集成运放的基本运算电路实验报告

合集下载

集成运放放大电路实验报告

集成运放放大电路实验报告

集成运放放大电路实验报告一实验目的:用运算放大器等元件构成反相比例放大器,同相比例放大器,反相求和电路,同相求和电路,通过实验测试和分析,进一步掌握它们的主要特征和性能及输出电压与输入电压的函数关系。

二仪器设备:i SXJ-3B型模拟学习机ii 数字万用表iii 示波器三实验内容:每个比例求和运算电路实验,都应进行以下三项:(1)按电路图接好后,仔细检查,确保无误。

(2)调零:各输入端接地调节调零电位器,使输出电压为零(用万用表200mV档测量,输出电压绝对值不超过0.5mv)。

A. 反相比例放大器实验电路如图所示R1=10k Rf=100k R’=10k输出电压:Vo=-(Rf/R1)V1实验记录:将电路输入端接学习机上的直流信号源的OUTPUT,调节换档开关置于合适位置,并调节电位器,使V1分别为表中所列各值,(用万用表测量)分析输出电压值,填在表内。

实际测量V0的值填在表内。

B 同相比例放大器R1=10k, Rf=100k R'=10k输出电压:V0=(1+Rf/R1)V1别为表中所列各值,(用万用表测量)分析输出电压值,填在表内。

E 电压跟随器实验电路:四思考题1 在反相比例放大器和加法器中,同相输入端必须配置一适当的接地电阻,其作用是什么?阻值大小的选择原则怎样考虑?此电阻也称之为平衡电阻,使输入端对地的静态电阻相等,减少输入失调电流或对电路的影响。

2分析实验数据与理论值产生的误差原因。

(1)运放输入阻抗不是无穷大。

(2)运放增益不是无穷大。

(3)运放带宽不是无穷大。

(4)运放实际存在输入、温漂等等。

集成运放电路实验报告

集成运放电路实验报告

实验报告姓名:学号:日期:成绩:一、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2、了解运算放大器在实际应用时应考虑的一些问题。

二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。

开环电压增益Aud=∞输入阻抗ri=∞输出阻抗ro=0带宽 fBW=∞失调与漂移均为零等。

理想运放在线性应用时的两个重要特性:(1)输出电压UO与输入电压之间满足关系式U O =Aud(U+-U-)由于Aud =∞,而UO为有限值,因此,U+-U-≈0。

即U+≈U-,称为“虚短”。

(2)由于ri =∞,故流进运放两个输入端的电流可视为零,即IIB=0,称为“虚断”。

这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。

基本运算电路 1) 反相比例运算电路电路如图6-1所示。

对于理想运放, 该电路的输出电压与输入电压之间的关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。

图6-1 反相比例运算电路 图6-2 反相加法运算电路 2) 反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为)U R RU R R (U i22F i11F O +-= R 3=R 1 // R 2 // R F 3) 同相比例运算电路图6-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1FO )U R R (1U += R 2=R 1 // R F 当R 1→∞时,U O =U i ,即得到如图6-3(b)所示的电压跟随器。

基本运算电路实验报告

基本运算电路实验报告

基本运算电路实验报告实验报告课程名称:电路与模拟电子技术实验 指导老师: 成绩: 实验名称: 基本运算电路设计 实验类型: 同组学生姓名: 实验目的:1、掌握集成运算放大器组成的比例、加法和积分等基本运算电路的设计。

2、了解集成运算放大器在实际应用中应考虑的一些问题。

实验要求:1、实现两个信号的反向加法运算2、用减法器实现两信号的减法运算3、用积分电路将方波转化为三角波4、实现同相比例运算(选做)5、实现积分运算(选做) 双运算放大器LM358三、 实验须知:1.在理想条件下,集成运放参数有哪些特征?答:开环电压增益很高,开环电压很高,共模抑制比很高,输入电阻很大,输入电流接近于零,输出电阻接近于零。

2.通用型集成运放的输入级电路,为啥均以差分放大电路为基础? 答:(1)能对差模输入信号放大 (2)对共模输入信号抑制(3)在电路对称的条件下,差分放大具有很强的抑制零点漂移及抑制噪声与干扰的能力。

