2013年河南中招数学考前押题试卷
2013年河南中考数学试卷及答案(word解析版)

2013年河南省初中学业水平暨高级中等学校招生考试试卷数 学注意事项:1. 本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上。
参考公式:二次函数图像2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a-- 一、 选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
1、-2的相反数是【】(A )2 (B)2-- (C)12 (D)12- 【解析】根据相反数的定义可知:-2的相反数为2【答案】A2、下列图形中,既是轴对称图形又是中心对称图形的是【】【解析】轴对称是指在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。
中心对称图形是指平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么就说这两个图形关于这个点成中心对称。
结合定义可知,答案是D【答案】D3、方程(2)(3)0x x -+=的解是【】(A )2x = (B )3x =- (C )122,3x x =-= (D )122,3x x ==-【解析】由题可知:20x -=或者30x +=,可以得到:122,3x x ==-【答案】D4、在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是【】(A ) 47 (B )48 (C )48.5 (D )49【解析】中位数是将数据按照从小到大的顺序排列,其中间的一个数或中间两个数的平均数就是这组数的中位数。
本题的8个数据已经按照从小到大的顺序排列了,其中间的两个数是48和49,它们的平均数是48.5。
因此中位数是48.5【答案】C5、如图是正方形的一种张开图,其中每个面上都标有一个数字。
那么在原正方形中,与数字“2”相对的面上的数字是【】(A )1 (B )4 (C )5 (D )6【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。
2013年压题文二

2013年压题文二武陟一中科数学试题(二)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合 题目要求的.1.设全集U 是实数集R ,集合M ={x |2x ≥2x},N ={x |2log (1)x -≤0},则M ∩N =A .{1,2}B .{ 2 }C .{1}D .[1,2]2.i 为虚数单位,若复数12z i+=55i,则|z |=A .1B .2C .5D .253.双曲线244x 2-y =的离心率为A .6B .5C .6D .524.某学生在一门功课的22次考试中,所得分数如下茎叶图所示,则此学生该门功课考试分数的极差与中位数之和为A.117 B.118 C.118.5 D.119.55.在△ABC中,M是AB边所在直线上任意一点,若CM=-2CA+λCB,则λ=A.1 B.2 C.3 D.46.“m=-1”是“函数f(x)=ln(mx)在(-∞,0)上单调递减”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.公差不为0的等差数列{n a}的前21项的和等于前8项的和.若80 ka a+=,则k=A.20 B.21 C.22 D.238.在如图所示的程序框图中,若U=1lg3·31log10,V=12log22,则输出的S=A.2 B.12C.1D.14C.2013 D.201412.四面体ABCD中,AD与BC互相垂直,且AB+BD=AC+CD.则下列结论中错误的是A.若分别作△BAD和△CAD的边AD上的高,则这两条高所在直线异面B.若分别作△BAD和△CAD的边AD上的高,则这两条高长度相等C.AB=AC且DB=DCD.∠DAB=∠DAC二、填空题:本大题共4小题,每小题5分.13.圆2x2+y-2x+my-2=0关于抛物线2x=4y 的准线对称,则m=_______________14.不等式组130x yxx y⎧⎪⎨⎪⎩--≤≥+-≤对应的平面区域为D,直线y=k(x+1)与区域D有公共点,则k的取值范围是______________.15.已知函数f(x)=1x a-,若存在ϕ∈(4π,2π),使f(sinϕ)+f(cosϕ)=0,则实数a的取值范围是________________.16.设{na }是等差数列,{nb }是等比数列,记{na },{nb }的前n 项和分别为nS ,nT .若a 3=b 3,a 4=b 4,且5342S S T T --=5,则5353a ab b++=______________. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知(2cos ,1)a x x =+,(,cos )b y x =,且//a b .(I )将y 表示成x 的函数()f x ,并求()f x 的最小正周期;(II )记()f x 的最大值为M ,a 、b 、c 分别为ABC ∆的三个内角A 、B 、C 对应的边长,若(),2A f M =且2a =,求bc 的最大值. 18.(本小题满分12分)为了参加2012省高中篮球比赛,某中学决定从四个篮球较强的班级的篮球队员中选出12人组成男子篮球队,代表该地区参赛,四个篮球较强的班级篮球队员人数如下表:(Ⅰ)现采取分层抽样的方法从这四个班中抽取运动员,求应分别从这四个班抽出的队员人数; (Ⅱ)该中学篮球队奋力拼搏,获得冠军.若要从高三年级抽出的队员中选出两位队员作为冠军的代表发言,求选出的两名队员来自同一班的概率. 19.(本小题满分12分)如图5,如图,已知在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,E 、F 分别是AB 、PD 的中点.(Ⅰ)求证://AF 平面PEC ;(Ⅱ)若PD 与平面ABCD 所成角为60,且4,2==AB AD ,求点A 到平面PED 的距离. 20.(本小题满分12分)已知椭圆E 的焦点在x 轴上,离心率为12,对称轴为坐标轴,且经过点3(1,)2. (I )求椭圆E 的方程;(II )直线2y kx =-与椭圆E 相交于A 、B 两点, O 为原点,在OA 、OB 上分别存在异于O 点的点M 、N ,使得O 在以MN 为直径的圆外,求直线斜率k 的取值范围.21.(本小题满分12分)设m 为实数,函数f (x )=-2xe +2x +m ,图x∈R(Ⅰ)求f(x)的单调区间与极值;(Ⅱ)求证:当m≤1且x>0时,2x e>22x+2mx+1.请考生在第22、23、24三题中任选一题作答22.(本小题满分10分)选修4—1:几何证明选讲如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形;(Ⅰ)求AM的长;(Ⅱ)求sin∠ANC.23.(本小题满分10分)选修4—4:坐标系与参数方程π)已知曲线C1的极坐标方程为ρcos(θ-3的极坐标方程为ρ==-1,曲线Cπ).以极点为坐标原点,极轴为x cos(θ-4轴正半轴建立平面直角坐标系.(Ⅰ)求曲线C2的直角坐标方程;(Ⅱ)求曲线C2上的动点M到曲线C1的距离的最大值.24.(本小题满分10分)选修4—5:不等式选讲已知不等式2|x-3|+|x-4|<2a.(Ⅰ)若a=1,求不等式的解集;(Ⅱ)若已知不等式的解集不是空集,求a 的取值范围.武陟一中数学文科(二)答案(1)B (2)A (3)D (4)B (5)C (6)A(7)C(8)B(9)D (10)D (11)C (12)A(13) 2(14)[]0,1(15)12⎛ ⎝⎭(16)35-17、解:(I )由//a b得22cos cos 0x x y +-= ············ 2'即22coscos cos 2212sin(2)16y x x x x x π=+=+=++所以()2sin(2)16f x x π=++ , ·································· 4' 又222T πππω=== 所以函数()f x 的最小正周期为.π ······················ 6' (II )由(I )易得3M = ································ 7'于是由()3,2A f M ==即2sin()13sin()166A A ππ++=⇒+=, 因为A 为三角形的内角,故3A π= ······················ 9' 由余弦定理2222cos a b c bc A=+-得2242bc bc bc bc bc=+-≥-= ···· 11'解得4bc ≤于是当且仅当2b c ==时,bc 的最大值为4. ········· 12' 18、解:(Ⅰ)由题,应从高三(7)班中抽出4361212=⨯人, 应从高三(17)班中抽出236612=⨯人, 应从高二(31)班中抽出336912=⨯人,应从高二(32)班中抽出336912=⨯人。
2013中考数学压轴题专项训练有答案

2013中考压轴题专项训练训练目标1.熟悉题型结构,辨识题目类型,调用解题方法;2.书写框架明晰,踩点得分(完整、快速、简洁)。
题型结构及解题方法压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。
答题规范动作1.试卷上探索思路、在演草纸上演草。
2.合理规划答题卡的答题区域:两栏书写,先左后右。
作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。
3.作答要求:框架明晰,结论突出,过程简洁。
23题作答更加注重结论,不同类型的作答要点:几何推理环节,要突出几何特征及数量关系表达,简化证明过程;面积问题,要突出面积表达的方案和结论;几何最值问题,直接确定最值存在状态,再进行求解;存在性问题,要明确分类,突出总结。
4.20分钟内完成。
实力才是考试发挥的前提。
若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。
下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。
课程名称:2013中考数学难点突破之动点1、图形运动产生的面积问题2、存在性问题3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题)3、2013中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存在性、四边形的存在性、压轴题综合训练)一、图形运动产生的面积问题一、 知识点睛 1. 研究_基本_图形 2. 分析运动状态:①由起点、终点确定t 的范围;②对t 分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置. 3. 分段画图,选择适当方法表达面积. 二、精讲精练1. 已知,等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上,沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作AB 边的垂线,与△ABC 的其他边交于P 、Q 两点,线段MN 运动的时间为t 秒. (1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积. (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.1题图 2题图2. 如图,等腰梯形ABCD 中,AB ∥CD ,AB= CD高CE=,对角线AC 、BD 交于点H .平行于线段BD 的两条直线MN 、RQ 同时从点A 出发,沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、G ,当直线RQ 到达点C 时,两直线同时停止移动.