乘向量?提示λa的大小为|λa|=|λ||a|,方向要分类讨论:当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0或a为零向量时,λa为零向量,方向不确定.3.如何理解共线向量定理?提示如果a=λb,则a∥b;反之,如果a∥b,且b≠0,则一定存在唯一一个实数λ,使得a=λb.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量不能比较大小,但向量的模可以比较大小.( √)(2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)若两个向量共线,则其方向必定相同或相反.( × ) 题组二 教材改编2.[P72T8]已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示) 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a , BC →=OC →-OB →=-OA →-OB →=-a -b .3.[P73T13]在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________. 答案 矩形解析 如图,因为AB →+AD →=AC →, AB →-AD →=DB →, 所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,平行四边形ABCD 是矩形. 题组三 易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充分不必要解析 若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件.5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.答案 12解析 ∵DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →, ∴λ1=-16,λ2=23,即λ1+λ2=12.题型一 平面向量的概念1.给出下列命题:①若两个向量相等,则它们的起点相同,终点相同; ②若a 与b 共线,b 与c 共线,则a 与c 也共线;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则四边形ABCD 为平行四边形; ④a =b 的充要条件是|a |=|b |且a ∥b ;⑤已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中真命题的序号是________. 答案 ③解析 ①错误,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点;②错误,若b =0,则a 与c 不一定共线;③正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →;又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;④错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;⑤错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. 2.给出下列四个命题:①若a ∥b ,则a =b ;②若|a |=|b |,则a =b ;③若|a |=|b |,则a ∥b ;④若a =b ,则|a |=|b |.其中正确命题的个数是________. 答案 1解析 只有④正确.思维升华向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线. 题型二 平面向量的线性运算 命题点1 向量的线性运算例1(1)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB →=a ,AD →=b ,则向量BF →=________.(用向量a ,b 表示) 答案 -13a +23b解析 BF →=23BE →=23(BC →+CE →)=23⎝ ⎛⎭⎪⎫b -12a =-13a +23b . (2)(2018·全国Ⅰ改编)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则用向量AB →,AC →表示EB →为________. 答案 EB →=34AB →-14AC →解析 作出示意图如图所示. EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →) =34AB →-14AC →. 命题点2 根据向量线性运算求参数例2(1)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA→+μBD →(λ,μ∈R ),则λ+μ=________. 答案 34解析 ∵E 为线段AO 的中点, ∴BE →=12BA →+12BO →=12BA →+12⎝ ⎛⎭⎪⎫12BD →=12BA →+14BD →=λBA →+μBD →, ∴λ+μ=12+14=34.(2)在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤0,12 解析 由题意可求得AD =1,CD =3, ∴AB →=2DC →.∵点E 在线段CD 上,∴DE →=λDC →(0≤λ≤1). ∵AE →=AD →+DE →=AD →+λDC →, 又AE →=AD →+μAB →=AD →+2μDC →, ∴2μ=λ,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12.思维升华平面向量线性运算问题的常见类型及解题策略(1)向量加法和减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练1(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →=________.(用向量a ,b 表示)答案 -13a -512b解析 DE →=DC →+CE →=13BC →+34CA → =13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b .(2)在平行四边形ABCD 中,E ,F 分别为边BC ,CD 的中点,若AB →=xAE →+yAF →(x ,y ∈R ),则x -y =________. 答案 2解析 由题意得AE →=AB →+BE →=AB →+12AD →,AF →=AD →+DF →=AD →+12AB →,因为AB →=xAE →+yAF →,所以AB →=⎝ ⎛⎭⎪⎫x +y 2AB →+⎝ ⎛⎭⎪⎫x 2+y AD →,所以⎩⎪⎨⎪⎧x +y2=1,x2+y =0,解得⎩⎪⎨⎪⎧x =43,y =-23,所以x -y =2.题型三 共线定理的应用例3(1)已知D 为△ABC 的边AB 的中点.点M 在DC 上且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为________. 答案 3∶5解析 由5AM →=AB →+3AC →, 得2AM →=2AD →+3AC →-3AM →, 即2(AM →-AD →)=3(AC →-AM →),即2DM →=3MC →,故DM →=35DC →,故△ABM 与△ABC 同底且高的比为3∶5, 故S △ABM ∶S △ABC =3∶5.(2)(2018·盐城模拟)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.答案 3解析 设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a , PG →=OG →-OP →=⎝ ⎛⎭⎪⎫13-m a +13b .由P ,G ,Q 三点共线,得存在实数λ使得PQ →=λPG →,即n b -m a =λ⎝ ⎛⎭⎪⎫13-m a +13λb ,从而⎩⎪⎨⎪⎧-m =λ⎝ ⎛⎭⎪⎫13-m ,n =13λ,消去λ,得1n +1m=3.思维升华 (1)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练2如图,△ABC 中,在AC 上取一点N ,使AN =13AC ;在AB 上取一点M ,使AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.解 ∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+NC →)=12BC →,QA →=MA →-MQ →=12BM →+λMC →,又AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →, ∴λ=12.1.