3.何谓集成运放的电压传输特性线?根据电压传输特性曲线,可以得到哪些信息? 答:运算放大器的电压传输特性是指输出电压和输入电压之比。

4.何谓集成运放的输出失调电压?怎么解决输出失调? 答:失调电压是直流(缓变)电压,会叠加到交流电压上,使得交流电的零线偏移(正负电压不对称),但是由于交流电可以通过“隔直流”电容(又叫耦合电容)输出,因此任何漂移的直流缓变分量都不能通过,所以可以使输出的交流信号不受失调电压的任何影响。

5.在本实验中,根据输入电路的不同,主要有哪三种输入方式?在实际运用中这三种输入方式都接成何种反馈形式,以实现各种模拟运算?答:反相加法运算电路,反相减法运算电路,积分运算电路。

都为负反馈形式。

专业: 姓名:日期:地点:紫金港 东三--四、实验步骤:1.实现两个信号的反相加法运算实验电路:R′= Rl//R2//RF 电阻R'的作用:作为平衡电阻,以消除平均偏置电流及其漂移造成的运算误差输入信号v s1v s1输出电压v o0.1V,1kHz 0 1.01V0.1V 0.1V 2.03V2.减法器(差分放大电路)实验电路:R1=R2、R F=R3输入信号v s1v s1输出电压v o0.1V,1kHz 0 1.02V0 0.1V 1.03V0.1V 0.1V 0.12mV共模抑制比8503.用积分电路转换方波为三角波实验电路:电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。

实验报告——集成运算放大器的基本应用

实验报告——集成运算放大器的基本应用

*****大学电工电子实验报告册课程名称:_______________________________班级:_______________________________学号:_______________________________姓名:_______________________________集成运算放大器的基本应用─模拟运算电路─一、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2、了解运算放大器在实际应用时应考虑的一些问题。

二、实验原理集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

理想运算放大器特性在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。

开环电压增益A ud=∞输入阻抗r i=∞输出阻抗r o=0带宽 f BW=∞失调与漂移均为零等。

理想运放在线性应用时的两个重要特性:(1)输出电压U O与输入电压之间满足关系式U O=A ud(U+-U-)由于A ud=∞,而U O为有限值,因此,U+-U-≈0。

即U+≈U-,称为“虚短”。

(2)由于r i=∞,故流进运放两个输入端的电流可视为零,即I IB=0,称为“虚断”。

这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。

基本运算电路1) 反相比例运算电路电路如图21-1所示。

对于理想运放, 该电路的输出电压与输入电压之间的关系为为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。

图21-1 反相比例运算电路 图21-2 反相加法运算电路2) 同相比例运算电路图21-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1FO )U R R (1U += R 2=R 1 // R F 当R 1→∞时,U O =U i ,即得到如图21-3(b)所示的电压跟随器。

集成运算放大器应用实验报告

集成运算放大器应用实验报告

集成运算放大器应用实验报告集成运算放大器应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种非常常见的电子元件,广泛应用于电路设计和实验中。