记等腰梯形ABCD 被直线MN 扫过的面积为1S ,被直线RQ 扫过的面积为2S ,若直线MN 平移的速度为1单位/秒,直线RQ 平移的速度为2单位/秒,设两直线移动的时间为x 秒. (1)填空:∠AHB =____________;AC =_____________; (2)若213S S ,求x .3. 如图,△ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点P 、Q 同时从点C 出发,以1cm/s 的速度分别沿CA 、CB 匀速运动,当点Q 到达点B 时,点P 、Q 同时停止运动.过点P 作AC 的垂线l 交AB 于点R ,连接PQ 、RQ ,并作△PQR 关于直线l 对称的图形,得到△PQ'R .设点Q 的运动时间为t (s ),△PQ'R 与△PAR 重叠部分的面积为S (cm 2).(1)t 为何值时,点Q' 恰好落在AB 上?(2)求S 与t 的函数关系式,并写出t 的取值范围.(3)S 能否为98?若能,求出此时t 的值;若不能,请说明理由.CBAABCPRQ Q'l AC MNQPBCHD CBAA B CH HDCBA AB C DM N R QF G HE HD C BAHDCB A4.如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm,动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动.以AP为边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为t s,正方形APDE和梯形BCFQ重叠部分的面积为S cm2.(1)当t=_____s时,点P与点Q重合;(2)当t=_____s时,点D在QF上;(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数关系式.5.如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD为一边向上作正方形ABCD.(1)填空:点B的坐标为________,点C的坐标为_________.(2)若正方形以每秒5个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.l2与x轴相交于点N.(1)求M,N的坐标.(2)已知矩形ABCD中,AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD与△OMN重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时结束).求S与自变量t之间的函数关系式,并写出相应的自变量t的取值范围.A BCDNMOyA BC二、二次函数中的存在性问题一、知识点睛解决“二次函数中存在性问题”的基本步骤:①画图分析.研究确定图形,先画图解决其中一种情形.②分类讨论.先验证①的结果是否合理,再找其他分类,类比第一种情形求解.③验证取舍.结合点的运动范围,画图或推理,对结果取舍.二、精讲精练1.如图,已知点P是二次函数y=-x2+3x图象在y轴右侧..部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于A、B两点. 若以AB为直角边的△PAB与△OAB相似,请求出所有符合条件的点P的坐标.2.抛物线134y x=--+与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.点P在抛物线上,直线PQ//BC交x轴于点Q,连接BQ.(1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求直线BQ的函数解析式;(2)若含30°角的直角三角板的一个顶点与点C重合,直角顶点D在直线BQ上(点D不与点Q重合),另一个顶点E在PQ上,求点P的坐标.3.如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.(1)若抛物线cbxxy++-=231经过A、B两点,求该抛物线的解析式:______________;(2)若点M是直线AB作MN⊥x轴于点N.是否存在点M,使△AMN与△ACD相似?若存在,求出点M的坐标;若不存在,说明理由.yOyxyyxO O xyyxOO xyxCOyBAxxA ByO C COyBAx4. 已知抛物线2=23y x x --经过A 、B 、C 三点,点P (1,k )在直线BC :y=x -3上,若点M 在x 轴上,点N 在抛物线上,是否存在以A 、M 、N 、P 为顶点的四边形为平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由.5. 抛物线2212-+=x x y 与y 轴交于点C ,与直线y =x 交于A (-2,-2)、B (2,2)两点.如图,线段MN 在直线AB上移动,且MN =M 的横坐标为m ,过点M 作x 轴的垂线与x 轴交于点P ,过点N 作x 轴的垂线与抛物线交于点Q .以P 、M 、Q 、N 为顶点的四边形否为平行四边形?若能,请求出m 的值;若不能,请说明理由.三、二次函数与几何综合一、知识点睛“二次函数与几何综合”思考流程:整合信息时,下面两点可为我们提供便利:①研究函数表达式.二次函数关注四点一线,一次函数关注k 、b ; ②)关键点坐标转线段长.找特殊图形、特殊位置关系,寻求边和角度信息. 二、精讲精练1. 如图,抛物线y =ax 2-5ax +4(a <0)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y轴上,且AC =BC . (1)求抛物线的解析式.(2)在抛物线的对称轴上是否存在点M ,使|MA -MB |最大? 若存在,求出点M 的坐标;若不存在,请说明理由.yB2. 如图,已知抛物线y =ax 2-2ax -b (a >0)与x 轴交于A 、B 两点,点A 在点B 的右侧,且点B 的坐标为(-1,0),与y 轴的负半轴交于点C ,顶点为D .连接AC 、CD ,∠ACD =90°. (1)求抛物线的解析式;(2)点E 在抛物线的对称轴上,点F 在抛物线上,且以B 、A 、F 、E 四点为顶点的四边形为平行四边形,求点F 的坐标.3. 如图,在平面直角坐标系中,直线3342y x =-与抛物线214y x bx c =-++交于A 、B 两点,点A 在x 轴上,点B 的横坐标为-8.(1)求该抛物线的解析式;(2)点P 是直线AB 上方的抛物线上一动点(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E .设△PDE 的周长为l , 点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值.4. 已知,抛物线212y ax ax b =-+经过A (-1,0),C (2,32)两点,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点 (不与点B 重合),点Q 在线段MB 上移动,且∠MPQ =45°,设线段OP =x ,MQ=22y ,求y 2与x 的函数关系式, 并直接写出自变量x 的取值范围.5. 已知抛物线2y ax bx c =++的对称轴为直线2x =,且与x 轴交于A 、BA (1,0),C (0,-3). (1)求抛物线的解析式;(2)若点P 在抛物线上运动(点P 异于点A),①如图1,当△PBC 的面积与△ABC 的面积相等时,求点P 的坐标; ②如图2,当∠PCB =∠BCA 时,求直线CP 的解析式.四、中考数学压轴题专项训练1.如图,在直角梯形OABC 中,AB ∥OC ,BC ⊥x 轴于点C ,A (1,1),B (3,1).动点P 从点O 出发,沿x 轴正方向以每秒1个单位长度的速度移动.过点P 作PQ ⊥OA ,垂足为Q .设点P 移动的时间为t 秒(0<t <4),△OPQ 与直角梯形OABC 重叠部分的面积为S .2.如图,抛物线2++=bx ax y 与x 轴交于A (-1,0),B (4,0)两点,与y 轴交于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点. (1)求抛物线的解析式及点D 的坐标.(2)点E在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标. (3)过点P 作直线CD 的垂线,垂足为Q .若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′,是否存在点P ,使点Q ′恰好在x 轴上?若存在,求出此时点P 的坐标;若不存在,请说明理由.3.(11分)如图,已知直线12y x =-+与坐标轴交于A ,B 两点,以线段AB 为边向上作正方形ABCD ,过点A ,D ,C 的抛物线与直线的另一个交点为E .(1)请直接写出C ,D 两点的坐标,并求出抛物线的解析式;(2AB 下滑,直至顶点D 落在x 轴上时停止,设正方形落在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围;(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C ,E 两点间的抛物线弧所扫过的面积.4.(11分)如图,抛物线y =ax 2+bx +c 交x 轴于点A (-3,0),点B (1,0),交y 轴于点E (0,-3).点C 是点A 关于点B 的对称点,点F 是线段BC 的中点,直线l 过点F 且与y 轴于点D .(1)求抛物线的解析式;(2)点K 为线段AB 上一动点,过点K 作x 轴的垂线,交直 线CD 于点H ,交抛物线于点G ,求线段HG 长度的最大值; (3)在直线l 上取点M ,在抛物线上取点N ,使以A ,C ,M , N 为顶点的四边形是平行四边形,求点N 的坐标.5.(11分)如图,在平面直角坐标系中,直线3342y x =-与 抛物线214y x bx c =-++交于A ,B 两点,点A 在x 轴上,点B (1)求抛物线的解析式.(2)点P 是直线AB 上方的抛物线上一动点(不与点A ,B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E .①设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值. ②连接P A ,以P A 为边作图示一侧的正方形APFG .随着点P 正方形的大小、位置也随之改变.当顶点F 或G 恰好落在y 直接写出对应的点P 的坐标.6.(11分)如图1,点A 为抛物线C 1:2122y x =-的顶点,点B 的坐标为 (1,0),直线AB 交抛物线C 1于另一点C . (1)求点C 的坐标;(2)如图1,平行于y 轴的直线x =3交直线AB 于点D ,交抛物线C 1于点E ,平行于y 轴的直线x =a 交直线AB 于点F ,交抛物线C 1于点G ,若FG :DE =4:3,求a 的值;(3)如图2,将抛物线C 1向下平移m (m >0)个单位得到抛物线C 2,且抛物线C 2的顶点为P ,交x 轴负半轴于点M ,交射线AB 于点N ,NQ ⊥x 轴于点Q ,当NP 平分∠MNQ 时,求m 的值.附:参考答案一、图形运动产生的面积问题1. (1)当t =32时,四边形MNQP 恰为矩形.此时,该矩形的面积为2平方厘米.(2) 当0<t ≤1时,+2S =;当1<t ≤2时,2S =;当2<t <3时,S = 2.(1)90°;4 (2)x =2.3.(1)当t =125时,点Q' 恰好落在AB 上. (2)当0<t ≤125时,23-+38S t t =;当125<t ≤6时,29(8-)56S t =(3)由(2)问可得,当0<t ≤125时,239-388t t += ;当125<t ≤6时,299(8-)568t =;解得,8t =4t =98S =.4.(1)1 (2)45(3)当1<t ≤43时,29-24S t t =;当43<t <2时,29-10-84S t t =+.5.(1)(﹣1,3),(﹣3,2) (2)当0<t ≤12时,25S t =;当12<t ≤1时,55-4S t =;当1<t ≤32时,225-515-4S t t =+.6.