高考物理曲线运动万有引力知识点

合集下载

高考物理复习曲线运动和万有引力必背公式

高考物理复习曲线运动和万有引力必背公式

2019高考物理复习曲线运动和万有引力必背公式运动的合成与分解按平行四边形法则进行。

以下是查字典物理网整理的曲线运动和万有引力必背公式,请考生牢记学习。

1)平抛运动1.水平方向速度:Vx=V o2.竖直方向速度:Vy=gt3.水平方向位移:x=V ot4.竖直方向位移:y=gt2/25.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)6.合速度Vt=(Vx2+Vy2)1/2=[V o2+(gt)2]1/2合速度方向与水平夹角:tg=Vy/Vx=gt/V07.合位移:s=(x2+y2)1/2,位移方向与水平夹角:tg=y/x=gt/2V o8.水平方向加速度:ax=0;竖直方向加速度:ay=g注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;(2)运动时间由下落高度h(y)决定与水平抛出速度无关;(3)与的关系为tg=2tg(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动1.线速度V=s/t=2r/T2.角速度=/t=2f3.向心加速度a=V2/r=2r=(2/T)2r4.向心力F心=mV2/r=m2r=mr(2/T)2=mv=F合5.周期与频率:T=1/f6.角速度与线速度的关系:V=r7.角速度与转速的关系=2n(此处频率与转速意义相同)8.主要物理量及单位:弧长(s):(m);角度():弧度(rad);频率(f);赫(Hz);周期(T):秒(s);转速(n);r/s;半径(r):米(m);线速度(V):m/s;角速度():rad/s;向心加速度:m/s2。

注:(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变.3)万有引力1.开普勒第三定律:T2/R3=K(=42/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2(G=6.6710-11N?m2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)}4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;=(GM/r3)1/2;T=2(r3/GM)1/2{M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/(r地+h)2=m42(r地+h)/T2{h36000km,h:距地球表面的高度,r地:地球的半径}注:(1)天体运动所需的向心力由万有引力提供,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

2023届高考物理三轮重点题型2万有引力与曲线运动

2023届高考物理三轮重点题型2万有引力与曲线运动

高考三轮:重点题型--万有引力与曲线运动(2)❶万有应力的应用:万有引力定律、天体问题、双星问题、宇宙速度、同步卫星❷曲线运动的综合应用:平抛运动、匀速圆周运动、曲线运动中的能量与动量问题1我国已成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星)。

该卫星()A.入轨后可以位于北京正上方B.入轨后的速度大于第一宇宙速度C.发射速度大于第二宇宙速度D.若发射到近地圆轨道所需能量较少解析D 同步卫星只能位于赤道正上方,A 错误;由GMm r 2=mv 2r 可得v =GM r ,可知卫星的轨道半径越大,环绕速度越小,因此入轨后的速度小于第一宇宙速度(近地卫星的速度),B 错误;同步卫星的发射速度大于第一宇宙速度、小于第二宇宙速度,C 错误;若该卫星发射到近地圆轨道,所需发射速度较小,所需能量较少。

2世界首颗量子科学实验卫星“墨子号”在圆满完成4个月的在轨测试任务后,正式交付用户单位使用。

如图为“墨子号”变轨示意图,轨道A 与轨道B 相切于P 点,轨道B 与轨道C 相切于Q 点,以下说法正确的是()A.“墨子号”在轨道B 上由P 向Q 运动的过程中速率越来越大B.“墨子号”在轨道C 上经过Q 点的速率大于在轨道A 上经过P 点的速率C.“墨子号”在轨道B 上经过P 点时的向心加速度大于在轨道A 上经过P 点时的向心加速度D.“墨子号”在轨道B 上经过Q 点时受到的地球的引力小于经过P 点时受到的地球的引力解析D “墨子号”在轨道B 上由P 向Q 运动的过程中,逐渐远离地心,速率越来越小,故选项A 错误;“墨子号”在A 、C 轨道上运行时,轨道半径不同,根据G Mm r2=m v 2r 可得v =GM r ,轨道半径越大,线速度越小,故选项B 错误;“墨子号”在A 、B 两轨道上经过P 点时,离地心的距离相等,受地球的引力相等,所以加速度是相等的,故选项C 错误;“墨子号”在轨道B 上经过Q 点比经过P 点时离地心的距离要远些,受地球的引力要小些,故选项D 正确。