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,真命题的个数是________. 答案 0解析 向量是既有大小又有方向的量,a 与|a |a 0模相等,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.2.在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 的形状是________. 答案 平行四边形解析 依题意知AC 是以AB ,AD 为相邻两边的平行四边形的对角线,所以四边形ABCD 是平行四边形.3.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →=________. 答案 23b +13c解析 如图,因为在△ABC 中, AB →=c ,AC →=b ,且点D 满足BD →=2DC →, 所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=23AC →+13AB →=23b +13c . 4.(2018·江苏省镇江一中月考)已知e 1,e 2是一对不共线的非零向量,若a =e 1+λe 2,b =-2λe 1-e 2,且a ,b 共线,则λ=________. 答案 ±22解析 ∵a ,b 共线,∴b =γa =γe 1+γλe 2=-2λe 1-e 2,故⎩⎪⎨⎪⎧γ=-2λ,γλ=-1,解得λ=±22. 5.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=________.(用向量a ,b 表示) 答案 12a +b解析 连结OC ,OD ,CD ,由点C ,D 是半圆弧的三等分点,可得∠AOC =∠COD =∠BOD =60°,且△OAC 和△OCD 均为边长等于圆O 半径的等边三角形,所以四边形OACD 为菱形,所以AD →=AO →+AC →=12AB →+AC →=12a +b .6.在△ABC 中,点G 满足GA →+GB →+GC →=0.若存在点O ,使得OG →=16BC →,且OA →=mOB →+nOC →,则m -n =________.答案 -1解析 ∵GA →+GB →+GC →=0, ∴OA →-OG →+OB →-OG →+OC →-OG →=0,∴OG →=13()OA →+OB →+OC →=16BC →=16()OC →-OB →,可得OA →=-12OC →-32OB →,∴m =-32,n =-12,m -n =-1.7.如图,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案511解析 注意到N ,P ,B 三点共线, 因此AP →=mAB →+211AC →=mAB →+611AN →,从而m +611=1,所以m =511.8.已知e 1,e 2为平面内两个不共线的向量,MN →=2e 1-3e 2,NP →=λe 1+6e 2,若M ,N ,P 三点共线,则λ=________.答案 -4解析 因为M ,N ,P 三点共线,所以存在实数k 使得MN →=kNP →,所以2e 1-3e 2=k (λe 1+6e 2),又e 1,e 2为平面内两个不共线的向量,可得⎩⎪⎨⎪⎧ 2=kλ,-3=6k ,解得λ=-4.9.若M 是△ABC 的边BC 上的一点,且CM →=3MB →,设AM →=λAB →+μAC →,则λ的值为________.答案 34解析 由题设知CM MB=3,过M 作MN ∥AC 交AB 于N , 则MN AC =BN BA =BM BC =14, 从而AN AB =34, 又AM →=λAB →+μAC →=AN →+NM →=34AB →+14AC →, 所以λ=34. 10.已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为________.答案 {-1}解析 ∵BC →=OC →-OB →,∴x 2OA →+xOB →+OC →-OB →=0,即OC →=-x 2OA →-(x -1)OB →,∵A ,B ,C 三点共线,∴-x 2-(x -1)=1,即x 2+x =0,解得x =0或x =-1.当x =0时,x 2OA →+xOB →+BC →=0,此时B ,C 两点重合,不合题意,舍去,故x =-1.11.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,求△ABC 与△AOC 的面积之比.解 取AC 的中点D ,连结OD ,则OA →+OC →=2OD →,∴OB →=-OD →,∴O 是AC 边上的中线BD 的中点,∴S △ABC =2S △OAC ,∴△ABC 与△AOC 的面积之比为2∶1.12.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 方法一 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝ ⎛⎭⎪⎫b -12a =-12k 1a +k 1b (k 1为实数), 同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝ ⎛⎭⎪⎫12b -a =-k 2a +12k 2b (k 2为实数),① 又BO →=BD →+DO →=-12a +⎝ ⎛⎭⎪⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,② 所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b , 即12(1+k 1-2k 2)a +⎝ ⎛⎭⎪⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎪⎨⎪⎧ 12(1+k 1-2k 2)=0,12k 2-k 1=0, 解得⎩⎪⎨⎪⎧ k 1=13,k 2=23.所以BO →=-23a +13b . 所以AO →=AB →+BO →=a +⎝ ⎛⎭⎪⎫-23a +13b =13(a +b ). 方法二 延长AO 交BC 于点E (O 为△ABC 重心),则E 为BC 中点,∴AO →=23AE →=23×12(AB →+AC →)=13(a +b ). 13.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2=________.答案 58解析 DE →=12DA →+12DO →=12DA →+14DB → =12DA →+14(DA →+AB →)=14AB →-34AD →, 所以λ=14,μ=-34,故λ2+μ2=58. 14.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是________.答案 (1,+∞)解析 设OC →=mOD →,则m >1,因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA →+μmOB →, 又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m , 所以λ+μ>1.15.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛⎭⎪⎫2OA →+12OB →+12OC →,则△ABC 的面积和△PBC 的面积之比为________. 答案 3∶2解析 设BC 的中点为M ,则12OC →+12OB →=OM →,∴OP →=13(OM →+2OA →)=13OM →+23OA →, 即3OP →=OM →+2OA →,OP →-OM →=2OA →-2OP →,也就是MP →=2PA →,∴P ,M ,A 三点共线,且P 是AM 上靠近A 点的一个三等分点,∴S △ABC ∶S △PBC =3∶2.16.设W 是由一平面内的n (n ≥3)个向量组成的集合.若a ∈W ,且a 的模不小于W 中除a 外的所有向量和的模.则称a 是W 的极大向量.有下列命题:①若W 中每个向量的方向都相同,则W 中必存在一个极大向量;②给定平面内两个不共线向量a ,b ,在该平面内总存在唯一的平面向量c =-a -b ,使得W ={a ,b ,c }中的每个元素都是极大向量;③若W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量,且W 1,W 2中无公共元素,则W 1∪W 2中的每一个元素也都是极大向量.其中真命题的序号是________.答案 ②③解析 ①若有几个方向相同,模相等的向量,则无极大向量,故不正确;②由题意得a ,b ,c 围成闭合三角形,则任意向量的模等于除它本身外所有向量和的模,故正确;③3个向量都是极大向量,等价于3个向量之和为0,故W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量时,W 1∪W 2中的每一个元素也都是极大向量,故正确.。

