光电检测技术知识点
物理光电效应知识点总结

物理光电效应知识点总结一、光电效应的概念光电效应是指当光照射到金属表面时,金属会发生电子的发射现象。
这种现象可以解释为光子能量被金属中的自由电子吸收,使其获得足够的能量跨越离子势垒并逃离金属表面。
二、光电效应的重要特点1. 光电效应与光的频率有关:根据光电效应的实验结果,只有当光的频率超过某个临界频率,才能引起光电效应。
这个临界频率与金属的性质有关,与光的强弱无关。
2. 光电效应与光的强度有关:光的强度增加会增加光电子的数量,但不会改变光电子的动能。
而光的频率增加会增加光电子的动能,但不会改变光电子的数量。
3. 光电效应是瞬时的:当光照射停止后,光电子发射也会立即停止。
这表明光电效应是一个瞬时的过程,没有时间延迟。
4. 光电效应不受金属温度影响:光电效应的发生与金属的温度无关,只与光的频率和强度有关。
三、光电效应的实验现象1. 光电流的产生:当金属表面照射到光时,金属表面会产生电流。
光电流的大小与光的频率和强度有关。
2. 光电子的动能:光电子的动能与光的频率有关,与光的强度无关。
光的频率越高,光电子的动能越大。
3. 光电子的发射角度:根据实验结果,光电子的发射角度与光的入射角度相等。
四、光电效应的解释根据光电效应的实验结果,爱因斯坦提出了光量子假设,即光是由一些能量确定的量子(光子)组成的。
光电效应可以用光子与金属中的电子发生相互作用的过程来解释。
当光照射到金属表面时,光子与金属中的电子发生碰撞,将能量传递给电子。
当电子吸收到足够的能量时,就能跨越离子势垒并逃离金属表面,形成光电子。
五、光电效应的应用1. 光电池:利用光电效应的原理,将光能转化为电能的装置。
光电池广泛应用于太阳能电池板、光电传感器等领域。
2. 光电二极管:光电二极管是一种利用光电效应工作的电子器件,用于将光信号转化为电信号。
3. 光电倍增管:光电倍增管是一种利用光电效应放大光信号的器件,常用于低光强信号的检测和放大。
光电效应作为光的粒子性质的重要实验证据,对于理解光的本质和光与物质相互作用的机制具有重要意义。
信息光学一些知识点总结

信息光学一些知识点总结信息光学的基础原理1. 光学基础知识在信息光学中,光学基础知识是非常重要的,它涉及到了光的产生、传播、反射、折射、干涉、衍射等方面的知识。
光是一种电磁波,它具有波粒二象性,既可以表现出波的干涉和衍射现象,也可以表现出粒子的光电效应。
这些特性对于信息光学的应用至关重要,比如在信息传输和光学成像中,都需要利用光的波动特性来实现。
2. 光学成像光学成像是信息光学中一个重要的话题,它主要探讨了光学成像系统的原理和性能。
在信息光学中,光学成像主要有两种方式:几何光学成像和波动光学成像。
几何光学成像主要研究物体和像的位置关系,而波动光学成像则研究了光的干涉和衍射现象对成像质量的影响。
同时,信息光学中的成像系统还包括了透镜、镜面、成像光学系统等重要的光学元件,它们在成像过程中起着重要的作用。
3. 光学通信光学通信是信息光学中的一个重要应用领域,它利用光作为信息传输的介质,通过调制、调制、传输、解调等方式来实现信息的传输。
光通信系统由光源、调制器、传输介质、接收器等部分组成,其中每个部分都有其特定的原理和技术。
光通信系统具有传输速率高、传输距离远、抗干扰能力强等优势,因此在现代通信中得到了广泛的应用。
信息光学的技术应用1. 光学图像处理光学图像处理是信息光学中的一个重要应用技术,它主要涉及图像采集、图像预处理、图像特征提取、图像分割、图像识别等领域。
光学图像处理可以通过数字图像处理、光学成像等技术手段来对图像进行分析和处理,以实现对图像信息的获取和利用。
光学图像处理在医学影像诊断、遥感图像分析、生物医学图像处理等方面具有重要的应用价值。