(1)M (4,2) N (6,0)(2)当0≤t ≤1时,24t S =;当1<t ≤4时,1-24t S =; 当4<t ≤5时,231349--424S t t =+;当5<t ≤6时,13-2S t =+;当6<t ≤7时,()217-2S t =二、二次函数中的存在性问题1.解:由题意,设OA =m ,则OB =2m ;当∠BAP =90°时, △BAP ∽△AOB 或△BAP ∽△BOA ; ① 若△BAP ∽△AOB ,如图1,可知△PMA ∽△AOB ,相似比为2:1;则P 1(5m ,2m ),代入x x y 32+-=,可知2513=m ,)2526,513(1P ② 若△BAP ∽△BOA ,如图2,可知△PMA ∽△AOB ,相似比为1:2;则P 2(2m ,2m),代入x x y 32+-=,可知811=m ,)1611,411(2P当∠ABP =90°时,△ABP ∽△AOB 或△ABP ∽△BOA ; ③ 若△ABP ∽△AOB ,如图3,可知△PMB ∽△BOA ,相似比为2:1;则P 3(4m ,4m ), 代入x x y 32+-=,可知21=m ,)2,2(3P ④ 若△ABP ∽△BOA ,如图4,可知△PMB ∽△BOA ,相似比为1:2;则P 4(m ,m 25), 代入x x y 32+-=,可知21=m ,415(,)24P2.解:(1)由抛物线解析式()21134y x =--+可得B 点坐标(1,3)要求直线BQ 的函数解析式,只需求得点Q 坐标即可,即求CQ 长度. 过点D 作DG ⊥x 轴于点G ,过点D 作DF ⊥QP 于点F . 则可证△DCG ≌△DEF .则DG =DF ,∴矩形DGQF 为正方形.则∠DQG =45°,则△BCQ 为等腰直角三角形.∴CQ =BC=3,此时,Q 可得BQ 解析式为y =-x +4.(2)要求P 点坐标,只需求得点Q 坐标,然后根据横坐标相同来求点P 坐标即可. 而题目当中没有说明∠DCE =30°还是∠DCE =60°,所以分两种情况来讨论. ① 当∠DCE =30°时,a )过点D 作DH ⊥x 轴于点H ,过点D 作DK ⊥QP 于点K . 则可证△DCH ∽△DEK .则DH DCDK DE== 在矩形DHQK 中,DK =HQ ,则DHHQ=在Rt △DHQ 中,∠DQC =60°.则在Rt △BCQ 中,BCCQ=∴CQ ,此时,Q 点坐标为()则P 点横坐标为代入()21134y x =--+可得纵坐标.∴P (b )又P 、Q 为动点,∴可能PQ 由对称性可得此时点P 坐标为(194)② 当∠DCE =60°时,a) 过点D 作DM ⊥x 轴于点M ,过点D 作DN ⊥QP 于点N .则可证△DCM ∽△DEN .则DM DC DN DE == 在矩形DMQN 中,DN =MQ ,则DM MQ =. 在Rt △DMQ 中,∠DQM =30°.则在Rt △BCQ 中,BC CQ =∴CQ =Q 点坐标为(1+0) 则P 点横坐标为1+代入()21134y x =--+可得纵坐标.∴P (b )又P 、Q 为动点,∴可能PQ 在对称轴左侧,与上一种情形关于对称轴对称.由对称性可得此时点P 坐标为(1-154-) 综上所述,P 点坐标为(94),(194),(1+154-)或(1-154-).当2=ANMN 时,268310312=-+-m m m ,即264631=---mm m ))(( ∴2-=m (舍)2)如果点M 在x 轴上方的抛物线上:当21=AN MN 时,2168310312=--+-m m m ,即2164631=----m m m ))(( ∴211=m ∴M ),(41211 此时41=MN ,21=AN ∴21=AN MN ∴△AMN ∽△ACD ∴M ),(41211满足要求当2=ANMN 时,268310312=--+-m m m ,即264631=----mm m ))(( ∴m =10(舍) 综上M 1),(4725-,M 2),(412114.解:满足条件坐标为:1(36,0)-M 2(36,0)+M 3(12,0)-+M 4(12,0)--M 思路分析:A 、M 、N 、P 四点中点A 、点P 为顶点,则AP 可为平行四边形边、对角线; (1)如图,当AP 为平行四边形边时,平移AP ;∵点A 、P 纵坐标差为2 ∴点M 、N 纵坐标差为2; ∵点M 的纵坐标为0 ∴点N 的纵坐标为2或-2 ①当点N 的纵坐标为2时 解:2232--=x x 得16=±x又∵点A 、P 横坐标差为2 ∴点M 的坐标为: 1(36,0)-M 、2(36,0)+M ②当点N 的纵坐标为-2时解:2232--=-x x 得12=±x又∵点A 、P 横坐标差为2 ∴点M 的坐标为: 3(12,0)-+M 、4(12,0)--M (2)当AP 为平行四边形边对角线时; 设M 5(m ,0) MN 一定过AP 的中点(0,-1)则N 5(-m ,-2),N 5在抛物线上 ∴2232+-=-m m12=-±m (负值不符合题意,舍去)∴12=-+m ∴5(12,0)-+M 综上所述:符合条件点P 的坐标为:1(36,0)-M 2(36,0)+M 3(12,0)-+M 4(12,0)--M5.解:分析题意,可得:MP ∥NQ ,若以P 、M 、N 、Q 为顶点的四边形为平行四边形,只需MP =NQ 即可。
2013年中考数学预测试卷(一)及答案201378

2013年中考数学预测试卷(一)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1.9的平方根是()A.3 B.-3 C.±3 D.62.某种微粒子,测得它的质量为0.000 067 46克,这个质量用科学记数法表示(保留三个有效数字)应为()A.6.75×10-5克B.6.74×10-5克C.6.74×10-6克D.6.75×10-6克3.下列图形中,既是轴对称图形又是中心对称图形的共有()A.1个B.2个C.3个D.4个4.某市5月上旬前五天的最高气温如下(单位:°C):28,29,31,29,33,对这组数据,下列说法错误的是()A.平均数是30 B.众数是29 C.中位数是31 D.极差是5 5.如图,二次函数2y ax bx c=++的图象经过(-1,1),(2,-1)两点,下列关于这个二次函数的叙述正确的是()A.当x=0时,y的值大于1 B.当x=3时,y的值小于0C.当x=1时,y的值大于1 D.y的最大值小于0(2,-1)(-1,1)yxO水平面主视方向第5题图第6题图6.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是()A.两个外离的圆B.两个相交的圆C.两个外切的圆D.两个内切的圆7.如图,已知直线y 1=x +m 与y 2=kx -1相交于点P (-1,1),则关于x 的不等式 x +m >kx -1的解集在数轴上表示正确的是( )-100-10-10-1A . B . C . D .8.如图,已知线段OA 交⊙O 于点B ,且OB =AB ,若点P 是⊙O 上的一个动点,则∠OAP 的最大值是( )A .30°B .45°C .60°D .90°y 2y 1PO y xOBPAFE D CBA第7题图 第8题图 第10题图 二、填空题(每小题3分,共21分) 9.化简:128=2-_________. 10.如图,在△ABC 中,∠B =50°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC =_________.11.圆锥的底面圆直径和母线长均为80cm ,则它的侧面展开图的圆心角是_________.12.某市初中毕业男生体育测试项目有四项,其中“立定跳远”、“1000米跑”、“掷实心球”为必测项目,另一项从“篮球运动”或“一分钟跳绳”中选一项测试.小亮、小明和大刚从“篮球运动”或“一分钟跳绳”中选择同一个测试项目的概率是__________.13.如图,在△OAB 中,C 是AB 的中点,反比例函数y =kx(k >0)在第一象限的图象经过A ,C 两点,若△OAB 面积为6,则k 的值为______.AOxyCB14.将矩形纸片ABCD 按如图所示的方式折叠,点A 、点C 恰好落在对角线BD上,得到菱形BEDF .若BC =6,则AB 的长为_________.15.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC =12,BD =16,E 为AD 中点,点P 在x 轴上移动.小明同学写出了两个使△POE 为等腰三角形的P 点坐标,即( 5 0 ) -,和( 5 0 ),.请你写出其余所有符合这个条件的P 点坐标__________________.ACBDEFDBCAAO xyBED C第14题图 第15题图 三、解答题(本大题共8小题,满分75分) 16.(8分)先化简2111122x x x x ⎛⎫-÷⎪-+-⎝⎭,然后从-2≤x ≤2的范围内选择一个合适的整数作为x 的值代入求值.17.(9分)为了更好地宣传吸烟的危害,某中学九年级一班数学兴趣小组设计了如下调查问卷,调查了部分吸烟人群,并将调查结果绘制成统计图.42%调查结果的扇形统计图调查结果的条形统计图人数选项307812612120100806040200AC B DEE DBCA根据以上信息,解答下列问题:(1)本次接受调查的总人数是 人,并把条形统计图补充完整. (2)在扇形统计图中,C 选项的人数百分比是 ,E 选项所在扇形的圆心角的度数是 .(3)若某地区约有烟民14万人,试估计对吸烟有害持“无所谓”态度的约有多少人?吸烟有害——你打算怎样减少吸烟的危害?(单选) A .无所谓B .少吸烟,以减轻对身体的危害C .不在公众场所吸烟,减少他人被动吸烟的危害D .决定戒烟,远离烟草的危害E .希望相关部门进一步加大控烟力度18.(9分)已知:如图,四边形ABCD 是正方形,BD 是对角线,BE 平分∠DBC 交DC 于E 点,交DF 于M 点,F 是BC 延长线上一点,且CE =CF . (1)求证:BM ⊥DF ;(2)若正方形ABCD 的边长为2,求ME ·MB 的值.M AC DEFB19.(9分)甲、乙两地相距300km ,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA 表示货车离甲地的距离y (km )与时间x (h )之间的函数关系,折线BC -CD -DE 表示轿车离甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象,解答下列问题: (1)线段CD 表示轿车在途中停留了_____h ; (2)求线段DE 对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.3008054.52.521Ox /hy /km AED B C20.(9分)如图所示,当小华站立在镜子EF 前的A 处时,他看自己的脚在镜中的像的俯角为45°;如果小华向后退0.5米到B 处,这时他看自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:3 1.73 )45°30°A 1B 1FE DB CA21.(10分)某商店为了抓住文化艺术节的商机,决定购进A ,B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元. (1)求购进A ,B 两种纪念品每件各需多少元.(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7 500元,但不超过7 650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?22.(10分)在正方形ABCD 中,对角线AC ,BD 交于点O ,点P 在线段BC上(不与点B 重合),∠BPE =12∠ACB ,PE 交BO 于点E ,过点B 作BF ⊥PE ,垂足为F ,交AC 于点G .(1)当点P 与点C 重合时(如图1),求证:△BOG ≌△POE ;(2)通过观察、测量,猜想:BF PE= ,并结合图2证明你的猜想;(3)把正方形ABCD 改为菱形,其他条件不变(如图3),若∠ACB =α,求BFPE的值.(用含α的式子表示) C (P )E AG OF DBAOBD F P GEC BD F G CEPOA图1 图2 图323.(11分)如图,在平面直角坐标系中,点A 的坐标为(1,3),△AOB 的面积为3.(1)求过点A ,O ,B 的抛物线解析式.(2)在(1)中抛物线的对称轴上是否存在点M ,使△AOM 的周长最小?若存在,求出点M 的坐标;若不存在,请说明理由.(3)在x 轴下方的抛物线上是否存在一点P ,过点P 作x 轴的垂线,交直线AB 于点E ,线段OE 把△AOB 分成两个三角形,使其中一个三角形的面积与四边形BPOE 的面积之比为2:3?若存在,求出点P 的坐标;若不存在,请说明理由.yxO B A参考答案一、选择题1 2 3 4 5 6 7 8 CABCBDBA二、填空题9.2- 10.65° 11.180° 12.1413.4 14.2315.25(80)(0)8,或, 三、解答题 16.原式=4x,当2x =时,原式=2.(或当2x =-时,原式=2-.) 17.(1)300;(2)26%,36°;(3)5600人. 18.(1)证明略;(2)422-.19.(1)0.5;(2)110195y x =-;(3)2.9. 20.1.4 m .21.(1)A :100元,B :50元;(2)4;(3)当购进A 种纪念品50件,B 种纪念品50件时,可获最大利润,最大利润是2500元.22.(1)证明略;(2)12,证明略;(3)1tan 2α. 23.(1)232333y x x =+;(2)存在,3(1)3M -,;(3)存在,13()24--,.。