高三一轮总复习文科数课件:-平面向量的概念及其线性运算 .ppt..共42页

高三一轮总复习文科数课件:-平面向量的概念及其线性运算 .ppt..共42页
敢地 走到底 ,决不 回头。 ——左
高三一轮总复习文科数课件:-平面向 量的概念及其线性运算 .ppt..
11、用道德的示范来造就一个人,显然比用法律来约束他更有价值。—— 希腊
12、法律是无私的,对谁都一视同仁。在每件事上,她都不徇私情。—— 托马斯
13、公正的法律限制不了好的自由,因为好人不会去做法律不允许的事 情。——弗劳德
14、法律是为了保护无辜而制定的。——爱略特 15、像房子一样,法律和法律都是相互依存的。——伯克
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

高考数学一轮总复习 4.1平面向量的概念及其线性运算课件

高考数学一轮总复习 4.1平面向量的概念及其线性运算课件

×2A→D=A→D,故选A.
答案 A
精选ppt
17
知识点三 共线向量定理
5.判一判 (1)若向量a,b共线,则向量a,b的方向相同.( ) (2)若a∥b,b∥c,则a∥c.( ) (3)设a与b是两个不共线向量,且向量a+λb与2a-b共线,则 λ=-12.( ) (4)设a,b为向量,则“|a·b|=|a|·|b|”是“a∥b”的充分必要 条件.( )
21
问题3 为什么共线定理b=λa中要求a≠0?如何应用共线定
理证明三点共线?
(1)若a=0,当b=0时,λ有无数多个值,b≠0时,λ值不存
在,所以要求a≠0;
(2)证明三点共线,若存在实数λ,使
→ AB
=λ
→ AC
,则A,B,C
三点共线.这里注意A→B与A→C有公共点A.
精选ppt
22
高频考点 考点一 向量的有关概念 【例1】 给出下列四个命题: ①若|a|=|b|,则a=b或a=-b; ②若A→B=D→C,则四边形ABCD为平行四边形; ③若a与b同向,且|a|>|b|,则a>b; ④λ,μ为实数,若λa=μb,则a与b共线.
上,所以ABCD不一定是四边形.
③不正确.两向量不能比较大小.
④不正确.当λ=μ=0时,a与b可以为任意向量,满足λa=
μb,但a与b不一定共线.
答【规律方法】 1.(1)易忽视零向量这一特殊向量,误认为④ 是正确的;(2)充分利用反例进行否定是对向量的有关概念题进行 判定的行之有效的方法.
10
对点自测 知识点一 向量的有关概念 1.判一判 (1)向量与有向线段是一样的,因此可以用有向线段来表示向 量.( ) (2)|a|与|b|是否相等与a,b的方向无关.( )

2018届高三数学一轮复习第五章平面向量第一节平面向量的概念及其线性运算课件文

2018届高三数学一轮复习第五章平面向量第一节平面向量的概念及其线性运算课件文

1 3
1 3
考点突破
考点一 向量的有关概念 典例1 给出下列命题: (1)若|a|=|b|,则a=b;
AB = (2)若A、B、C、D是不共线的四点,则 DC 是四边形ABCD为平行四


边形的充要条件;
(3)若a=b,b=c,则a=c;
(4)两向量a、b相等的充要条件是|a|=|b|且a∥b; (5)如果a∥b,b∥c,那么a∥c.
3-3 设两个非零向量a与b不共线,若a与b的起点相同,且a,tb, (a+b)的 终点在同一条直线上,求实数t的值. 解析 ∵a,tb, (a+b)三个向量的终点在同一条直线上,且a与b的起点相 同, ∴a-tb与a- (a+b)共线,即a-tb与 a- b共线,
2 1 ∴存在实数λ,使a-tb=λ a b , 3 3

1 4 AD =- AB + AC A. 3 3 4 1 AD = AB + AC C. 3 3
AD = ( AC =b,则


AB =a, (2)如图所示,已知AB是圆O的直径,点C,D是半圆弧的三等分点,

)
A.a- b
1 2
B. a-b
a 非零向量a的单位向量为± |a|
0与任一向量
平行 或共线
相反向量
长度
相等 且方向
相反 的向量
0的相反向量为0
2.向量的线性运算
3.共线向量定理
向量a(a≠0)与b共线的充要条件是存在唯一一个实数λ,使得 b=λa .
判断下列结论的正误(正确的打“√”,错误的打“×”) (1)向量不能比较大小,但向量的模可以比较大小. (√) (2)向量与有向线段是一样的,因此可以用有向线段来表示向量. (×) (3) = - OB . (√) BA OA (4)若a∥b,b∥c,则a∥c. (×) (5)向量 与向量 是共线向量,则A,B,C,D四点在一条直线上. (×) AB CD