2. 光学成像技术光学成像技术是信息光学中的一个重要应用领域,它主要包括摄影成像、医学成像、遥感成像、工业检测成像等方面。
光学成像技术利用透镜、镜面等光学元件,将物体的光学信息转化成图像,以实现对物体的观察和分析。
光学成像技术在现代科学技术和生活中得到了广泛的应用,比如摄影、医学诊断、遥感探测等方面。
光模块知识点总结

光模块知识点总结光模块是一种集成光学器件和电子器件的新型器件,其应用领域涉及通信、传感、医疗、工业等多个领域。
随着光纤通信技术和激光器技术的发展,光模块有着越来越广泛的应用需求。
本文将围绕光模块的应用、结构、工作原理等方面进行详细的介绍和总结。
一、光模块的应用光模块在通信、传感、医疗、工业等领域有广泛的应用。
在通信领域,光模块主要用于光纤通信系统中的光传输和接收。
在传感领域,光模块可以实现高精度的光电传感,用于测量光信号的强度、频率、相位等信息。
在医疗领域,光模块可以用于激光手术、光学诊断等应用。
在工业领域,光模块可以用于激光加工、光学检测等领域。
可以说,光模块在现代科技领域中有着重要的应用价值。
二、光模块的结构光模块由光学器件和电子器件组成,其中光学器件包括激光器、光电探测器、光纤耦合器、滤波器等,电子器件包括电路驱动、信号处理等。
激光器产生光信号,光电探测器接收光信号,光纤耦合器实现激光器与光纤的耦合,滤波器用于光信号的滤波,电路驱动用于控制激光器的工作,信号处理用于处理光电探测器接收到的信号。
光模块的结构复杂,需要加工、组装和调试等多个环节才能完成一套成品。
三、光模块的工作原理光模块的工作原理主要包括激光器的工作原理、光电探测器的工作原理和光纤传输的工作原理。
激光器是利用激光共振器发射激光,光电探测器是利用半导体材料的光电效应将光信号转换为电信号,光纤传输是利用光纤的全反射特性将光信号传输到远处。
光模块的工作原理在这三个方面都有着严密的理论基础,是光模块能够正常工作的基础。
四、光模块的发展趋势随着光通信和激光器技术的不断发展,光模块也在不断的改进和升级。
未来光模块的发展趋势主要包括以下几个方面:一是器件集成化,即将多个器件集成到一个芯片中,实现器件的微型化和集成化;二是器件多功能化,即实现一个器件可以实现多个功能,如同时具备激光发射和光电探测功能;三是材料先进化,即采用新型材料来提高器件的性能和稳定性;四是工艺精密化,即加工和制造技术的不断改进,实现器件的精密加工和高质量制造。
大学光学知识点总结大全

大学光学知识点总结大全光学是物理学的一个重要分支,研究光的产生、传播、与物质相互作用以及光现象的一系列规律。
关于光学的知识点非常广泛,涉及光的基本特性、光学仪器、光的应用等方面。
本文将从光的基本特性、光的传播、光的干涉与衍射、光的偏振、光的成像、光学仪器、光的应用等方面进行详细的总结。
一、光的基本特性1. 光的波动特性:光同时具有波动特性和粒子特性。
根据光波动特性的性质,可以解释如折射、衍射和干涉等现象。
2. 光的粒子特性:光的粒子特性主要体现在光子的能量、动量、频率、波长等方面。
从光的粒子特性可以解释光的能量转换和光与物质相互作用的规律。
3. 光的速度:光在真空中的速度为光速(c),约为3×10^8 m/s。
在介质中,由于光的波长缩短,其传播速度降低,为c/n,其中n为介质的折射率。
4. 光的色散:光的色散是指不同波长的光在线性介质中传播时速度不同的现象。
色散性引起了折射角的变化,并且使白光在经过三棱镜时分解成不同波长的光谱。
5. 光的吸收和衰减:光在穿透物质时会发生吸收和衰减,吸收是指光被介质所吸收,而衰减是指光的强度随着传播距离的增加而减弱。
6. 光的干涉与衍射:干涉是指来自同一波源的两个或多个波相互叠加时产生的明暗条纹,衍射是指光在通过物体边缘或小孔时发生的方向变化和光斑的扩散现象。