2013届中考数学压轴题冲刺强化训练4

过圆心 A 作AH BC ,H 为垂足∴ BH=HE⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ⋯⋯⋯⋯ ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分∴在直角三角形△ABH 中 , cosBBHAB∴3BH18∴ BH⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分5 65∴ BE 36∴ EC 14⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1[ 来55源 :zz@s&te~p#.c%om]9.解:( 1)AE 与⊙O 相切. ··· ··1 分理由如下:连结OM ,则 OM OB .∴∠OMB =∠OBM .∵BM 平分 ABC ,∴∠OBM=∠EBM .∴∠ OMB=∠EBM .∴OM ∥BC . · ··3 分 [z&^zs~tep.c*o#m]∴AMO AEB.在△ABC 中, AB AC , AE 是角平分线,[中&国^教育出#版~网@]∴ AE ⊥ BC .∴ AEB 90°.∴ AMO 90°.∴ OM ⊥ AE .∴ AE 与⊙O 相切. · · ·4 分 [来源 :中国 @& 教育出 ^#版网 ~](2)在△ABC 中,AB AC , AE 是角平分线,∴ BE1BC , ABCC .2 11∵ BC4,cosC ,∴ BE 1,cos ABC .33 在△ ABE 中,,∴BE6.AEB 90° AB cos ABC设⊙O 的半径为r ,则 AO 6 r .∵ OM ∥BC ,∴△AOM ∽△ABE . ··6 分 [ 来源 :&% 中国教育出 ~版网 *#]OM AO . r 6r.解得 r3 .∴⊙O 的半径为3. 7:#z~BE AB 262210.解:( I )kx 2+( 2k -3)x+k - 3 = 0 是关于 x 的一元二次方程.∴ (2k 3) 2 4k(k 3) 9由求根公式,得x(3 2k) 3 . ∴ x1或 x 31 ⋯⋯⋯⋯⋯4分 0,∴3 2kk (II )k 1 1.k 3而 x 1 x 2,∴ x 1 1, x 2 1. ⋯⋯⋯⋯⋯5分由题意,有 x 2k 2kx 1∴ 132k 0 即 2k 2k3 0(﹡)k3, k 2解之,得 k 11⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分23 经检验 k 1,k 2是方程(﹡)的根,但k 0 ,∴ k⋯⋯⋯ 10分2 分。
河南省中考数学押题试卷含答案解析

河南省中考数学押题试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的是1.﹣3的绝对值是()A.﹣B.C.﹣3 D.32.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3.下列各式计算正确的是()A.2a+3b=6ab B.a8÷a2=a4C.(﹣2a2)3=﹣8a6D.(a﹣b)2=a2﹣2ab﹣b24.若一元二次方程x2+4x﹣2a=0有实数根,则a的取值范围是()A.a>2 B.a≥﹣2 C.a≤﹣2 D.a<﹣45.某校九年级(1)班的8名男生的体重分别是(单位:千克):65,70,58,60,55,58,50,54,这组数据的众数和中位数分别是()A.55和58 B.55和60 C.58和58 D.58和606.一个几何体由一些大小相同的小正方体组成,如图是它的主视图、左视图和俯视图,那么组成该几何体所需小正方体的个数为()A.5 B.6 C.7 D.87.在▱ABCD中,AB=6,AD=8,∠ABC=60°,点E是AB的中点,EF⊥AB交BC于F,连接DF,则DF的长为()A.2B.8 C.5D.108.已知点(x1,y1),(x2,y2)均在抛物线y=x2﹣1上,下列说法中正确的是()A.若y1=y2,则x1=x2B.若x1=﹣x2,则y1=﹣y2C.若0<x1<x2,则y1>y2D.若x1<x2<0,则y1>y2二、填空题(每小题3分,共21分)9.计算:(﹣2)3+=.10.将一副直角三角板ABC和ADE如图放置(其中∠B=60°,∠E=45°),已知DE与AC 交于点F,AE∥BC,则∠AFD的度数为.11.不等式组的所有非负整数解为.12.如图,AB是⊙O的直径,CE切⊙O于点C,交AB的延长线于点E,点D是⊙O上的点,连接BD、CD,若∠CDB=25°,则∠E的度数是.13.在一个不透明的袋子中装有仅颜色不同的3个白球和1个红球,先从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为.14.如图,在四边形ABCD中,∠ABC=90°,BC=6,将四边形ABCD绕点A逆时针旋转30°至四边形AB′C′D′处,则旋转过程中,边BC所扫过的区域(图中阴影部分)的面积为.15.如图,在矩形ABCD中,AD=5,AB=8,点E是DC上一点,将∠D沿折痕AE折叠,使点D落在点D′处,当△AD′B为等腰三角形时,则DE的长为.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:(x+1﹣)÷,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.17.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交BA、DC 的延长线于点E、F,且AE=CF,连接DE、BF.(1)求证:△AOE≌△COF;(2)若∠ABD=30°,AB⊥AC.①当AE与AB的数量关系为时,四边形BEDF是矩形;②当AE与AB的数量关系为时,四边形BEDF是菱形.18.近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m=,态度为C所对应的圆心角的度数为;(2)补全条形统计图;(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?19.如图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求铁架垂直管CE的长(结果精确到0.01米).20.如图,反比例函数y=的图象与一次函数y=﹣x﹣1的图象的一个交点为A(﹣2,a).(1)求反比例函数的表达式;(2)请直接写出不等式>﹣x﹣1的解集;(3)若一次函数=﹣x﹣1与x轴交于点B,与y轴交于点C,点P是反比例函数y=图象上一点,且S△BOP=4S△OBC,求点P的坐标.21.植树造林不仅可以绿化和美化家园,同时还可以起到扩大山林资源,防止水土流失,保护农田,调节气候,促进经济发展等作用,是一项利国利民、造福子孙后代的宏伟工程,今年3月12日,某校某班计划购进A、B两种树苗共17棵,已知A种树苗每棵的单价比B 种树苗每棵的单价多20元.(1)若购进A种树苗花费了800元,购进B种树苗花费了420元,求A、B两种树苗每棵的单价各是多少元?(2)若购进A种树苗a棵,所需费用为w,求w与a的函数关系式;(3)若购进B中树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需的费用.22.已知Rt△ABC,AB=AC,∠BAC=90°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作Rt△ADE,AD=AE,连接CE.(1)发现问题如图①,当点D在边BC上时,①请写出BD和CE之间的数量关系为,位置关系为;②线段CE+CD=AC;(2)尝试探究如图②,当点D在边BC的延长线上且其他条件不变时,(1)中AC、CE、CD之间存在的数量关系是否成立?若成立,请证明;若不成立,请说明理由;(3)拓展延伸如图③,当点D在边CB的延长线上且其他条件不变时,若BC=4,CE=2,求线段CD的长.23.如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.河南省中考数学押题试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的是1.﹣3的绝对值是()A.﹣B.C.﹣3 D.3【考点】绝对值.【分析】根据绝对值的性质计算即可得解.【解答】解:﹣3的绝对值是3,即|﹣3|=3.故选D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形又是中心对称图形,故本选项正确.故选D.3.下列各式计算正确的是()A.2a+3b=6ab B.a8÷a2=a4C.(﹣2a2)3=﹣8a6D.(a﹣b)2=a2﹣2ab﹣b2【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】利用同底数幂的乘法法则,合并同类项,积的乘方运算法则,完全平方公式化简,即可做出判断.【解答】解:A、2a+3b=2a+3b,故错误;B、a8÷a2=a6,故错误;C、(﹣2a2)3=﹣8a6,故正确;D、(a﹣b)2=a2﹣2ab﹣b2,故错误;故选C.4.若一元二次方程x2+4x﹣2a=0有实数根,则a的取值范围是()A.a>2 B.a≥﹣2 C.a≤﹣2 D.a<﹣4【考点】根的判别式.【分析】根据方程有实数根结合根的判别式可得出关于a的一元一次不等式,解不等式即可得出结论.【解答】解:∵方程x2+4x﹣2a=0有实数根,∴△=42﹣4×1×(﹣2a)=16+8a≥0,解得:a≥﹣2.故选B.5.某校九年级(1)班的8名男生的体重分别是(单位:千克):65,70,58,60,55,58,50,54,这组数据的众数和中位数分别是()A.55和58 B.55和60 C.58和58 D.58和60【考点】众数;中位数.【分析】首先把所给数据按从小到大排序,然后利用中位数和众数定义定义即可确定结果.【解答】解:把已知数据按从小到大排序后为50,54,55,58,58,60,65,70,这组数据中58出现的次数最多,故众数是58,中位数是:(58+58)÷2=58.故选C.6.一个几何体由一些大小相同的小正方体组成,如图是它的主视图、左视图和俯视图,那么组成该几何体所需小正方体的个数为()A.5 B.6 C.7 D.8【考点】由三视图判断几何体.