高考数学一轮总复习-平面向量的概念、线性运算及坐标运算-知识点梳理

高考数学一轮总复习-平面向量的概念、线性运算及坐标运算-知识点梳理

平面向量的概念、线性运算及坐标运算【考纲要求】1.了解向量的实际背景;理解平面向量的概念及向量相等的含义;理解向量的几何表示.2.掌握向量加法、减法的运算,并理解其几何意义;掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;了解向量线性运算的性质及其几何意义.3.了解平面向量的基本定理及其意义,掌握平面向量的正交分解及其坐标表示,会用坐标表示平面向量的加法、减法与数乘运算,理解用坐标表示的平面向量共线的条件.【知识网络】【考点梳理】【高清课堂:平面向量的概念与线性运算401193知识要点】 考点一、向量的概念1.向量:既有大小又有方向的量.通常用有向线段AB 表示,其中A 为起点,B 为终点. 向量AB 的长度|AB |又称为向量的模;长度为0的向量叫做零向量,长度为1的向量叫做单位向量.2.方向相同或相反的非零向量叫做平行向量,规定零向量与任一向量平行. 平行向量可通过平移到同一条直线上,因此平行向量也叫共线向量. 3.长度相等且方向相同的向量叫做相等向量.零向量与零向量相等.4. 与a 长度相等,方向相反的向量叫做a 的相反向量,规定零向量的相反向量是零向量. 要点诠释:①有向线段的起、终点决定向量的方向,AB 与BA 表示不同方向的向量;平面向量平面向量的概念平面向量的坐标表示平面向量的基本定理 平面向量的线性运算②有向线段的长度决定向量的大小,用|AB |表示,|AB ||BA |=.③任意两个非零的相等向量可经过平移重合在一起,因此可用一个有向线段表示,而与起点无关. 考点二、向量的加法、减法 1.向量加法的平行四边形法则 平行四边形ABCD 中(如图),向量AD 与AB 的和为AC ,记作:AD AB AC +=.(起点相同) 2.向量加法的三角形法则根据向量相等的定义有:AB DC =,即在ΔADC 中,AD DC AC +=. 首尾相连的两个向量的和是以第一个向量的起点指向第二个向量的终点. 规定:零向量与向量AB 的和等于AB . 3. 向量的减法向量AB 与向量BA 叫做相反向量.记作:AB BA =-. 则AB CD AB DC -=+. 要点诠释:①关于两个向量的和应注意:两个向量的和仍是一个向量;使用三角形法则时要注意“首尾相连”;当两个向量共线时,三角形法则适用,而平行四边形法则不适用.②向量减法运算应注意:向量的减法实质是加法的逆运算,差仍为一个向量;用三角形法则作向量减法时,记住“连结两个向量的终点,箭头指向被减向量”. 要点三、实数与向量的积 1.定义:一般地,实数λ与向量a 的积是一个向量,记作λa ,它的长与方向规定如下: (1)||||||λ=λ⋅a a ;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,0λ=a ;2.运算律设λ,μ为实数,则 (1)()()λμ=λμa a ; (2)()λ+μ=λ+μa a a ; (3)()λ+=λ+λa b a b3.向量共线的充要条件已知向量a 、b 是两个非零共线向量,即//a b ,则a 与b 的方向相同或相反. 向量(0)≠a a 与b 共线,当且仅当有唯一一个实数λ,使=λb a . 要点诠释:①向量数乘的特殊情况:当0λ=时,0λ=a ;当0=a 时,也有0λ=a ;实数和向量可以求积,但是不能求和、求差.②平面向量基本定理是建立向量坐标的基础,它保证了向量与坐标是一一对应的,在应用时,构成两个基地的向量是不共线的向量. 考点四、平面向量的坐标运算 1.平面向量的坐标表示选取直角坐标系的x 轴、y 轴上的单位向量i ,j 为基底,由平面向量基本定理,该平面内任一向量a 表示成x y =+a i j 的形式,由于a 与数对(x,y )是一一对应的,因此把(x,y )叫做向量a 的坐标表示. 2.平面向量的坐标运算已知11(x ,y )=a ,22(x ,y )=b ,则 (1)1212(x x ,y y )±=±±a b (2)11(x ,y )λ=λλa 3.平行向量的坐标表示已知11(x ,y )=a ,22(x ,y )=b ,则1221//x y x y 0⇔-=a b (0→≠b ) 要点诠释:①若11(x ,y )=a ,22(x ,y )=b ,则//a b 的充要条件不能表示成1122x y x y =,因为22x ,y 有可能等于0,所以应表示为1221x y x y 0-=;同时//a b 的充要条件也不能错记为1122x y x y 0-=,1212x x y y 0-=等.②若11(x ,y )=a ,22(x ,y )=b ,则//a b 的充要条件是=λb a ,这与1221x y x y 0-=在本质上是没有差异的,只是形式上不同. 【典型例题】类型一、平面向量的相关概念例1. 下列说法中正确的是① 非零向量a 与非零向量b 共线,向量b 与非零向量c 共线,则向量a 与向量c 共线; ② 任意两个相等的非零向量的始点与终点是一平行四边形的四个顶点; ③ 向量a 与b 不共线,则a 与b 所在直线的夹角为锐角;④ 零向量模为0,没有方向;⑤ 始点相同的两个非零向量不平行; ⑥ 两个向量相等,它们的长度就相等;⑦ 若非零向量AB 与CD 是共线向量,则A 、B 、C 、D 四点共线。