7. 光的偏振:光的偏振是指光振动方向的特性,振动方向不固定的光称为非偏振光,振动方向固定的光称为偏振光。
8. 光的成像和光学成像:成像是指通过光学系统使物体的像的位置、大小和形状与物体本身的相应特性相近似的过程。
9. 光的量子理论:光的量子理论是指根据光的波粒二象性,通过量子力学理论解释光现象的理论。
二、光的传播1. 几何光学:几何光学是光学中的一种理论,主要用于解释光的传播途径和成像原理。
它认为光的传播和成像过程可以被简化为直线传播,并且利用几何方法进行描述。
2. 波动光学:波动光学是一种用波动理论描述光的传播和作用的光学理论。
光传输知识点总结

光传输知识点总结一、光传输的基本原理光传输是利用光作为信息传输的一种通信技术。
光传输的基本原理是利用光电器件将电信号转换成光信号,经过光纤进行传输,然后再利用光电器件将光信号转换成电信号。
光传输的基本原理主要包括以下几个方面:1. 光电转换光电转换是通过光电器件将电信号转换成光信号或将光信号转换成电信号。
常见的光电器件有光电二极管(PD)、光电探测器(photodetector)等。
当电信号接入光电二极管时,光电二极管会将电信号转换成光信号输出;当光信号照射到光电探测器上时,光电探测器会将光信号转换成电信号输出。
2. 光纤传输光纤传输是利用光纤对光信号进行传输。
光纤是一种非常细长的光导纤维,可以将光信号进行传输。
光纤通常由芯、包层和包覆层组成。
其中,芯的折射率高于包层,可以使光信号在光纤内部发生全反射而不发生漏光。
光纤传输可以实现长距离传输和高速传输,是光传输技术的重要组成部分。
3. 光电转换光电转换是通过光电器件将电信号转换成光信号或将光信号转换成电信号。
常见的光电器件有光电二极管(PD)、光电探测器(photodetector)等。
当电信号接入光电二极管时,光电二极管会将电信号转换成光信号输出;当光信号照射到光电探测器上时,光电探测器会将光信号转换成电信号输出。
二、光纤通信系统光纤通信系统是利用光纤进行信号传输的通信系统。
光纤通信系统主要包括光发射器、光接收器、光纤传输线路等组成部分。
光发射器是将电信号转换成光信号的设备,光接收器是将光信号转换成电信号的设备。
光纤传输线路则是用来实现光信号传输的通信介质。
光纤通信系统的主要特点包括传输速度快、传输损耗小、传输距离远、抗干扰能力强等优点。
因此,光纤通信系统已经广泛应用于长距离电话通信、光纤网络通信、钻井平台通信等领域。
三、光模式光模式是指光信号在光纤中的传输模式。
光信号可以按照其在光纤中的传输方式分为多种光模式。
光纤通信系统中,常见的光模式包括单模光和多模光。
大物知识点总结光学

大物知识点总结光学一、光的基本性质1.光的波动性质光的波动性质主要表现在光的干涉和衍射现象中。
干涉是指两个或多个光线相互叠加所产生的明暗条纹现象,其基本原理是光波的叠加。
衍射是指光线经过狭缝或物体边缘时发生偏斜或弯曲,其基本原理是光波的振幅和相位的变化。
2.光的粒子性质光的粒子性质主要表现在光电效应和光的能量量子化中。
光电效应是指当光线照射到金属表面时,会使金属表面产生电子的发射现象,其基本原理是光子与金属表面上的自由电子相互作用。
光的能量量子化是指光的能量在空间中以粒子的形式传播,其基本原理是光的能量和频率之间存在着固定的关系。
3.光的电磁波性质光的电磁波性质主要表现在光的波长和频率之间的关系上。
光的波长是指光波在空间中一个完整周期所占据的长度,其单位为纳米。
光的频率是指光波每秒钟振动的次数,其单位为赫兹。
二、光的传播方式1.直线传播在均匀介质中,光线会沿着直线传播,光的传播速度与介质的折射率有关。
2.曲线传播在非均匀介质或边界表面附近,光线可能会出现折射或反射现象,导致光线的传播路径出现弯曲。
3.全反射当光线从光密介质射向光疏介质时,若入射角大于临界角,则光线将全部反射回光密介质内,不会产生折射现象。