【分析】根据三视图可得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图和左视图可得第二层小正方体的个数,最后相加即可.【解答】解:由俯视图可得最底层有5个小正方体,根据主视图和左视图可得第二层有1个小正方体,则搭成这个几何体的小正方体有5+1=6(个);故选B.7.在▱ABCD中,AB=6,AD=8,∠ABC=60°,点E是AB的中点,EF⊥AB交BC于F,连接DF,则DF的长为()A.2B.8 C.5D.10【考点】平行四边形的性质;等边三角形的判定与性质;勾股定理.【分析】首先延长DC,EF相交于点H.由在▱ABCD中,AB=6,AD=8,可求得CD,BC 的长,又由EF⊥AB,∠ABC=60°,求得∠BFE=∠CFH=30°,然后由含30°的直角三角形的性质,求得BF,FC,CH,FH的长,然后由勾股定理求得DF的长.【解答】解:延长DC,EF相交于点H.∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD=6,AD=BC=8,∵EF⊥AB,∴∠B=∠FCH=60°,∠BEF=∠H=90°,∴∠BFE=∠CFH=30°,∵E是AB的中点,∴BE=AE=AB=3.∴BF=2BE=6,∴CF=BC﹣BF=2,∴CH=CF=1,∴FH==,DH=CD+CH=6+1=7,∴DF==2.故选A.8.已知点(x1,y1),(x2,y2)均在抛物线y=x2﹣1上,下列说法中正确的是()A.若y1=y2,则x1=x2B.若x1=﹣x2,则y1=﹣y2C.若0<x1<x2,则y1>y2D.若x1<x2<0,则y1>y2【考点】二次函数图象上点的坐标特征.【分析】由于抛物线y=x2﹣1的图象关于y轴对称,开口向上,分别判断如下:若y1=y2,则x1=﹣x2;若x1=﹣x2,则y1=y2;若0<x1<x2,则在对称轴的右侧,y随x的增大而增大,则y1<y2;若x1<x2<0,则y1>y2.【解答】解:A、若y1=y2,则x1=﹣x2;B、若x1=﹣x2,则y1=y2;C、若0<x1<x2,则在对称轴的右侧,y随x的增大而增大,则y1<y2;D、正确.故选D.二、填空题(每小题3分,共21分)9.计算:(﹣2)3+=﹣5.【考点】算术平方根;有理数的乘方.【分析】先依据有理数的乘法法则和算术平方根的性质计算,然后再依据有理数的加法法则计算即可.【解答】解;原式=﹣8+3=﹣5.故答案为:﹣5.10.将一副直角三角板ABC和ADE如图放置(其中∠B=60°,∠E=45°),已知DE与AC 交于点F,AE∥BC,则∠AFD的度数为75°.【考点】平行线的性质.【分析】根据两直线平行,内错角相等可得∠EDC=∠E,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵AE∥BC,∠E=45°,∴∠EDC=∠E=45°,∵∠B=60°,∴∠C=90°﹣60°=30°,∴∠AFD=∠C+∠EDC=30°+45°=75°.故答案为:75°.11.不等式组的所有非负整数解为0,1,2.【考点】一元一次不等式组的整数解.【分析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出x的所有非负整数解即可.【解答】解:,由①得,x≤2;由②得,x>﹣3,故不等式组的解集为:﹣3<x≤2,其非负整数解为:0,1,2.故答案为:0,1,2.12.如图,AB是⊙O的直径,CE切⊙O于点C,交AB的延长线于点E,点D是⊙O上的点,连接BD、CD,若∠CDB=25°,则∠E的度数是40°.【考点】切线的性质.【分析】连接OC,在RT△COE中,求出∠COE即可解决问题.【解答】解:如图,连接OC,∵OA=OC,∴∠A=∠OCA=25°,∵∠A=∠D=25°,∴∠A=∠ACO=25°,∴∠COE=∠A+∠ACO=50°,∵CE是切线,∴∠OCE=90°,∴∠E=90°﹣∠COE=40°.故答案为40°.13.在一个不透明的袋子中装有仅颜色不同的3个白球和1个红球,先从袋子中随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸出白球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次都摸出白球的有9种情况,∴两次都摸出白球的概率是:.故答案为:.14.如图,在四边形ABCD中,∠ABC=90°,BC=6,将四边形ABCD绕点A逆时针旋转30°至四边形AB′C′D′处,则旋转过程中,边BC所扫过的区域(图中阴影部分)的面积为3π.【考点】扇形面积的计算;旋转的性质.【分析】先根据直角三角形的性质去除AN及AB的长,再由三角形的面积公式求出△ABC=S1+S2即可得出结的面积,由扇形的面积公式得出扇形BAB′及扇形CAC′的面积,由S阴影论.【解答】解:∵在四边形ABCD中,∠ABC=90°,BC=6,∠BAC=30°,∴AC=12,AB==6,S△ABC=×6×6=18,=π×6()2=9π,∴S扇形BAB′∴S1=18﹣9π.=π×122=12π,∵S△AB′C′=S△ABC=18,S扇形CAC′∴S2=12π﹣18,=S1+S2=18﹣9π+12π﹣18=3π.∴S阴影故答案为:3π.15.如图,在矩形ABCD中,AD=5,AB=8,点E是DC上一点,将∠D沿折痕AE折叠,使点D落在点D′处,当△AD′B为等腰三角形时,则DE的长为或16﹣.【考点】翻折变换(折叠问题);等腰三角形的性质;矩形的性质.【分析】①当AD′=D′B=5时,过点D′作MN⊥AB于点N,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论;②当AB=D′B=8时,过点D′作MN⊥AB于点N,MN交CD于点M,设DE=a,则D′E=a.根据折叠的性质得到AD′=AD=5,根据勾股定理得到AN=,D′N=,根据相似三角形的性质即可得到结论.【解答】解:①当AD′=D′B=5时,过点D′作MN⊥AB于点N,MN交CD于点M,如图1所示.设DE=a,则D′E=a.∵将∠D沿折痕AE折叠,使点D落在点D′处,∴AN=DM=CD=AB=4,AD=AD′=5,由勾股定理可知:ND′==3,∴MD′=MN﹣ND′=AD﹣ND′=2,EM=DM﹣DE=4﹣a,∵ED′2=EM2+MD′2,即a2=(4﹣a)2+4,解得:a=;②当AB=D′B=8时,过点D′作MN⊥AB于点N,MN交CD于点M,如图2所示.设DE=a,则D′E=a.∵将∠D沿折痕AE折叠,使点D落在点D′处,∴AD′=AD=5,∴AD′2﹣AN2=BD′2﹣BN2,即52﹣AN2=82﹣(8﹣AN)2,∴AN=,∴BN=,∴D′N=,∵∠MED′+∠ED′M=∠ED′M+∠AD′N=90°,∴∠MED′=∠AD′N,∴△EMD′∽△AD′N,∴,即=,∴a=16﹣,∴当△AD′B为等腰三角形时,则DE的长为或16﹣.故答案为:或16﹣.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:(x+1﹣)÷,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.【考点】分式的化简求值.【分析】先根据分式的混合运算顺序化简原式,再从﹣<x<的范围内选取符合原式的x的值代入.【解答】解:原式=÷=•=x﹣1,在﹣<x<的范围内取x=0,得原式=﹣1.17.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交BA、DC 的延长线于点E、F,且AE=CF,连接DE、BF.(1)求证:△AOE≌△COF;(2)若∠ABD=30°,AB⊥AC.①当AE与AB的数量关系为AE=AB时,四边形BEDF是矩形;②当AE与AB的数量关系为3AE=AB时,四边形BEDF是菱形.【考点】四边形综合题.【分析】(1)直接利用平行四边形的性质,得出AO=CO,进而得出∠EAO=∠FCO,结合全等三角形的判定方法得出答案;(2)①利用矩形的判定方法,得出BD=EF,即可得出答案;②利用菱形的判定方法,结合勾股定理的逆定理,得出∠BOE=90°,即可得出答案.【解答】(1)证明:连接AC,∵四边形ABCD是平行四边形,∴AO=CO,BA∥DC,BO=DO,∴∠EAO=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(SAS);(2)解:①当AB=AE时,四边形BEDF是矩形;理由:∵△AOE≌△COF,∴EO=FO,又∵BO=DO,∴四边形BEDF是平行四边形,∵AB⊥AC,AB=AE,∴BO=EO,∴BD=EF,∴平行四边形BEDF是矩形;故答案为:AB=AE;②当AE与AB的数量关系为3AE=AB时,四边形BEDF是菱形,理由:∵∠ABD=30°,AB⊥AC,∴设AO=x,则AB=x,BO=2x,∵3AE=AB,∴AE=x,由AO=x,故EO=x,∵(x)2+(2x)2=(x+x)2,∴△BOE是直角三角形,即∠BOE=90°,∴平行四边形BEDF是菱形.故答案为:AB=3AE.18.近年来,各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15﹣65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A:没影响;B:影响不大;C:有影响,建议做无声运动,D:影响很大,建议取缔;E:不关心这个问题,将调查结果绘统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m=32,态度为C所对应的圆心角的度数为115.2°;(2)补全条形统计图;(3)若全区15﹣65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;(4)若在这次调查的市民中,从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是多少?【考点】概率公式;用样本估计总体;扇形统计图;条形统计图.【分析】(1)由扇形统计图可求得m的值;由态度为C的占32%,即可求得态度为C所对应的圆心角的度数;(2)首先求得25到35的人数,继而可补全条形统计图;(3)利用样本估计总体的方法,即可求得答案;(4)由题意,直接利用概率公式求解即可求得答案.【解答】解:(1)m=100﹣10﹣5﹣20﹣33=32;态度为C所对应的圆心角的度数为:32%×360=115.2°;故答案为:32,115.2°;(2)500×20%﹣15﹣35﹣20﹣5=25,补全条形统计图;(3)估计该地区对“广场舞”噪音干扰的态度为B的市民人数为:20×33%=6.6(万人);(4)从态度为A的市民中抽取一人的年龄恰好在年龄段15﹣35岁的概率是:=.19.如图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求铁架垂直管CE的长(结果精确到0.01米).【考点】解直角三角形的应用.【分析】过B作BF⊥AD于F.构建Rt△ABF中,根据三角函数的定义与三角函数值即可求出答案.然后根据BF的长可求出AF的长,再判定出四边形BFDC是矩形,可求出AD 与ED的长,再用CD的长减去ED的长即可解答.【解答】解:如图:过B作BF⊥AD于F.在Rt△ABF中,∵sin∠BAF=,∴BF=ABsin∠BAF=2.1sin40°≈1.350.∴真空管上端B到AD的距离约为1.35米.在Rt△ABF中,∵cos∠BAF=,∴AF=ABcos∠BAF=2.1cos40°≈1.609.∵BF⊥AD,CD⊥AD,又BC∥FD,∴四边形BFDC是矩形.∴BF=CD,BC=FD.在Rt△EAD中,∵tan∠EAD=,∴ED=ADtan∠EAD=1.809tan25°≈0.844.∴CE=CD﹣ED=1.350﹣0.844=0.506≈0.51∴安装铁架上垂直管CE的长约为0.51米.20.如图,反比例函数y=的图象与一次函数y=﹣x﹣1的图象的一个交点为A(﹣2,a).