本实验旨在通过实际应用,深入了解集成运算放大器的特性和使用方法,并通过实验结果验证理论知识的正确性。

实验目的:1. 了解集成运算放大器的基本结构和工作原理;2. 掌握集成运算放大器的常见应用电路;3. 通过实验验证理论知识的正确性。

实验仪器和材料:1. 集成运算放大器(例如LM741);2. 电阻、电容等基本电子元件;3. 示波器、信号发生器等实验仪器。

实验步骤:1. 集成运算放大器的基本特性实验首先,将集成运算放大器与电源相连接,并通过示波器观察输出波形。

调节输入信号的幅值和频率,观察输出波形的变化。

记录实验结果,并与理论知识进行对比分析。

2. 集成运算放大器的反相放大电路实验搭建反相放大电路,输入一个正弦波信号,通过示波器观察输出波形。

调节输入信号的幅值和频率,观察输出波形的变化。

记录实验结果,并与理论计算值进行对比。

3. 集成运算放大器的非反相放大电路实验搭建非反相放大电路,输入一个正弦波信号,通过示波器观察输出波形。

调节输入信号的幅值和频率,观察输出波形的变化。

记录实验结果,并与理论计算值进行对比。

4. 集成运算放大器的积分电路实验搭建积分电路,输入一个方波信号,通过示波器观察输出波形。

调节输入信号的幅值和频率,观察输出波形的变化。

记录实验结果,并与理论计算值进行对比。

实验结果与分析:1. 集成运算放大器的基本特性实验结果根据实验结果观察到,集成运算放大器具有高增益、低失调电压和低输入阻抗等特点。

随着输入信号幅值的增加,输出信号也随之增大,且输出信号与输入信号具有线性关系。

2. 集成运算放大器的反相放大电路实验结果通过实验观察到,反相放大电路可以将输入信号的幅值放大,并且输出信号与输入信号相位相反。

实验结果与理论计算值基本一致,验证了理论知识的正确性。

5集成运放电路实验报告

5集成运放电路实验报告

5集成运放电路实验报告实验目的:1.熟悉基本的集成运放电路的组成和功能;2.了解非反转运放电路、反转运放电路及运算放大器电路的工作原理;3.学会使用运放电路进行信号放大、滤波和求和。

实验仪器:1.电源供应器2.六组运筹放大器模数器件3.信号发生器4.示波器5.可调电阻6.电容7.电感实验原理:集成运放是一种重要的模拟电子器件,可广泛应用于电子电路中。

它具有高放大倍数、输入阻抗高、输出阻抗低等特点,在模拟电路的设计中起到了重要作用。

实验一:非反转运放电路非反转运放电路可以实现信号的放大,其电路图如下:Rf------------↑----------,OUVref---------+, -, VouV1,+--------R1R++----------```实验二:反转运放电路反转运放电路可用于信号放大和求逆,其电路图如下:```Rf--------↑--------,-,V1-----,+R1++----------```实验三:运算放大器电路运算放大器是一种特殊的运放电路,可以实现加法、减法、乘法和除法等运算。

其电路图如下:```Rf---------↑-------------,OUVref1--------V1-------------------Rg```实验步骤:1.使用示波器测量电源供应器的输出电压,调整到所需电压范围内;2.将非反转运放电路连接好,并连接示波器检测输出波形;3.调整电阻值,观察输出波形的变化;4.按照同样的方式,搭建反转运放电路进行实验;5.最后,搭建运算放大器电路进行实验,观察输出波形的变化。

实验结果:1.非反转运放电路实验中,当Rf=10kΩ,R1=2.2kΩ,V1=2V时,输出波形经过放大后为4V;2.反转运放电路实验中,当Rf=10kΩ,R1=2.2kΩ,V1=2V时,输出波形经过放大后为-4V;3. 运算放大器电路实验中,V1=2V,Vref1=4V,Rf=10kΩ,R1=2.2kΩ,Rg=3kΩ,输出波形为两个输入信号的和。

集成运算放大器实验报告

集成运算放大器实验报告

集成运算放大器实验报告2.4.1 比例、加减运算电路设计与实验由运放构成的比例、求和电路,实际是利用运放在线性应用时具有“虚短”、“虚断”的特点,通过调节电路的负反馈深度,实现特定的电路功能。

一、实验目的1.掌握常用集成运放组成的比例放大电路的基本设计方法; 2.掌握各种求和电路的设计方法;3.熟悉比例放大电路、求和电路的调试及测量方法。

二、实验仪器及备用元器件 (1)实验仪器(2)实验备用器件三、电路原理集成运算放大器,配备很小的几个外接电阻,可以构成各种比例运算电路和求和电路。

图2.4.3(a )示出了典型的反相比例运算电路。

依据负反馈理论和理想运放的“虚短”、“虚断”的概念,不难求出输出输入电压之间的关系为 1f o i i R A R υυυυ==-2.4.1式中的“-”号说明电路具有倒相的功能,即输出输入的相位相反。

当1f R R =时,o i υυ=-,电路成为反相器。

合理选择1f R R 、的比值,可以获得不同比例的放大功能。

反相比例运算电路的共模输入电压很小,带负载能力很强,不足之处是它的输入电阻为1i R R =,其值不够高。

为了保证电路的运算精度,除了设计时要选择高精度运放外,还要选择稳定性好的电阻器,而且电阻的取值既不能太大、也不能太小,一般在几十千欧到几百千欧。

为了使电路的结构对称,运放的反相等效输入电阻应等于同相等效输入电阻,R R +-=,图2.4.3(a )中,应为1//P f R R R =,电阻称之为平衡电阻。