高中物理万有引力公式的知识点

高中物理万有引力公式的知识点

高中物理万有引力公式的知识点1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:F=Gm1m2/r2 (G=6.6710-11N&;m2/kg2,方向在它们的连线上)3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}注:(1)天体运动所需的向心力由万有引力提供,F向=F万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。

拓展阅读一、运动的描述1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。

物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。

2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法,再加几何像法,求解运动好方法。

自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。

中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等aT平方。

3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。

二、力1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。

高考物理复习 第四章 曲线运动 万有引力与航天本章学

高考物理复习 第四章 曲线运动 万有引力与航天本章学
in θ.
例2 如图2所示的光滑斜面长为l,宽为b,倾角为θ,一物块(可看成质点)沿斜 面左上方顶点P水平射入,恰好从底端Q点离开斜面,试求:(重力加速度为g) (1)物块由P运动到Q所用的时间t;
答案
2l gsin θ
解析 沿斜面向下由牛顿第二定律有
mgsin θ=ma,由平抛运动规律知 l=12at2
图2
(3)求解方法 ①常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初 速度方向(即沿合力方向)的匀加速直线运动,两分运动彼此独立,互不影响, 且与合运动具有等时性. ②特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速 度分解为ax、ay,初速度v0分解为vx、vy,然后分别在x、y方向列方程求解. (4)考查特点 ①类平抛运动是对平抛运动研究方法的迁移,是高考命题的热点问题. ②高考考查该类问题常综合机械能守恒、动能定理等知识,以电场或复合场为 背景考查学生运用所学知识处理综合问题的能力.
大一轮复习讲义
第四章 曲线运动 万有引力与航天
本章学科素养提升
1 等效思想在解题中的应用
例1 如图1所示,在半径为R的铅球中挖出一个球形空穴,空穴直径为R且与铅
球相切,并通过铅球的球心.在未挖出空穴前铅球质量为M.求挖出空穴后的铅球
与距铅球球心距离为d、质量为m的小球(可视为质点)间的万有引力大小.(引力常
量为G)
GMm7d2-8dR+2R2
答案
2d22d-R2
图1
点评 运用“填补法”解题的关键是紧扣万有引力定律的适用条件,先填补, 后运算.运用“填补法”解题的过程主要体现了等效的思想.
2 迁移变通能力的培养
类平抛运动的处理 (1)受力特点 物体所受合力为恒力,且与初速度的方向垂直. (2)运动特点 在初速度v0方向做匀速直线运动,在合外力方向做初速度为零的匀加速直线运 动,加速度a=Fm合 .

高一物理(曲线运动与万有引力)知识点总结 经典题型

高一物理(曲线运动与万有引力)知识点总结 经典题型

四、曲线运动 (轨迹是一条曲线的运动)1. 曲线运动速度特点:质点在某一点(或某一时刻)的速度的方向是在轨迹曲线的这一点的切线方向。

所以曲线运动中速度的方向是时刻改变的。

因此任何一个曲线运动都是变速运动。

2. 质点在曲线运动中都具有加速度,质点一定受到合外力的作用。

物体做曲线运动的条件:速度方向与合力的方向不在同一直线上;加速度的方向跟速度方向也不在同一直线上。

3.运动的合成与分解:运动的合成和分解是指位移的合成与分解及速度、加速度的合成与分解。

都遵循平行四边形法则。

***一般说来,两个直线运动的合成运动,并不一定都是直线的。

4.平抛运动: ⑴ 物体只在重力作用下,初速度沿水平方向的抛体运动叫平抛运动。

⑵ 平抛运动可以看作是水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。

5.平抛运动的特点:(1)加速度a=g 恒定,方向竖直向下。

所以平抛运动是匀变速运动。

(2)运动轨迹是抛物线。

这是一个抛物线方程。

(3)平抛物体在t 秒末时的水平分速度v x 和竖直分速度v y 分别为v x =v 0,v y =gta.求出合速度的大小和方向 θ角 v=)(22y x v v + tan θ=xy v vb.求出合位移的大小和方向 φ角 位移公式:x=v 0t y=21gt 2 s=yx 22+ tan φ=xyc.平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半(中点)。