(1)求反比例函数的表达式;(2)请直接写出不等式>﹣x﹣1的解集;(3)若一次函数=﹣x﹣1与x轴交于点B,与y轴交于点C,点P是反比例函数y=图象上一点,且S△BOP=4S△OBC,求点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将x=﹣2代入一次函数解析式中求出a的值,根据点A的坐标利用反比例函数图象上点的坐标特征即可求出k值,从而得出结论;(2)联立一次函数与反比例函数解析式成方程组,解方程组求出两函数图象除点A外的另一点坐标,结合函数图象的上下位置关系以及两交点的横坐标即可得出不等式的解集;(3)根据一次函数的解析式求出点B、C的坐标,设点P的坐标为(m,﹣),根据三角形的面积公式结合S△BOP=4S△OBC,即可得出关于m的方程,解方程即可得出m的值,再将其代入点P的坐标即可得出结论.【解答】解:(1)∵点A(﹣2,a)在一次函数y=﹣x﹣1的图象上,∴a=﹣1×(﹣2)﹣1=1,∴点A(﹣2,1).∵点A(﹣2,1)在反比例函数y=的图象上,∴k=﹣2×1=﹣2,∴反比例函数的表达式为y=﹣.(2)联立一次函数与反比例函数解析式得:,解得:或,∴反比例函数与一次函数图象的另一个交点为(1,﹣2).观察函数图象可知:当﹣2<x<0或x>1时,反比例函数图象在一次函数图象的上方,∴不等式>﹣x﹣1的解集为﹣2<x<0或x>1.(3)令y=﹣x﹣1中x=0,则y=﹣1,∴点C(0,﹣1);令y=﹣x﹣1中x=0,则﹣x﹣1=0,解得:x=﹣1,∴点B(﹣1,0).设点P的坐标为(m,﹣),∵S△BOP=4S△OBC,∴BO•|y P|=4×OB•OC,即|﹣|=4,解得:m=±,∴点P的坐标为(,﹣4)或(﹣,4).21.植树造林不仅可以绿化和美化家园,同时还可以起到扩大山林资源,防止水土流失,保护农田,调节气候,促进经济发展等作用,是一项利国利民、造福子孙后代的宏伟工程,今年3月12日,某校某班计划购进A、B两种树苗共17棵,已知A种树苗每棵的单价比B 种树苗每棵的单价多20元.(1)若购进A种树苗花费了800元,购进B种树苗花费了420元,求A、B两种树苗每棵的单价各是多少元?(2)若购进A种树苗a棵,所需费用为w,求w与a的函数关系式;(3)若购进B中树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需的费用.【考点】一次函数的应用.【分析】(1)设B种树苗每棵x元,利用“购进A种树苗用去800元、B种树苗用去420元,购进A、B两种树苗共17棵”得出方程求出即可;(2)根据所需费用为W=A种树苗的费用+B种树苗的费用,即可解答;(3)根据购买B种树苗的数量少于A种树苗的数量,可找出方案.【解答】解:(1)设B种树苗每棵x元,根据题意,得+=17,解得x=60经检验:x=60是原方程的解.答:A种树苗每棵80元,B种树苗每棵60元;(2)购进a种树苗A棵,则购进B种树苗(17﹣a)棵根据题意得:W=80a+60(17﹣a)=20a+1020;(3)∵购买B种树苗的数量少于A中树苗的数量,∴17﹣a<a,解得:a>8.购进A、B两种树苗所需费用为W=20a+1020,因为A种树苗贵,则费用最省需x取最小整数9,此时17﹣a=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.22.已知Rt△ABC,AB=AC,∠BAC=90°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边作Rt△ADE,AD=AE,连接CE.(1)发现问题如图①,当点D在边BC上时,①请写出BD和CE之间的数量关系为相等,位置关系为垂直;②线段CE+CD=AC;(2)尝试探究如图②,当点D在边BC的延长线上且其他条件不变时,(1)中AC、CE、CD之间存在的数量关系是否成立?若成立,请证明;若不成立,请说明理由;(3)拓展延伸如图③,当点D在边CB的延长线上且其他条件不变时,若BC=4,CE=2,求线段CD的长.【考点】三角形综合题.【分析】(1)①根据AB=AC,∠BAC=90°,AD=AE,∠DAE=90°,证△BAD≌△CAF,推出CE=BD,CE⊥BD即可;②结论:CE+CE=AC.由△ABC是等腰直角三角形,得到BC=AC,BC=BD+CD,由此即可得出结论;(2)结论:CE=AC+CD,如图2中,先证明△BAD≌△CAE,推出BD=CE即可,再根据等腰直角三角形性质即可解决问题.(3)根据SAS证△BAD≌△CAE,推出CE=BD即可,由此即可解决问题.【解答】(1)证明:如图1中,①∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵AD=AE,∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE,∴BD=CE,∠ABC=∠ACE=45°,∴∠ECB=90°,∴BD⊥CE;②结论:CE+CE=AC.理由:由①得BD=CE,∴BC=AC,∵BC=BD+CD=CE+CD,∴CE+CD=AC;(2)解:如图2中,存在数量关系为:CE=AC+CD;理由:由(1)同理可得在△ABD与△ACE中,,∴△ABD≌△ACE,∴BD=CE,在等腰直角三角形ABC中,BC=AC,∴BD=BC+CD=AC+CD,∴CE=AC+CD;(3)解:由(1)同理在△ABD与△ACE中,,∴△ABD≌△ACE,∴BD=CE,∴CD=BC+BD=BC+CE.∵BC=4,CE=2,∴CD=6.23.如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)首先根据直线y=﹣x+3与x轴交于点C,与y轴交于点B,求出点B的坐标是(0,3),点C的坐标是(4,0);然后根据抛物线y=ax2+x+c经过B、C两点,求出a\c的值是多少,即可求出抛物线的解析式.(2)首先过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,然后设点E的坐标是(x,﹣x2+x+3),则点M的坐标是(x,﹣x+3),求出EM的值是多少;最后根据三角形的面积的求法,求出S△ABC,进而判断出当△BEC面积最大时,点E的坐标和△BEC面积的最大值各是多少即可.(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.然后分三种情况讨论,根据平行四边形的特征,求出使得以P、Q、A、M为顶点的四边形是平行四边形的点P的坐标是多少即可.【解答】解:(1)∵直线y=﹣x+3与x轴交于点C,与y轴交于点B,∴点B的坐标是(0,3),点C的坐标是(4,0),∵抛物线y=ax2+x+c经过B、C两点,∴解得∴y=﹣x2+x+3.(2)如图1,过点E作y轴的平行线EF交直线BC于点M,EF交x轴于点F,,∵点E是直线BC上方抛物线上的一动点,∴设点E的坐标是(x,﹣x2+x+3),则点M的坐标是(x,﹣x+3),∴EM=﹣x2+x+3﹣(﹣x+3)=﹣x2+x,∴S△BEC=S△BEM+S△MEC==×(﹣x2+x)×4=﹣x2+3x=﹣(x﹣2)2+3,∴当x=2时,即点E的坐标是(2,3)时,△BEC的面积最大,最大面积是3.(3)在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.①如图2,,由(2),可得点M的横坐标是2,∵点M在直线y=﹣x+3上,∴点M的坐标是(2,),又∵点A的坐标是(﹣2,0),∴AM==,∴AM所在的直线的斜率是:;∵y=﹣x2+x+3的对称轴是x=1,∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+3),则解得或,∵x<0,∴点P的坐标是(﹣3,﹣).②如图3,,由(2),可得点M的横坐标是2,∵点M在直线y=﹣x+3上,∴点M的坐标是(2,),又∵点A的坐标是(﹣2,0),∴AM==,∴AM所在的直线的斜率是:;∵y=﹣x2+x+3的对称轴是x=1,∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+3),则解得或,∵x>0,∴点P的坐标是(5,﹣).③如图4,,由(2),可得点M的横坐标是2,∵点M在直线y=﹣x+3上,∴点M的坐标是(2,),又∵点A的坐标是(﹣2,0),∴AM==,∵y=﹣x2+x+3的对称轴是x=1,∴设点Q的坐标是(1,m),点P的坐标是(x,﹣x2+x+3),则解得,∴点P的坐标是(﹣1,).综上,可得在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,点P的坐标是(﹣3,﹣)、(5,﹣)、(﹣1,).8月8日。
2013年河南省中考数学试卷及解析
2013年河南省中考数学试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的.1.(3分)﹣2的相反数是()A.﹣B.﹣2C.D.22.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)方程(x﹣2)(x+3)=0的解是()A.x=2B.x=﹣3C.x1=﹣2,x2=3D.x1=2,x2=﹣34.(3分)在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则8人体育成绩的中位数是()A.47B.48C.48.5D.495.(3分)如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字“2”相对的面上的数字是()A.1B.4C.5D.66.(3分)不等式组的最小整数解为()A.﹣1B.0C.1D.27.(3分)如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是()A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC8.(3分)在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1B.x>1C.x<﹣1D.x>﹣1二、填空题(每小题3分,满分21分)9.(3分)计算:|﹣3|﹣=.10.(3分)将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E落在AC边上,且ED∥BC,则∠CEF的度数为.11.(3分)化简:=.12.(3分)已知扇形的半径为4cm,圆心角为120°,则扇形的弧长为cm.13.(3分)现有四张完全相同的卡片,上面分别标有数字﹣1,﹣2,3,4.把卡片背面上洗匀,然后从中随机抽取两张,则这两张卡片上的数字之积为负数的概率是.14.(3分)如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为.15.(3分)如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B 沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.17.(9分)从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解”雾霾天气的主要原因“,随机调查了该市部分市民,并对调查结果进行整理.绘制了如下尚不完整的统计图表.组别观点频数(人数)80A大气气压低,空气不流动B地面灰尘大,空气湿度m低C汽车尾气排放nD工厂造成的污染120E其他60请根据图表中提供的信息解答下列问题:(1)填空:m=,n=.扇形统计图中E组所占的百分比为%;(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?18.(9分)如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为s时,四边形ACFE是菱形;②当t为s时,以A、F、C、E为顶点的四边形是直角梯形.19.(9分)我国南水北调中线工程的起点是丹江水库,按照工程计划,需对原水库大坝进行混凝土加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位.如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡坡底端水平方向增加的宽度AC(结果精确到0.1米.