【新高考】高三数学一轮复习知识点讲解6-1 平面向量的概念及其线性运算

【新高考】高三数学一轮复习知识点讲解6-1 平面向量的概念及其线性运算

专题6.1 平面向量的概念及其线性运算【考纲解读与核心素养】1.平面向量的实际背景及基本概念:理解平面向量及几何意义,理解零向量、向量的模、单位向量、向量相等、平行向量、向量夹角的概念.2. 向量的线性运算:掌握向量加法、减法、数乘的概念,并理解其几何意义.3.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等.4.高考预测:(1)以考查向量的线性运算、共线为主,且主要是在理解它们含义的基础上,进一步解题,如利用向量的线性运算求参数等;(2)考查单位向量较多.(3)常常以平面图形为载体,借助于向量的坐标形式等考查共线等问题;也易同解析几何知识相结合,以工具的形式出现..5.备考重点:(1) 理解相关概念是基础,掌握线性运算的方法是关键;(2) 注意与平面几何、三角函数、解析几何等交汇问题,注意运用数形结合的思想方法.【知识清单】知识点1.向量的概念1.向量:既有大小又有方向的量叫向量;向量的大小叫做向量的模.2.零向量:长度等于0的向量,其方向是任意的.3.单位向量:长度等于1个单位的向量.4.平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.5.相等向量:长度相等且方向相同的向量.6.相反向量:长度相等且方向相反的向量.知识点2.平面向量的线性运算一.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则(1)交换律:a b b a+=+;(2)结合律:( +() a b c a b c +)+=+平行四边形法则减法求a 与b 的相反向量-b 的和的运算叫做a与b 的差三角形法则二.向量的数乘运算及其几何意义1.定义:实数λ与向量a 的积是一个向量,这种运算叫向量的数乘,记作λa ,它的长度与方向规定如下: ①|λa |=|λ||a |;②当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0. 2.运算律:设λ,μ是两个实数,则:①()()a a λμλμ=;②() a a a λμλμ+=+;③()a b a b λλλ+=+.知识点3.共线向量共线向量定理:向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa .【典例剖析】高频考点一 向量的有关概念【典例1】(2019·重庆高二期末)下列命题中,正确的个数是( ) ①单位向量都相等;②模相等的两个平行向量是相等向量;③若a ,b 满足b a >且a 与b 同向,则a b >; ④若两个向量相等,则它们的起点和终点分别重合; ⑤若a b b c ∥,∥,则a c ∥. A .0个 B .1个C .2个D .3个【答案】A 【解析】对于①,单位向量的大小相等,但方向不一定相同,故①错误; 对于②,模相等的两个平行向量是相等向量或相反向量,故②错误; 对于③,向量是有方向的量,不能比较大小,故③错误;对于④,向量是可以自由平移的矢量,当两个向量相等时,它们的起点和终点不一定相同,故④错误; 对于⑤,0b =时,a b b c ∥,∥,,则a 与c 不一定平行.综上,以上正确的命题个数是0.故选A.【典例2】(2020·衡水市第十四中学高一月考)下列说法错误的是()A.向量OA的长度与向量AO的长度相等B.零向量与任意非零向量平行C.长度相等方向相反的向量共线D.方向相反的向量可能相等【答案】D【解析】A.向量OA与向量AO的方向相反,长度相等,故A正确;B.规定零向量与任意非零向量平行,故B正确;C.能平移到同一条直线的向量是共线向量,所以长度相等,方向相反的向量是共线向量,故C正确;D.长度相等,方向相同的向量才是相等向量,所以方向相反的向量不可能相等,故D不正确.【易错提醒】1.有关平面向量概念的注意点(1)相等向量具有传递性,非零向量的平行也具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混淆.(4)两向量起点相同,终点相同,则两向量相等;但两相等向量,不一定有相同的起点和终点.(5)零向量和单位向量是两个特殊的向量.它们的模确定,但方向不确定.【变式探究】1. 给出下列命题:①两个具有共同终点的向量,一定是共线向量;,,,是不共线的四点,则AB=DC是四边形ABCD为平行四边形的充要条件;②若A B C D③若a与b同向,且|a|>|b|,则a>b;④λ,μ为实数,若λa=μb,则a与b共线.其中假命题的个数为()A.1B.2C.3 D.4【答案】C【解析】①不正确.当起点不在同一直线上时,虽然终点相同,但向量不共线.②正确.∵AB=DC,∴|AB|=|DC|且AB∥DC.,,,是不共线的四点,又∵A B C D∴四边形ABCD 是平行四边形.反之,若四边形ABCD 是平行四边形,则AB CD ∥且AB 与DC 方向相同,因此AB =DC . ③不正确.两向量不能比较大小.④不正确.当0λμ==时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. 选C .2. 设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0,假命题的个数是( ) A .0 B .1 C .2D .3【答案】D【解析】向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3. 【总结提升】(1)非零向量a 与a |a |的关系:a |a |是与a 同方向的单位向量,-a|a |是与a 反方向的单位向量.(2)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小. (3)两平行向量有向线段所在的直线平行或重合,易忽视重合这一条件. (4)几个重要结论①向量相等具有传递性,非零向量的平行具有传递性; ②向量可以平移,平移后的向量与原向量是相等向量. 高频考点二 平面向量的线性运算 【典例3】(2018年新课标I 卷理)在△中,为边上的中线,为的中点,则( )A .B .C .D .【答案】A 【解析】根据向量的运算法则,可得,所以,故选A.【典例4】(2020·湖南衡阳·三模(文))在平行四边形ABCD中,若4CE ED=,则BE=()A.34AB AD-+B.45AB AD-C.45AB AD-+D.45AB AD-+【答案】D 【解析】∵4CE ED=∴45 CE CD=∴4455BE BC CE BC CD AB AD =+=+=-+.故选:D.【规律方法】1.常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连向量的和用三角形法则.2.找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解.【变式探究】1.(2019·浙江高一期末)已知点G 为ABC ∆的重心,若AB a =,AC b =,则BG =( ) A .2133a b + B .2133-+a b C .2133a b - D .2133a b -- 【答案】B 【解析】设D 是AC 中点,则1()2BD BA BC =+,又G 为ABC ∆的重心,∴23BG BD =21()32BA BC =⨯+1121()()3333BA BC AB AC AB AB AC =+=-+-=-+2133a b =-+.故选B .2.(2019·广东高考模拟(理))已知A ,B ,C 三点不共线,且点O 满足161230OA OB OC --=,则( )A .123OA AB AC =+ B .123OA AB AC =- C .123OA AB AC =-+D .123OA AB AC =--【答案】A 【解析】已知A ,B ,C 三点不共线,且点O 满足16OA 12OB 3OC 0--=,所以16OA 12OB 3OC --=12123? 3OA OB OA OC -+- +OA =12OA OB (-)3+ (OA OC -)+OA =0,所以123OA AB AC =+ , 故选:A 【总结提升】平面向量的线性运算技巧(1)不含图形的情况:可直接运用相应运算法则求解.(2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示出来求解. 高频考点三 利用向量线性运算求参数【典例5】(2019·北京高考模拟(文))设E 为ABC 的边AC 的中点,+BE mAB nAC =,则,m n 的值分别为( ) A .11,2- B .1,12- C .1,12-D .11,2【答案】A 【解析】 ∵1BE 2=(BA BC +)BA BA AC2++==-1AB AC 2+ ∴m 1,=-n 12= 故选:A .【典例6】(2020·三亚华侨学校高一开学考试)已知四边形ABCD 为正方形,3BP CP =,AP 与CD 交于点E ,若PE mPC nPD =+,则m n -= . 【答案】13. 【解析】由题作图如图所示,∵3BP CP =,∴3BP CP =,∴3AB CE CD ==, ∴()11213333PE PC CE PC CD PC PD PC PC PD =+=+=+-=+, ∴211333m n -=-=. 故答案为:13.【总结提升】利用平面向量的线性运算求参数的一般思路(1)没有图形的准确作出图形,确定每一个点的位置.(2)利用平行四边形法则或三角形法则进行转化,转化为要求的向量形式. (3)比较、观察可知所求.【变式探究】1.(2019·山东高考模拟(文))在正方形ABCD 中,E 为DC 的中点,若AE AB AC λμ=+,则λμ+的值为( ) A .12-B .12C .1-D .1【答案】B 【解析】 由题得1111111122222222AE AD AC BC AC AC AB AC AB AC =+=+=-+=-+, 11,1,22λμλμ∴=-=∴+=.故选:B2.(2020·全国高一课时练习)已知x ,y 是实数,向量,a b 不共线,若(1)()0x y a x y b +-+-=,则x =________,y =________.【答案】12 12【解析】因为向量,a b 不共线, 所以向量,a b 均不为零向量,(1)()0x y a x y b +-+-=100x y x y +-=⎧∴⎨-=⎩解得1212x y ⎧=⎪⎪∴⎨⎪=⎪⎩故答案为:12;12高频考点四 共线向量及其应用【典例7】设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线. 【答案】(1)见解析;(2)k =±1.【解析】(1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →, ∴AB →,BD →共线.又∵它们有公共点B ,∴A ,B ,D 三点共线. (2)假设k a +b 与a +k b 共线, 则存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量, ∴k -λ=λk -1=0.消去λ,得k 2-1=0,∴k =±1.【典例8】已知A ,B ,P 三点共线,O 为直线外任意一点,若OP →=xOA →+yOB →,求x +y 的值. 【答案】【解析】由于A ,B ,P 三点共线,所以向量AB →,AP →在同一直线上,由向量共线定理可知,必定存在实数λ使AP →=λAB →,即OP →-OA →=λ(OB →-OA →),所以OP →=(1-λ)OA →+λOB →,故x =1-λ,y =λ,即x +y =1. 【规律方法】1.平面向量共线定理的三个应用2.求解向量共线问题的注意事项(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.(3)直线的向量式参数方程:A ,P ,B 三点共线⇔OP →=(1-t )·OA →+tOB →(O 为平面内任一点,t ∈R ). 【变式探究】 1. 设是不共线的两个向量,已知,,则( )A . 三点共线B . 三点共线C . 三点共线D .三点共线【答案】D 【解析】 由题意,则,即,所以,所以三点共线.2.(2020·上海高三专题练习)设,a b 是不共线的两个向量,已知2AB a kb =+,BC a b =+,2CD a b =-若A 、B 、D 三点共线,求k 的值. 【答案】λ=1,k=-1 【解析】由A 、B 、C 三点共线,存在实数λ,使得AB BD λ= ∵ ,2BC a b CD a b =+=- ∴ 2BD BC CD a b =+=- 故()22a kb a b λ+=- 又a,b 不共线 ∴ λ=1,k=-1 【总结提升】共线向量定理应用时的注意点(1)向量共线的充要条件中要注意“a ≠0”,否则λ可能不存在,也可能有无数个.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线;另外,利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.。