证明:设时间t 内物体的水平位移为s ,竖直位移为h ,则末速度的水平分量v x =v 0=s/t ,而竖直分量v y =2h/t , s h v v 2tan x y==α, 所以有2tan s h s =='α 7.圆周运动:质点运动轨迹为一个圆,即质点做圆周运动。

线速度:物体在某时间内通过的弧长与所用时间的比值,其方向在圆周的切线方向上。

(轨迹方程))(为转速其中n 表达式:tl v =角速度:物体在某段时间内通过的角度与所用时间的比值。

曲线运动+万有引力定律知识点总结

曲线运动+万有引力定律知识点总结

曲线运动1.曲线运动的特征(1)曲线运动的轨迹是曲线。

(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。

即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。

(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。

(注意:合外力为零只有两种状态:静止和匀速直线运动。

)曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。

2.物体做曲线运动的条件(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。

(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。

3.匀变速运动: 加速度(大小和方向)不变的运动。

也可以说是:合外力不变的运动。

4曲线运动的合力、轨迹、速度之间的关系(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。

(2)合力的效果:合力沿切线方向的分力F 2改变速度的大小,沿径向的分力F 1改变速度的方向。

①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。

②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。

③当合力方向与速度方向垂直时,物体的速率不变。

(举例:匀速圆周运动)平抛运动基本规律1. 速度:0x yv v v gt =⎧⎨=⎩ 合速度:22yx v v v +=方向:oxy v gtv v ==θtan 2.位移0212x v t y gt =⎧⎪⎨=⎪⎩合位移:x =合 方向:ov gtx y 21tan ==α3.时间由:221gt y =得 g y t 2=(由下落的高度y 决定)4.平抛运动竖直方向做自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。

5.tan 2tan θα= 速度与水平方向夹角的正切值为位移与水平方向夹角正切值的2倍。

曲线运动和万有引力专题

曲线运动和万有引力专题

曲线运动、万有引力考点例析本章知识点,从近几年高考看,主要考查的有以下几点:(1)平抛物体的运动。

(2)匀速圆周运动及其重要公式,如线速度、角速度、向心力等。

(3)万有引力定律及其运用。

(4)运动的合成与分解。

注意圆周运动问题是牛顿运动定律在曲线运动中的具体应用,要加深对牛顿第二定律的理解,提高应用牛顿运动定律分析、解决实际问题的能力。

近几年对人造卫星问题考查频率较高,它是对万有引力的考查。

卫星问题与现代科技结合密切,对理论联系实际的能力要求较高,要引起足够重视。

本章内容常与电场、磁场、机械能等知识综合成难度较大的试题,学习过程中应加强综合能力的培养。

一、夯实基础知识1、深刻理解曲线运动的条件和特点(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。

(2)曲线运动的特点:①在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向。

②曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。

③做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。

2、深刻理解运动的合成与分解物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。

运动的合成与分解基本关系:①分运动的独立性;②运动的等效性(合运动和分运动是等效替代关系,不能并存);③运动的等时性;44运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。

)3.深刻理解平抛物体的运动的规律 (1).物体做平抛运动的条件:只受重力作用,初速度不为零且沿水平方向。

物体受恒力作用,且初速度与恒力垂直,物体做类平抛运动。

(2).平抛运动的处理方法通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。

(3).平抛运动的规律以抛出点为坐标原点,水平初速度v 0方向为沿x 轴正方向,竖直向下的方向为y 轴正方向,建立如图1所示的坐标系,在该坐标系下,对任一时刻t.①位移分位移0x t =v , 212y gt =,合位移s ,0tan gtϕ=v .ϕ为合位移与x 轴夹角.②速度分速度0x =v v ,y gt =v ,合速度v 0tan gtθ=v . θ为合速度v 与x 轴夹角 (4).平抛运动的性质做平抛运动的物体仅受重力的作用,故平抛运动是匀变速曲线运动。