参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.50,).20.(9分)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.21.(10分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售,设购买x个A 品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.22.(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若=S△BDE,请直接写出相应的BF的长.在射线BA上存在点F,使S△DCF23.(11分)如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C、D两点,其中点C在y轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.2013年河南省中考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的.1.(3分)【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.【解答】解:﹣2的相反数是2,故选:D.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.(3分)考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、是中心对称图形,不是轴对称图形,故本选项错误;D、既是中心对称图形又是轴对称图形,故本选项正确.故选D.点评:本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)【考点】解一元二次方程-因式分解法。
2013河南中考数学
2013河南中考数学2013年河南中考数学卷一、选择题1. 下列运算中,与“47 ÷ (8 - 4) × 3”结果相等的是:A. 47 ÷ (8 × 4) + 3B. 47 ÷ 8 - 4 × 3C. 47 ÷ (8 - 4 × 3)D. 47 ÷ 8 - 4 + 32. 若 a + b = 3 ,ab = 1 ,则 ab + a/b 的值等于:A. 1B. 3C. 4D. 7/33. 在平行四边形中,如果两个对角线相等,则它还是一个矩形。
(判断对错)4. 请在下列形状中找出一个与其他不同的。
A.*********B.*************C.********D.*************5. 下面四分数中,哪个分数最接近于 0.64?A. 5/8B. 13/20C. 33/50D. 26/40二、填空题6. 如果对于某个直角三角形的一条直角边长为 3cm ,则它的斜边长为 __________ cm。
7. 等差数列 4,7,10,…,63 的第 10 项是__________ 。
8. 用 (x + 1)(2x - 3) 展开后合并同类项,得到的结果是 ______ x² + ______ x + ______。
9. 若已知正方形各边长为 a ,则它的周长是 ________,它的面积是 ________。
10. (1/2) ÷ (⅔) = __________。
三、解答题11. 将76 × 625 化为最简分数。
12. 从一个长度为 1m ,宽度为 0.8m 的绿地边沿向内作长 1m,宽 0.8m 的步行道,请计算所得步行道的面积。
13. 已知 AB 是长方形 ABCD 的一条边,BC 是 AB 的平分线,若 AB = 4cm ,求矩形 ABCD 的面积。
14. 平行四边形 ABCD ,已知 AB = 6cm ,高 AD =5cm ,求平行四边形的面积。
精编版-2013年河南新乡中考数学真题及答案
2013年河南新乡中考数学真题及答案注意事项:1. 本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上。
2. 答卷前将密封线内的项目填写清楚。
参考公式:二次函数图像2(0)y ax bx c a =++≠2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a --24(,)24b ac b a a --一、 选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
1、-2的相反数是【】(A )2 (B)2--2-- (C) 1212 (D)12-12- 【解析】根据相反数的定义可知:-2的相反数为2 【答案】A2、下列图形中,既是轴对称图形又是中心对称图形的是【】【解析】轴对称是指在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形。
中心对称图形是指平面内,如果把一个图形绕某个点旋转180°后,能与自身重合,那么就说这两个图形关于这个点成中心对称。
题号一 二 三 总分1~8 9~15 16 17 18 19 20 21 22 23结合定义可知,答案是D【答案】D3、方程(2)(3)0x x -+=(2)(3)0x x -+=的解是【】(A )2x =2x = (B )3x =-3x =- (C )122,3x x =-=122,3x x =-=(D )122,3x x ==-【解析】由题可知:20x -=20x -=或者30x +=,可以得到:122,3x x ==-【答案】D4、在一次体育测试中,小芳所在小组8个人的成绩分别是:46,47,48,48,49,49,49,50.则这8个人体育成绩的中位数是【】(A ) 47 (B )48 (C )48.5 (D )49【解析】中位数是将数据按照从小到大的顺序排列,其中间的一个数或中间两个数的平均数就是这组数的中位数。
河南省十所名校2013届高三考前仿真测试数学(文)试题.pdf
数学(文科) 本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上答题无效,考试结束后,将本试题卷和答题卡一并交回. 第Ⅰ卷 选择题 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数z=(i为虚数单位)的共轭复数所对应的点在 A.第一象限 B.第二象限 C.第三象限 D.第四象限 -3x≤0},N={x|y= ln(x-2)},则Venn图中阴影部分表示的集合是 A.[2,3] B.(2,3] C.[0,2] D.(2,+∞) 3.设x∈R,向量a=(2,x),b=(3,-2),且a⊥b, 则|a-b|= A.5 B. C.2 D.6 4.一个几何体的三视图如图所示,则这个几何体的体积为 A. B.16 C. D. 5.将函数f(x)=sin(2x+)的图象向右平移个单位 后得到函数y=g(x)的图象,则g(x)的单调递增区间为 A.[2kπ-,2kπ+] (k∈Z) B.[2kπ+,2kπ+] (k∈Z) C.[kπ-,kπ+] (k∈Z) D.[kπ+,kπ+] (k∈Z) 6.曲线y=lnx+x在点M(1,1)处的切线与坐标轴围成的三角形的面积是 A. B. C. D. A.k≥15? B.k≤16? C.k≤15? D.k≥16? 8.已知双曲线的离心率为3,有一个焦点与抛物线y=的焦点相同,那么双曲线的渐近线方程为 A.2x±y=0 B.x±2y=0 C.x±2y=0 D.2x±y=0 9.如图,半径为5cm的圆形纸板内有一个相同圆心的半径为1cm的小圆,现将半径为1cm 的一枚硬币抛到此纸板上,使整块硬币随机完全落在纸板内,则硬币与小圆无公共点的 概率为 A. B. C. D. ,AB⊥平面ACD,则四面体 ABCD外接球的表面积为 A.36π B.88π C.92π D.128π 11.设函数f(x)=2-2k(a>0且a≠1)在(-∞,+∞)上既是奇函数又是减函数,则g(x)=的图象是 12.若直线y=-nx+4n (n∈N)与两坐标轴所围成封闭区域内(不含坐标轴)的整点的个数为(其中整点是指横、纵坐标都是整数的点),则(a1+a3+a5+…+a2013)= A.1012 B.2012 C.3021 D.4001 第Ⅱ卷 非选择题 本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须作答.第22题-第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分. 13.如果实数x,y满足条件,那么目标函数z=2x-y的最小值为____________. 14.已知递增的等比数列{}(n∈N)满足b3+b5=40,b3·b5=256,则数列{}的前10项和=_______________. 15.在平面直角坐标系xOy中,圆C的方程为-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值为_________. 16.对于(m,n∈N,且m,n>2)可以按如下的方式进行“分解”,例如的“分解”中最小的数是1,最大的数是13.若的“分解”中最小的数是651,则m=___________. 三、解答题:解答应写出文字说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图(3)2013年河南中招数学考前押题试卷注意事项:1.本试卷共8页,三大题,满分120分,考试时间100分钟2.请用蓝、黑色钢笔或圆珠笔直接答在试卷上. 3.答卷前将密封线内的项目填写清楚.参考公式:二次函数2(0)y ax bx c a =++≠图象的顶点坐标为24(,)24b ac b a a--.一、选择题(每小题3分,共24分)1.下列各数中是负数的是 ( ) A .-(-1) B .(-1)-1 C .(-1)0 D .-|-1 |2.下面运算中,正确的是 ( )A .2223)23)(23(y x y x y x -=+- B .22832=- C .2x 5+2x 5=4x 10D .33632a a a =∙3.某射击小组有20人,教练根据他们某次射击的数据绘制成如 图所示的统计图,则这组数据的众数和中位数分别是( ) A .77, B .87.5, C .77.5, D .86.5,4.一次函数y=-2x-1的图象不经过 ( ) A .第一象限 B .第二象限C .第三象限D .第四象限5.将如图所示的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是()∙DCB AC BA5 题图6.如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于21AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( ) A .矩形 B .等腰梯形 C .菱形D .正方形7.如图,四边形ABCD 为矩形纸片,把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF ,若CD =6, 则AF 等于 ( )A .4 3B . 3 3C . 4 2D . 88.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠), 那么这个圆锥的高为( )A .6cmB .C .8cmD .cm二、填空题(每小题3分,共21分)92(5)0b +=,那么a b +的值为 . 10.如图,在平面四边形ABCD 中,CE AB ⊥,E 为垂足. 如果125A = ∠,则BCE =∠ 度11.若反比例函数xky =(k ≠0)的图象经过点A (4,-3),则k 的值为12.某志愿者小组有2名女生和3名男生,现从中任选1人去参加学校组织的“我为母校添光彩”志愿者活动,则选中女生的概率为 13. 如图,在矩形ABCD 中,AB=6,BC=8,点E 是BC 中点,点F 是边CD 上的任意一点,当△AEF 的周长最小时, 则DF 的长为A EBCDBACD19 题图14.如图,⊙O 是△ABC 的外接圆,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 交CE 于H 点,交⊙O 于N ,OM ⊥BC 于M ,BF 为⊙O 的直径,下列结论:①DN=DH;②四边形AHCF 为平行四边形;③BF=2FC ;④AH=2OM ,其中正确的有第14题图 第15题图15.已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 三、解答题(本大题共8个小题,满分75分)16.(8分)先化简:22211a a a a a a --⎛⎫-÷ ⎪+⎝⎭,然后从-2、-1、0、1、2中选择一个你喜欢的数代入求值.17.(9分)如图,已知点D 在ABC △的BC △边上,DE AC ∥交AB 于E ,DF AB ∥交AC 于F .(1)求证:AE DF =;(2)若AD 平分BAC ∠,试判断四边形AEDF 的形状,并说明理由.18.(9分)某市政园林绿化局要对甲、乙、丙、丁四个品种的树苗进行树苗成活率试验,从中选取成活率高的品种进行推广.通过试验得知丙种树苗的成活率为89.6%,以下是根据试验数据制成的统计图表的一部分.请你根据以上信息解答下列问题:(1)这次试验所用四个品种的树苗共 株; (2)将表1、图1和图2补充完整; (3)求这次试验的树苗成活率.试验用树苗中各品种树苗所占百分比统计图图1各品种树苗成活数统计图图219.(9分)如图,AE 是位于公路边的电线杆,为了使拉线CDE 不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD ,用于撑起拉线。