最新-2018届高考数学一轮复习 51 平面向量的概念及其线性运算课件 新人教A版 精品

SABC 2
3.(2008·全国Ⅰ理,3)在△ABC中,AB =c,AC =b,
若点D满足 BD 2 DC ,则 AD 等于 ( A )
A. 2 b 1 c
33
B.5 c 2 b
33
C.2 b 1 c 33
D. 1 b 2 c 33
解析 如图所示,在△ABC中,
AD AB BD.
又BD 2DC, BD 2 BC. 3
题型分类 深度剖析
题型一 平面向量的有关概念
【例1】给出下列命题
①向量 AB 的长度与向量 BA 的长度相等; ②向量a与向量b平行,则a与b的方向相同或相反;
③两个有共同起点并且相等的向量,其终点必相同;
④两个有共同终点的向量,一定是共线向量;
⑤向量 与向量 是共线向量,则点A、B、C、D
必在同一AB条直线上C;D ⑥有向线段就是向量,向量就是有向线段.
24
∴ AF= 3 AE 2 a 1 b.
4 33
答案 B
5.(2008·海南理,8)平面向量a,b共线的充要条件

()
A.a,b方向相同
B.a,b两向量中至少有一个为零向量
C. ∈R,b= a D.存在不全为零的实数1, 2,1a+ 2b=0
定时检测
一、选择题
1.(2009·湖南理,2)对于非零向量a、b,“a+b=0”
是“a∥b”的
(A)
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
解析 当a+b=0时,a=-b,∴a∥b; 当a∥b时,不一定有a=-b. ∴“a+b=0”是“a∥b”的充分不必要条件.