三、光的干涉和衍射现象1.光的干涉光的干涉是指两个或多个光波相互叠加所产生的明暗条纹现象,分为单缝干涉、双缝干涉以及多缝干涉。
2.光的衍射光的衍射是指光波经过狭缝或物体边缘时发生偏斜或弯曲,产生的衍射图样有一定的规律,分为单缝衍射、双缝衍射以及光栅衍射。
四、光的折射和反射规律1.折射规律折射规律是指光线从一种介质射向另一种介质时,入射角、折射角和介质的折射率之间的定量关系,由斯涅尔定律所描述。
2.反射规律反射规律是指光线从一个介质射向边界表面时,入射角和反射角之间的定量关系,由反射面法线和入射角所在平面共同决定。
五、光的成像原理1.像的位置像的位置是指通过光学系统所成像的物体在图像平面上所对应的位置,由物距、像距和焦距之间的定量关系所决定。
浅谈《光电检测技术》课程的课堂教学

科, 其特点是应用性较强 , 涉及 的内容较 多, 如何在 有 限的学 时 内, 过该课 程 的学 习 , 通 培养学 生熟 练设 计各种 光 电检测 系统 的能力 , 对教 师提 出 了挑 战 。 这
该课程 一般通 过理 论教 学 和实验 教学 两个 环节完 成
系 。光 电检 测技 术 是 一 门应 用 性很 强 的学科 , 且 而
涉 及 到光 、 、 械 、 电 机 自动 控 制等 许 多领 域 。在讲 解 了每个 知识 点之 后 , 须 完整 地 介 绍光 电检测 系 统 必
设计实例。通过一些典型的检测系统实例 的讲解,
第l 8期
张 卫纯 等 : 谈 《 电检测 技术 》 程 的课 堂教 学 浅 光 课
输、 商业等领域 的应用。莫尔条纹测长、 测角技术 , 可以扩充介绍莫 尔条纹 图像编码加密技术等。总 之, 不断地将科技工作者们 的最新相关科研成果融 合在教学过程之中, 可以拓宽学生的视野, 增加他们 的知识面和提高他们 的学习兴趣 。 第三 , 处理好知识点与整个检 测系统之间的关
件时 , 需要 重点 探讨 各种 器件 的性能 区别 。另外 , 要
考虑 专业特 点 与课 程设 置情 况 , 某些 知识 点 可 以 对 采用专 题 讨 论 的 方 式 , 大 家 自 己来 总结 与分 析 。 让 如采用 何种 措施 保 证光 源 的稳定 性 , 何对 干 涉 条 如 纹 进行 细分 , 如何 运 用 调 制盘 来 实 现各 种检 测 目的
堂教学与课外实践创新 活动 紧密联 系起来 , 可以取得较好的教学效果 。
关键 词 : 光电检测技术 ; 教学体会 ; 考核方式
光电效应知识点高二

光电效应知识点高二光电效应是指当光照射到金属或半导体材料表面时,光子的能量足够大时,会促使金属或半导体材料中的电子从原子中释放出来,形成光电子的现象。
光电效应的研究与应用在现代物理学和光电子技术领域起着重要作用。
本文将从光电效应的基本原理、光电效应的实验现象以及光电效应在实际应用中的重要性等方面进行阐述。
一、光电效应的基本原理光电效应的基本原理是根据爱因斯坦的光量子假设,即光的能量以粒子形式存在。
当光照射到金属表面时,光子与金属中的自由电子发生相互作用,光子的能量转移给了自由电子,当光子的能量足够大时,超过了金属内自由电子的束缚能,自由电子便能从金属中解离出来,形成电子-光子的转换。
二、光电效应的实验现象1. 光电流的产生:当光照射到金属或半导体表面时,如果光的频率大于一定的频率门槛(临界频率),就能够引起光电效应,此时会有电子被释放出来,并形成光电流。
2. 光电子动能与光的频率关系:根据光电效应实验的结果,可以发现光电子的动能与照射光的频率有关,光的频率越高,光电子的动能越大。
三、光电效应的重要性及应用1. 光电效应在太阳能电池中的应用:太阳能电池利用光电效应将太阳的光能转化为电能,使之成为一种可再生的能源。