高考物理一轮复习第四章曲线运动万有引力与航天第一节曲线运动运动的合成与分解课件

高考物理一轮复习第四章曲线运动万有引力与航天第一节曲线运动运动的合成与分解课件

解析:工件同时参与了水平向右的匀速运动和竖直方向的匀速 运动,水平和竖直方向的速度都不变,根据矢量合成的平行四 边形法则,合速度大小和方向均不变。
考点一 物体做曲线运动的条件及轨迹分析
1.曲线运动的条件:物体所受合外力(或加速度)方向与运动方 向不共线。 2.曲线运动的类型 (1)匀变速曲线运动:合力(加速度)恒定不变。 (2)变加速曲线运动:合力(加速度)变化。 3.合外力方向与轨迹的关系:物体做曲线运动的轨迹一定夹 在合外力方向与速度方向之间,速度方向与轨迹相切,合外力 方向指向轨迹的“凹”侧。
[解析] (1)小船参与了两个分运动,即船随水漂流的运动和船在 静水中的运动。因为分运动之间具有独立性和等时性,故小船
渡河的时间等于垂直于河岸方向的分运动的时间,即
t
=d= v船
200 4
s=50 s。小船沿水流方向的位移 s 水=v 水t=2×50 m=100 m,
即船将在正对岸下游 100 m 处靠岸。
小船渡河的时间为
t=v船sdin
,当 θ
θ=90°,即船头与河岸垂直时,
渡河时间最短,最短时间为 tmin=50 s。
(4)因为 v 船=3 m/s<v 水=5 m/s,所以船不
可能垂直于河岸横渡,不论航向如何,总
被水流冲向下游。如图丙所示,设船头(v 船)
与上游河岸成 θ 角,合速度 v 与下游河岸成
考点三 运动分解中的两类模型
1.小船渡河模型 渡河时 间最短
当船头方向垂直于河岸时,渡河时间最短, 最短时间 tmin=vd船
渡河位 移最短
如果 v 船>v 水,当船头方向与上游夹角 θ 满 足 v 船 cos θ=v 水时,合速度垂直于河岸,渡 河位移最短,等于河宽 d 如果 v 船<v 水,当船头方向(即 v 船方向)与合 速度方向垂直时,渡河位移最短,等于dv水
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理曲线运动万有引力知识点
高考物理曲线运动万有引力知识点
很早之前同学们就进入高三物理第一轮复习了,曲线运动万有引力这一知识点不知道大家有没有掌握。

下面是店铺为大家精心推荐的曲线运动万有引力知识点总结,希望能够对您有所帮助。

曲线运动万有引力知识点归纳
1.曲线运动
(1)物体作曲线运动的条件:运动质点所受的合外力(或加速度)的方向跟它的速度方向不在同一直线(2)曲线运动的特点:质点在某一点的速度方向,就是通过该点的曲线的切线方向。

质点的速度方向时刻在改变,所以曲线运动一定是变速运动。

(3)曲线运动的轨迹:做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合外力的大致方向,如平抛运动的轨迹向下弯曲,圆周运动的轨迹总向圆心弯曲等。

2.运动的合成与分解
(1)合运动与分运动的关系:①等时性;②独立性;③等效性。

(2)运动的合成与分解的'法则:平行四边形定则。

(3)分解原则:根据运动的实际效果分解,物体的实际运动为合运动。

3.平抛运动
(1)特点:①具有水平方向的初速度;②只受重力作用,是加速度为重力加速度g的匀变速曲线运动。

(2)运动规律:平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动。

①建立直角坐标系(一般以抛出点为坐标原点O,以初速度vo方向为x轴正方向,竖直向下为y轴正方向);
4.圆周运动
(1)描述圆周运动的物理量
①线速度:描述质点做圆周运动的快慢,大小v=s/t(s是t时间内
通过弧长),方向为质点在圆弧某点的线速度方向沿圆弧该点的切线方向
②角速度:描述质点绕圆心转动的快慢,大小ω=φ/t(单位rad/s),φ是连接质点和圆心的半径在t时间内转过的角度。