高考数学(文)一轮课件【第24讲】平面向量的概念及其线性运算

双 向 固 基 础
平面向量的概念及其线性运算
—— 链接教材 ——
→ +MB → )+(BO → +BC → )+OM → 化简 1.[教材改编] 向量式(AB 后等于________.
→ [答案] AC
→ +BO → +OM → +MB → +BC → =AC →. [解析] 原式=AB
返回目录
第24讲
→ =a,AC →= 4.[教材改编] M 是 BC 边上的中点,AB → =________. b,则AM
1 [答案] 2(a+b) → +BM → =AM →, [解析] ∵AB
1 → → → → → → → → → AC+CM=AM,∴AM=2(AB+BM+AC+CM).又CM →, =-BM 1 → → 1 → ∴AM= (AB+AC)= (a+b). 2 2
返回目录
第24讲
双 向 固 基 础
平面向量的概念及其线性运算
3.[教材改编] a 表示向东走 1 km,b 表示向南走 1 km, 则 a+b 表示向________方向走________ km.
[答案] 东南
2
[解析] 向东南方向走 2 km.
返回目录
第24讲
双 向 固 基 础
平面向量的概念及其线性运算
零向 量

0 长度为________ 的向量
0 用________ 表示
返回目录
第24讲
双 向 固 基 础
平面向量的概念及其线性运算
名称 单位向量 平行向量
定义
表示
1 长度等于________ 个单位的向量
1 用e表示,|e|=________
a∥b
相同 或相反的非零向量 方向________ 长度 相等且方向________ 相同 的 ________

2018高考数学文全国大一轮复习课件:第四篇 平面向量


第 1节
平面向量的概念及线性运算
最新考纲
1.了解向量的实际背景. 2.理解平面向量的概念和两个向量 相等的含义. 3.理解向量的几何表示.
4.掌握向量加法、减法的运算,理解 其几何意义. 5.掌握向量数乘的运算及其几何意
义,理解两个向量共线的含义.
6.了解向量线性运算的性质及其几 何意义.
知识链条完善 考点专项突破 经典考题研析
解析:①不正确,a与b方向不一定相同,②正确;③正确;④a与b方向相反 时,命题不成立;⑤当b=0时,命题不成立.
4.如图,在△ABC 中,D 是 BC 上任意一点.若 AD = AB + AC ,则λ +μ = .
解析:因为 D 是 BC 上任意一点,即 D,B,C 三点共线, 又 AD = AB + AC ,则λ+μ=1.
数 乘
4.共线向量定理 向量a(a≠0)与b共线,当且仅当有唯一一个实数λ ,使得 b=λ a .
【重要结论】
A,B,C 三点共线,O 为 A,B,C 所在直线外任一点,则 OA = OB + OC 且λ +μ =1.
对点自测
1.如图,已知D,E,F分别是△ABC的边BC,AB,AC的中点,则下列说法正确的 是( A .
3.给出下列命题. ①若|a|=|b|,则 a=b; ②若 A,B,C,D 是不共线的四点,则“ AB = DC ”是“四边形 ABCD 为平行四 边形”的充要条件; ③若 a=b,b=c,则 a=c; ④“a=b”的充要条件是“|a|=|b|且 a∥b”; ⑤若 a∥b,b∥c,则 a∥c. 其中真命题的序号是( A ) (A)②③ (B)①② (C)③④ (D)④⑤
1 3 1 3 所以 AC = AB + AD ,则 m= ,n= , 2 2 2 2 1 3 所以 m-n= - =-2. 2 2 答案: -2