通过光电效应,太阳能电池可以将光子的能量转化为电子的动能,形成电流,从而供给给电子设备使用。
2. 光电效应在照相机中的应用:照相机中的底片或光敏电子元件利用光电效应来接收光信号,将光线折射成影像,实现照片的拍摄和成像。
3. 光电效应在光电子器件中的应用:光电子器件,如光电二极管、光电三极管等,都是基于光电效应设计和制造的。
这些器件可以将光信号转化为电信号或者电信号转化为光信号,用于光通信、光电检测等领域。
4. 光电效应在纳米材料研究中的应用:光电效应被广泛运用于纳米技术和材料科学领域。
通过光电效应,可以研究和改进纳米材料的光电特性,以便在纳米材料的设计与应用中取得更好的效果。
综上所述,光电效应是一种重要的物理现象,其研究和应用在现代科学和技术领域具有重要的地位和作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、光电效应应按部位不同分为光电效应和外光电效应,光电效应包括〔光电导〕和〔光生伏特效应〕。
2、真空光电器件是一种基于〔外光电〕效应的器件,它包括〔光电管〕和〔光电倍增管〕。
构造特点是有一个真空管,其他元件都放在真空管中3、光电导器件是基于半导体材料的〔光电导〕效应制成的,最典型的光电导器件是〔光敏电阻〕。
4、硅光电二极管在反偏置条件下的工作模式为〔光电导〕,在零偏置条件下的工作模式为〔光生伏特模式〕。
5、变象管是一种能把各种〔不可见〕辐射图像转换成为可见光图像的真空光电成像器件。
6、固体成像器件〔CCD〕主要有两大类,一类是电荷耦合器件〔CCD〕,另一类是〔SSPD〕。
CCD电荷转移通道主要有:一是SCCD〔外表沟道电荷耦合器件〕是电荷包存储在半导体与绝缘体之间的界面,并沿界面传输;二是BCCD称为体沟道或埋沟道电荷耦合器件,电荷包存储在离半导体外表一定深度的体,并沿着半导体一定方向传输7、光电技术室〔光子技术〕和〔电子技术〕相结合而形成的一门技术。
8、场致发光有〔粉末、薄膜和结型三种形态。
9、常用的光电阴极有正电子亲合势光电阴极〔PEA〕和负电子亲合势光电阴极〔NEA〕,正电子亲和势材料光电阴极有哪些〔Ag-O-Cs,单碱锑化物,多碱锑化物〕。
10、根据衬底材料的不同,硅光电二极管可分为〔2DU〕型和〔2CU〕型两种。
11、像增强器是一种能把微弱图像增强到可以使人眼直接观察的真空光电成像器件,因此也称为〔微光管〕。
12、光导纤维简称光纤,光纤有〔纤芯〕、〔包层〕及〔外套〕组成。
13、光源按光波在时间,空间上的相位特征可分为〔相干〕和〔非相干〕光源。
14、光纤的色散有材料色散、〔波导色散〕和〔多模色散〕。
15、光纤面板按传像性能分为〔普通OFP〕、〔变放大率的锥形OFP〕和〔传递倒像的扭像器〕。
16、光纤的数值孔径表达式为,它是光纤的一个根本参数、它反映了光纤的〔集光〕能力,决定了能被传播的光束的半孔径角17、真空光电器件是基于〔外光电〕效应的光电探测器,他的构造特点是有一个〔真空管〕,其他元件都置于〔真空管〕。
18、根据衬底材料的不同,硅光电电池可分为2DR〔以P型硅作基底〕型和〔2CR〕型两种。
19、根据衬底材料的不同,硅光点二、三级管可分为2CU和2DU、3CU和3DU20、为了从数量上描述人眼对各种波长辐射能的相对敏感度,引入视见函数V〔f〕, 视见函数有〔明视见函数〕和〔暗视见函数〕。
21、PMT由哪几局部组成?入射窗口D、光子阴极、电子光学系统、电子倍增系统和光电阳极。
22、电子光学系统的作用是:〔1〕是光阳极发射的光电子尽可能全部会聚到第一倍增级上,而将其他部的杂散热电子散射掉,提高信噪比。
〔2〕使阴极面上各处发射的光电子在电子学系统的中渡越时间尽可能相等23、P MT的工作原理1.光子透过入射窗口入射在光电阴极K上2.光电阴极K受光照激发,外表发射光电子3.光电子被电子光学系统加速和聚焦后入射到第一倍增极D1上,将发射出比入射电子数更多的二次电子。