已知公路的宽AB 为8米,电线杆AE 的高为12米,水泥撑杆BD 高为6米,拉线CD 与水平线AC 的夹角为67.4°.求拉线CDE 的总长l (A 、B 、C 三点在同一直线上,电线杆、水泥杆的大小忽略不计)。
(参考数据:sin 67.4°≈1312,cos 67.4°≈135,,tan67.4°≈512)20.(9分)甲、乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲、乙 共同整理20分钟后,乙需再单独整理20分钟才能完工. (1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?21.(9分) .周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小 时20分钟后,妈妈驾车沿相同路线前往乙地,的路程y (km )与小明离家时间x (h )的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍. (1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远? (3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.)22.在锐角△ABC 中,AB =4,BC =5,∠ACB =45°,将△ABC 绕点B 按逆时针方向旋转,得到△A 1BC 1.(1)如图1,当点C 1在线段CA 的延长线上时,求∠CC 1A 1的度数; (2)如图2,连结AA 1,CC 1.若△ABA 1的面积为4,求△CBC 1的面积;(3)如图3,点E 为线段AB 中点,点P 是线段AC 上的动点,在△ABC 绕点B 按逆时针方向旋转过程中,点P 的对应点是点P 1,求线段EP 1长度的最大值与最小值.23.如图1,已知直线y =kx 与抛物线 交于点A (3,6). (1)求直线y =kx 的解析式和线段OA 的长度;(2)点P 为抛物线第一象限内的动点,过点P 作直线PM , 交x 轴于点M (点M 、O 不重合),交直线OA 于点Q ,再过点Q 作直线PM 的垂线,交y 轴于点N .试探究:线段QM 与线段QN 的长度之比是否为定值?如果是,求出这个定值,如果不是,说明理由; (3)如图2,若点B 为抛物线上对称轴右侧的点,点E 在线段OA 上(与点O 、A 不重 合),点D (m ,0)是x 轴正半轴上的动点,且满足∠BAE =∠BED =∠AOD . 继续探究:m 在什么范围时,符合条件的E 点的个数分别是1个、2个?数学试题参考答案一.选择题(每小题3分,共24分)1.D 2.B 3.C 4.A 5. D 6. C 7.A 8.B 二、填空题(每小题3分,共21分)9.-3 10.35 11.-12 12.5213. 2 14.①②④ 15. P(2,4)或P(3,4)或P(8,4) 三、解答题(本大题共8个小题,满分75分)16.解:原式=a 2-2a +1a ÷ 1-a 2a 2+a………………………………2分=(a -1)2a ·a (a +1)(1-a ) (a +1) …………………………4分=1-a …………………………………………………6分1,0±≠a ……………………7分3222742+-=x y A B C C 1A 1 图2 BAC A 1C 1 图1A 图31-2-1,2===∴原式时当a ……………………8分17.证明:(1)∵DE AC ∥,∴ADE DAF ∠=∠, ……………………………1分 同理DAE FDA ∠=∠. ……………………………2分 ∵AD DA =,∴ADE DAF △≌△, ……………………………3分 ∴AE DF =. ……………………………4分 (2)若AD 平分BAC ∠,四边形AEDF 是菱形.………………5分 ∵DE AC ∥,DF AB ∥,∴四边形AEDF 是平行四边形, ………………7分 ∵FAD EAD ∠=∠,∴AF DF =,∴平行四边形AEDF 为菱形. …………9分18.解:(1)500. ………………………………………………………2分(2)补全表1、图1和图2. …………………………………6分 (3)89.8%. ………………………………………9分 19..解:在Rt △DBC 中,sin ∠DCB=BDCD, 666.512sin sin 67.413BD CD DCB ∴====∠ (m ). ………………3分DF AE F ABDF ⊥作于,则四边形为矩形, ……………4分 8DF AB ∴==,6AF BD ==,EF=AE-AF=12-6=6, ……………5分10Rt EFD ED ∆在中,(m ). ……7分l =10+6.5=16.5(m ) ……………………8分 答:拉线CDE 的总长l 为16.5m .……………9分 20.解:(1)设乙单独整理x 分钟完工,根据题意得:解得x=80, ……………3分 经检验x=80是原分式方程的解. ……………4分 答:乙单独整理80分钟完工. ……………5分 (2)设甲整理y 分钟完工,根据题意,得解得:y≥25答:甲至少整理25分钟完工. ……………9分 21.解:(1)小明骑车速度:)/(205.010h km =在甲地游玩的时间是0.5(h )……3分 (2)妈妈驾车速度:20×3=60(km /h ) 设直线BC 解析式为y =20x +b 1,把点B (1,10)代入得b 1=-10 ∴y =20x -10 ……4分设直线DE 解析式为y =60x +b 2,把点D (34,0)代入得b 2=-80 ∴y =60x -80………………5分 ∴⎩⎨⎧-=-=8060,1020x y x y 解得⎩⎨⎧==2575.1y x ∴交点F (1.75,25).7分答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km . (3)方法一:设从家到乙地的路程为m (km ) 则点E (x 1,m ),点C (x 2,m )分别代入y =60x -80,y =20x -10 得:60801+=m x , 20102+=m x∵61601012==-x x ∴6160802010=+-+m m ∴m =30 .…10分方法二:设从妈妈追上小明的地点到乙地的路程为n (km ),由题意得:60106020=-n n ∴n =5 ∴从家到乙地的路程为5+25=30(km ) .…………………10分(其他解法酌情给分)22.解: (1)由旋转的性质可得∠A 1C 1B =∠ACB =45°,BC =BC 1∴∠CC 1B =∠C 1CB =45° ..……2分∴∠CC 1A 1=∠CC 1B +∠A 1C 1B =45°+45°=90° .……3分(2)∵△ABC ≌△A 1BC 1 ∴BA =BA 1,BC =BC 1,∠ABC =∠A 1BC 1∴ 11BC BA BCBA = ∠ABC +∠ABC 1=∠A 1BC 1+∠ABC 1∴∠ABA 1=∠CBC 1 ∴△ABA 1∽△CBC 1 .………5分 ∴2516542211=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=∆∆BC AB S S CBC ABA ∵41=∆ABA S ∴4251=∆CBC S …7分(3)过点B 作BD ⊥AC ,D 为垂足∵△ABC 为锐角三角形 ∴点D 在线段AC 上)在Rt △BCD 中,BD =BC ×sin45°=225……8分 (2)当P 在AC 上运动至垂足点D ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 上时,EP 1最小,最小值为225-2 …………9分 ② 当P 在AC 上运动至点C ,△ABC 绕点B 旋转,使点P 的对应点P 1在线段AB 的延长线上时,EP 1最大,最大值为2+5=7 .………………10分23.解:(1)把点A (3,6)代入y =kx 得6=3k ∴k =2 ∴y =2x .2分OA =536322=+ ..………………3分 (2)QNQM 是一个定值 ,理由如下:过点Q 作QG ⊥y 轴于点G ,QH ⊥x 轴于点H . ①当QH 与QM 重合时,显然QG 与QN 重合此时2tan =∠===AOM OHQH QGQH QNQM ;②当QH 与QM 不重合时,∵QN ⊥QM ,QG ⊥不妨设点H ,G 分别在x 、y 轴的正半轴上∴∠MQH =∠GQN 又∵∠QHM =∠QGN =90° ∴△QHM ∽△QGN …5分 ∴2tan =∠===AOM OHQH QGQH QNQM当点P 、Q 在抛物线和直线上不同位置时,同理可得 ………7分(3)延长AB 交x 轴于点F ,过点F 作FC ⊥OA 于点C ,过点A 作AR ⊥x 轴于点R∵∠AOD =∠BAE ∴AF =OF ∴OC =AC =21OA =523∵∠ARO =∠FCO =90° ∠AOR =∠FOC ∴△AOR ∽△FOC ∴5353===OR AO OC OF∴OF =2155523=⨯ ∴点F (215,0) 设点B (x ,3222742+-x ), 过点B 作BK ⊥AR 于点K ,则△AKB ∽△ARF∴AR AK FR BK = 即6)322274(635.732+--=--x x 解得x 1=6 ,x 2=3(舍去) ∴点B (6,2) ∴BK =6-3=3 AK =6-2=4 ∴AB =5 …8分 (求AB 也可采用下面的方法)设直线AF 为y =kx +b (k ≠0) 把点A (3,6),点F (215,0)代入得k =34-,b =10 ∴1034+-=x y ⎪⎪⎩⎪⎪⎨⎧+-=+-=322274,10342x y x y ∴⎩⎨⎧==6,311y x (舍去)⎩⎨⎧==2,622y x ∴B (6,2)∴AB =5 …8分(其它方法求出AB 的长酌情给分) 在△ABE 与△OED 中∵∠BAE =∠BED ∴∠ABE +∠AEB =∠DEO +∠AEB ∴∠ABE =∠DEO ∵∠BAE =∠EOD ∴△ABE ∽△OED .………………9分设OE =x ,则AE =53-x (530<<x ) 由△ABE ∽△OED 得OEOD ABAE =∴xm x =-553 ∴x x x x m 55351)53(512+-=-= (530<<x )…10分 ∴顶点为(523,49) 如图,当49=m 时,OE =x =523,此时E 点有1个;当490<<m 时,任取一个m 的值都对应着两个x 值,此时E 点有2个.∴当49=m 时,E 点只有1个 ……10分 当490<<m 时,E 点有2个 ……11分2=QNQM523xm 49O53。