2018版高考一轮数学文科:第23讲-平面向量的概念及其线性运算ppt课件


→ [答案] .AC
课前双基巩固
对点演练
2.[教材改编] 若
1 1 2x-3a-2(b+c-3x)+b=0,
[ 解析 ] 由
1 1 2 x-3a - (b + c - 2
其中 a, b, c 为已知向量, 则 x=_____+ c 21 7 7
课前双基巩固
知识梳理
减法
数乘
三角形 法则 ________ |λ||a| (1)|λa|=______ 实数 λ 与向量 a 的 (1)对向量加法的分配律: (2)当 λ>0 时,λa 与 a 向量 , λa+λb 积是一个______ λ (a+b)=_____________ 相同 的方向________;当 λ 这种运算叫作向 (2)对实数加法的分配律: <0 时, λa 与 a 的方向 数乘 量的________ ,记 (λ1+λ2)a= 相反 ________; 当 λ=0 时, λa λ1a+λ2a 作________ ______________ 0 λa=________
1.[2015· 全国卷Ⅰ] 已知点 A(0,1),B(3, → =(-4, → =( 2), 向量AC -3), 则向量BC A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4) )
→ =(3, → =AC → -AB →= [解析] A AB 1), BC (-4,-3)-(3,1)=(-7,-4).
大小 →, →, 在平面中, 既有________ 又有 用 a, b, c, …或AB BC … 方向 ________ 的量 表示
大小 向量 a 的________ , 也就是表
向量的模 零向量
→的 示向量 a 的有向线段AB 长度 ________( 或称模) 0 长度为________ 的向量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[谨记通法]
向量有关概念的5个关键点 (1)向量:方向、长度. (2)非零共线向量:方向相同或相反. (3)单位向量:长度是一个单位长度. (4)零向量:方向没有限制,长度是0. (5)相等相量:方向相同且长度相等.如“题组练透” 第2题易混淆有关概念.
考点二
向量的线性运算
[题组练透] 1.(2017· 武汉调研)设 M 为平行四边形 ABCD 对角线的交点,
法则 (或几何意义)
运算律
减法
a-b=a+(-b)
三角形 法则 _______ |λ||a|; (1)|λa|=______ (2)当λ>0时,λa的 方向与a的方向 相同 ;当λ<0时 _____ ,λa的方向与a的 相反 ;当λ= 方向_____ 0时,λa=__ 0
数乘
求实数λ与向 量a的积的运 算
―→ O 为平行四边形 ABCD 所在平面内的任意一点,则 OA + ―→ ―→ ―→ OB + OC + OD 等于 ―→ A. OM ―→ B.2 OM ―→ C.3 OM ( )
―→ D.4 OM
考点一
量,则 a=|a|· a0;②若 a 与 a0 平行,则 a=|a|a0;③若 a 与 a0 平行且|a|=1,则 a=a0.假命题的个数是 A.0 B. 1 C.2 ( D.3 )
解析:向量是既有大小又有方向的量,a 与|a|a0 的模相同,但 方向不一定相同,故①是假命题;若 a 与 a0 平行,则 a 与 a0 的方向有两种情况:一是同向,二是反向,反向时 a=-|a|a0, 故②③也是假命题.综上所述,假命题的个数是 3. 答案:D
―→ ―→ ―→ ―→ ―→ ―→ ②正确.∵ AB = DC ,∴| AB |=| DC |且 AB ∥ DC , 又 A,B,C,D 是不共线的四点, ∴四边形 ABCD 为平行四边形; 反之,若四边形 ABCD 为平行四边形, ―→ ―→ ―→ ―→ ―→ ―→ 则 AB ∥ DC 且| AB |=| DC |,因此, AB = DC . ③不正确.当 a∥b 且方向相反时,即使|a|=|b|,也不能得到 a=b, 故|a|=|b|且 a∥b 不是 a=b 的充要条件,而是必要不充分条件. ④不正确.考虑 b=0 这种特殊情况. 综上所述,正确命题的序号是①②. 答案:①②
B.若|a|=|b|,则a=b D.若a=b,则|a|=|b|
答案:D
2.(教材习题改编)化简: ―→ ―→ ―→ ―→ (1)( AB + MB )+ BO + OM =________. ―→ ―→ ―→ ―→ (2) NQ + QP + MN - MP =________.
―→ 答案:(1) AB
λ(μ a)= (λμ)a ; ______ (λ+μ)a= λa+μ a ; __________ λ(a+b)= λa+λb ___________
3.共线向量定理 向量a(a≠0)与b共线,当且仅当有唯一一个实数λ, 使得 b=λa .
[小题体验]
1.下列四个命题中,正确的命题是 A.若a∥b,则a=b C.若|a|=|b|,则a∥b ( )
第四章 平面向量、数系的扩充与复数的引入
第一节 平面向量的概念及其线性运算
淮北一中数学组
1.向量的有关概念
名称 向量
定义
大小 又有_____ 方向 的量;向量的 既有_____
备注
平面向量是
自由向量 记作__ 0
大小叫做向量的_____( 长度 或称___) 模
0 的向量;其方向是任意的 零向量 长度为__
解析:若a=b,则|a+b|=|2a|=2|a|,|a|+|b|=|a|+|a|= 2|a|,即p⇒q. 若|a+b|=|a|+|b|,由加法的运算知a与b同向共线, 即a=λb,且λ>0,故q⇒/ p. ∴p是q的充分不必要条件. 答案:充分不必要
平面向量的有关概念 [题组练透] 1.设 a0 为单位向量,下列命题中:①若 a 为平面内的某个向
名称
定义
备注 非零向量 a 的 单位向量
单位向量 长度等于 1 个单位 的向量
a 为± |a|
平行向量 方向 相同 或 相反的非零向量 0 与任一向量平行或共线 两向量只有相等或不等, 不能比较大小
相等向量 长度相等 且方向 相同 的向量
相反向量 长度 相等 且方向相反 的向量 0 的相反向量为 0
2.(易错题)给出下列命题: ①若a=b,b=c,则a=c; ―→ ―→ ②若A,B,C,D是不共线的四点,则 AB = DC 是四边 形ABCD为平行四边形的充要条件; ③a=b的充要条件是|a|=|b|且a∥b; ④若a∥b,b∥c,则a∥c. 其中正确命题的序号是________.
解析:①正确.∵a=b,∴a,b的长度相等且方向相同, 又b=c,∴b,c的长度相等且方向相同, ∴a,c的长度相等且方向相同,故a=c.
(2)0

3.已知a与b是两个不共线的向量,且向量a+λb与-(b-3a)共 线,则λ=________.
1 答案:- 3
1.在利用向量减法时,易弄错两向量的顺序,从而求得所求 向量的相反向量,导致错误. 2.在向量共线的重要条件中易忽视“a≠0”,否则λ可能不 存在,也可能有无数个. 3.要注意向量共线与三点共线的区别与联系.
2.向量的线性运算
向量 运算 定义 法则(或几何意义) 运算律
加法
求两个向量 和的运算
三角形 法则 _______
(1)交换律: b+a ; a+b=_____ (2)结合律: (a+b)+c=
a+(b+c) ___________
平行四边形 法则 ____________
向量 运算
定义 求a与b的相反 向量-b的和 的运算叫做a 与b的差
[小题纠偏]
―→ ―→ ―→ 1.若菱形ABCD的边长为2,则| AB - CB + CD |=________.
―→ ―→ ―→ ―→ ―→ ―→ ―→ 解析:| AB - CB + CD |=| AB + BC + CD |=| AD |=2. 答案:2
2.已知a,b是非零向量,命题p:a=b,命题q:|a+b|= |a|+|b|,则p是q的________条件.
相关文档
最新文档