入射电子经N级倍增后,光电子数就放大N次. 4.经过倍增后的二次电子由阳极P收集起来,形成阳极光电流Ip,在负载RL上产生信号电压0。
22、PMT的倍增极构造有几种形式个有什么特点?〔1〕鼠笼式:特点构造紧凑,时间响应快。
〔2〕盒栅式:特点光电子收集率高,均匀性和稳定性较好,但时间响应稍慢些。
〔4〕百叶窗式,特点:管子均匀性好,输出电流大并且稳定,响应时间较慢。
〔5〕近贴栅网式,特点:极好的均匀性和脉冲线性,抗磁场影响能力强。
〔6〕微通道板式,特点:响应速度快,抗磁场干扰能力强,线性好23、什么是二次电子?并说明二次电子发射过程的三个阶段是什么?光电子发射过程的三步骤?答:当具有足够动能的电子轰击倍增极材料时,倍增极外表将发射新的电子。
称入射的电子为一次电子,从倍增极外表发射的电子为二次电子。
二次电子发射3阶段:〔1〕材料吸收一次电子的能量,激发体电子到高能态,这些受激电子称为二次电子。
〔2〕二次电子中初速指向外表的那局部像外表运动。
〔3〕到达界面的二次电子能量大于外表垒的电子发射到真空中成为二次电子。
光电子发射过程的三步骤:(1) 物体吸收光子后体的电子被激发到高能态;(2) 被激发电子向外表运动,在运动中因碰撞损失局部能量;(3) 克制外表势垒逸出金属外表。
24、简述Si-PIN光电二极管的构造特点,并说明Si-PIN管的频率特性为什么比普通光电二极管好?p6925、简述常用像增强器的类型?并指出什么是第一、第二和第三代像增强器,第四代像增强器在在第三代根底上突破的两个技术是什么?p130答:1)类型:级联式像增强器、第2代像增强器〔微通道板像增强器〕、第3代像增强器、*射线像增强器。
2〕级联式像增强器由几个分立的单极变像管组合成属于第一代像增强器;微通道板像增强器属于第三代像增强器;第二代像增强其的微通道板构造配以负电子亲和势光电阴极构成第三代像增强器。
3〕突破技术:一是管子采用新材料制成的寿命高、高增益、低噪声的无膜MCD;二是NEA光电阴极采用的自动控制门电流,有利于减小强光下到达MCD的电子流,以降低强光下列图像模糊效应。
26、什么是光电子技术"光电子技术以什么为特征?光电子技术是:光子技术与电子技术相结合而形成的一门技术。
主要研究光与物质中的电子相互作用及其能量相互转换的相关技术。
以光源激光化、传输光纤化、手段电子化、现代电子学中的理论模式和电子学处理方法光学化为特征:是一门新兴的综合性穿插学科。
27、光源的光谱功率分为哪几种情况?画出每种情况对应的分布图?分为:线状光谱〔有假设干条明显分割的西线组成〕、带状光谱(由一些分开的谱带组成,没个谱袋中包含许多连续谱线)、连续光谱〔光源发出的谱线连成一片〕、混合光谱〔前三种谱线混合而成〕28、荧光屏外表蒸镀铝膜的作用是:引走荧光屏上积累的电荷,同时防止光反应,增加发射光的输出。
29、从传输模式角度考虑,光纤分为:多模光纤和单模光纤。
根据折射率变化规律分为阶跃型和梯度型31、什么是负电子亲和势光电阴极?具有哪些优点?NEA是指:将半导体外表做处理是外表区域能弯曲,真空能级降到导带之下,从而使有效地电子亲和势能变为负值。
优点:1)量子率高;2〕光谱响应率均匀,且光谱响应延伸到红外。
3〕热电子发射小;4〕光子的能量集中32、什么是‘胖0’电荷?什么是‘胖0’工作模式?引入‘胖0’电荷的优缺点?"胖0〞电荷的引入:降低了势阱的深度;减小了信号电荷的最大存储量;降低了CCD的动态围;增大了器件的转移噪声。
P15836、CCD有哪几局部组成,并说明每局部的作用?为什么说CCD是非稳态器件?CCD 能否工作,其电极间距为?p1471)电耦合器件组成:信号输入局部、电荷转移局部、信号输出局部。