其方向在中学阶段不研究。

③周期T,频率f---------
做圆周运动的物体运动一周所用的时间叫做周期。

做圆周运动的物体单位时间内沿圆周绕圆心转过的圈数叫做频率。

[注意]向心力是根据力的效果命名的。

在分析做圆周运动的质点受力情况时,千万不可在物体受力之外再添加一个向心力。

(2)匀速圆周运动:线速度的大小恒定,角速度、周期和频率都是恒定不变的,向心加速度和向心力的大小也都是恒定不变的,是速度大小不变而速度方向时刻在变的变速曲线运动。

(3)变速圆周运动:速度大小方向都发生变化,不仅存在着向心加速度(改变速度的方向),而且还存在着切向加速度(方向沿着轨道的切线方向,用来改变速度的大小)。

一般而言,合加速度方向不指向圆心,合力不一定等于向心力。

合外力在指向圆心方向的分力充当向心力,产生向心加速度;合外力在切线方向的分力产生切向加速度。

5.万有引力定律
(1)万有引力定律:宇宙间的一切物体都是互相吸引的。

两个物体间的引力的大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比。

(2)应用万有引力定律分析天体的运动
①基本方法:把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供。

即F引=F向
(3)三种宇宙速度
①第一宇宙速度:v1=7.9km/s,它是卫星的最小发射速度,也是地球卫星的最大环绕速度。

②第二宇宙速度(脱离速度):v2=11.2km/s,使物体挣脱地球引力束缚的最小发射速度。

③第三宇宙速度(逃逸速度):v3=16.7km/s,使物体挣脱太阳引力束缚的最小发射速度。

(4)地球同步卫星
所谓地球同步卫星,是相对于地面静止的,这种卫星位于赤道上方某一高度的稳定轨道上,且绕地球运动的周期等于地球的自转周期,即T=24h=86400s,离地面高度同步卫星的轨道一定在赤道平面内,并且只有一条。

所有同步卫星都在这条轨道上,以大小相同的线速度,角速度和周期运行着。

(5)卫星的超重和失重
“超重”是卫星进入轨道的加速上升过程和回收时的减速下降过程,此情景与“升降机”中物体超重相同。

“失重”是卫星进入轨道后正常运转时,卫星上的物体完全“失重”(因为重力提供向心力),此时,在卫星上的仪器,凡是制造原理与重力有关的均不能正常使用。

高考物理易错易混点汇总
(1)判断两个矢量是否相等时或回答所求的矢量时不注意方向;
(2)求作用力和反作用力时不注意运用牛顿第三定律进行说明;
(3)不管题目要求g值习惯取10m/s2,在计算某星球上的平抛、落体等问题时,很容易出现把地球表面的重力加速度g=9.8m/s2当做星球表面的重力加速度处理情况;
(4)受力分析时不完整,运用牛顿第二定律和运动学公式解题时合外力漏掉重力;
(5)字母不用习惯写法或结果用未知量表示,大小写不分(如L和l),求得物理量不带单位(对字母表示的结果做完后可用单位制检验其是否正确);
(6)不按题目要求答题,画图不规范;
(7)求功时不注意回答正负功;
(8)不注意区分整体动量守恒和某方向动量守恒;
(9)碰撞时不注意是否有能量损失,两物体发生完全非弹性碰撞时,动能(机械能)损失最多,损失的动能在碰撞瞬间转变成内能;
(10)运用能量守恒解题时能量找不齐;
(11)求电路中电流时找不齐电阻,区分不清谁是电源谁是外电阻,求通过谁的电流;
(12)求热量时区分不清是某一电阻的还是整个回路的;
(13)实验器材读数时不注意有效数字的位数;
(14)过程分析不全面,只注意到开始阶段,而忽视对全过程的讨论;。

相关文档
最新文档