信号输入局部作用:将信号电荷引入到CCD的第一个转移栅下的势阱中;电荷转移局部作用:将重复频率一样、波形一样并且彼此间有固定相位关系的多相时钟脉冲分组依次加到CCD转移局部的电极上,是电极按一定规律变化,从而在半导体外表形成一系列分布不对陷阱;信号输出局部作用:讲CCD最后一个转移栅下势阱中的信号电荷引出2〕CCD是利用在电极下SiO2-半导体界面形成的深耗尽层进展工作的,所以属于非稳态器件3〕CCD能否成功工作首先取决于金属电极排列,需找金属栅极间的最正确间隙宽度,一般小于3um37、对于CCD来说电荷注入方式有电注入和光注入,什么是电注入?什么是光注入?p147,148电注入:主要由输入二极管Id和输入栅Ig组成。
可以将信号电压转换为势阱中等效电荷,即给输入栅施加适应的电压,在其下面道题外表形成一个耗尽层。
在滤波、延迟线和存储器应用情况下用电注入。
光注入:摄像器件采取的唯一注入方法。
〔P148〕光注入过程如下:摄像时光照射到光敏面上,光子被敏元吸收产生电子一空穴对,多数载流子进入耗尽区以外的的衬底,然后通过接地消失,少数载流子便被收集到势阱中成为信号电荷。
当输入栅开启后,第一个转移栅上加以时钟电压时,这些代表光信号的少数载流子就会进入到转移栅的势阱中,完成注入过程。
38、画出ZnCdTe靶的构造图,并说明每层的作用?p138第1层:ZnSe层属于N型半导体,厚50~100nm;无光电效应,其作用是增强对短波光的吸收,提高整个可见光区的灵敏度。
另外它也阻止光生空穴向成象面一边扩散,有提高灵敏度,减小暗电流的作用;第2层:碲化锌和碲化镉的固溶体〔Zn*Cd1-*Te〕,属于P型半导体,厚3~5μm;光电效应主要发生在该层,*值的大小对灵敏度、暗电流和光谱特性都有较大的影响,*值小,灵敏度高,体暗电流增大,光谱特性的峰值波长向长波方面移动;第3层:无定形三硫化二锑Sb2S3,厚100nm;其作用是减小扫描电子束的电子注入效应,减小暗电流和惰性第1层与第2层之间形成异质结;第2层与第3层之间不形成结。
39、画出CdSe靶的构造图,并说明每层的作用?p138第1层:沉积在玻璃板上的透明的导电层SnO2,作信号电极,属N+;第2层:是N型CdSe层,它与N+型层SnO2构成对空穴的阻挡层;CdSe层是异质结CdSe 靶的基体,厚2微米;是完成光电转换的光敏层,其禁带宽度为1.7eV,具有良好的光电导特性;第3层:亚硒酸镉(CdSeO3)层是由CdSe 氧化而成,是一层绝缘体,有利于降低暗电流,但不影响光电灵敏度;第4层:As2S3层是靶的扫描面,是在高空状态下气湘沉积而成,呈玻璃态,厚0.2微米;是一个高阻层,禁带宽度为2.3eV,具有很高的电阻率。
其作用是防止电子进入靶,形成对电子的阻挡层,并且承当电荷的积累和储存。
40、什么是MCP?简述微通道板〔MCP〕的工作原理?p130微通道板是由成千上万根直径为15~40μm、长度为0.6~1.6mm的微通道排成的二维列阵,简称MCP。
微通道板〔MCP〕的工作原理:微通道是一根根的玻璃管,壁镀有高阻值二次发射材料,具有电阻梯度,施加高电压后,壁出现电位梯度,光电阴极发出的一次电子轰击微通道的一端,发射出的二次电子因电场加速轰击另一端,再发射二次电子,连续发射二次可得约10的四次方的增益。
41、什么是微通道板〔MCP〕的自饱和效应?二代像增强器利用该效应解决了什么问题?p130在近聚焦式的MCP位增益中,光电阴极和第一微通道板的间距约为0.3mm,级间电压为150V,第二微通道板和阴极的间距为1.5mm,级间电压为300V,外加偏置电压的变化只改变微通道板上的电压,可以调节总增益第二代像增强器利用它代替电子光学系统,实现电子图像的增强。
在第二代增强器中光电阴极的光电在电场作用下,进入微通道板输入端,经MCP电子倍增加速后到达荧光屏上,输出光学图像。