(a) 反相比例运算电路 (b) 同相比例运算电路图2.4.3 典型的比例运算电路图2.4.3(b )示出了典型的同相比例运算电路。

其输出输入电压之间的关系为 1(1)f o i i R A R υυυυ==+2.4.2由该式知,当0f R =时,o i υυ=,电路构成了同相电压跟随器。

同相比例运算电路的最大特点是输入电阻很大、输出电阻很小,常被作为系统电路的缓冲级或隔离级。

集成运算放大电路实验报告

集成运算放大电路实验报告

电子技术基础实验与课程设计------运算放大器基本放大电路实验目的1.通过实验,进一步理解集成运算放大器线性应用电路的特点。

2.掌握集成运算放大器基本线性应用电路的设计方法。

3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。

集成运算放大器放大电路概述集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。

集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。

集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。

1.1反相比例放大电路输入输出关系: 输入电阻: Ri=R1 输出电阻: Ro=01.1.1设计要求1.1.2选择器件与多数计算通过查找资料选用TL082集成运放设计放大12倍。

反相比例放大电路仿真电路图i oV R R V 12-=i R o V R R V R R V 1212)1(-+=输入与输出电压所以输出放大倍数 =12电压输入输出波形图i oV R R V 12-=1.2同相比例放大电路输入输出关系: 输入电阻: Ri=∞ 输出电阻: Ro=0 1.2.1设计要求1.2.2选择器件与多数计算通过查找资料选用TL082集成运放设计放大12倍。

i o V RRV )1(12+=R o V R RV R R V 12i 12)1(-+=同相比例放大电路仿真电路图输入与输出电压所以输出放大倍数: =12 电压输入输出波形图i o V RRV )1(12+=1.3微分电路R fU iR 2U oC 1foi R U dt dU C -=1dtdU C R U if o 1-=max 1)(dtdU U C R i oM f ≤实用微分电路RC1=RfC电路的输出电压为o u 为:21io du u R C dt =- 式中,21R C 为微分电路的时间常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集成运放的基本运算电路实验报告
实验报告:集成运放的基本运算电路
实验目的:
1. 了解集成运放的基本原理和性质;
2. 学习基本运算电路的设计和实现方法;
3. 实验验证运算放大器的基本运算电路,包括反相放大器、非反相放大器、求和放大器和差分放大器。

实验器材:
1. 集成运放(可以使用LM741等常见型号);
2. 电阻(包括不同阻值的固定电阻和可变电阻);
3. 电源(正负双电源,供应电压根据集成运放的需求确定);
4. 示波器;
5. 信号源。

实验步骤:
1. 反相放大器的设计和实现:
a. 准备电阻并连接电路,将集成运放的输入接口连接到信号源,输出接口连接示波器;
b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。

2. 非反相放大器的设计和实现:
a. 准备电阻并连接电路,将集成运放的输入接口连接到信号源,输出接口连接示波器;
b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。

3. 求和放大器的设计和实现:
a. 准备电阻并连接电路,将集成运放的输入接口连接到不同信号源,输出接口连接示波器;
b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。

4. 差分放大器的设计和实现:
a. 准备电阻并连接电路,将集成运放的输入接口分别连接到两个信号源,输出接口连接示波器;
b. 调整可变电阻的阻值,观察输出信号的变化,记录并分析结果。

实验结果:
1. 反相放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。

2. 非反相放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。

3. 求和放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。

4. 差分放大器实验结果:记录输入和输出信号的幅度和相位差,并绘制输入-输出特性曲线。

实验分析:
1. 通过对实验结果的观察和分析,可以验证集成运放的基本运算电路的原理和性质。

2. 在实验中可以调整电阻的数值来改变放大倍数或增益,验证运算放大器的增益特性。

3. 实验结果还可以与理论计算结果进行比较,分析误差的原因。

实验总结:
通过本次实验,我们学习了集成运放的基本原理和性质,掌握了基本运算电路的设计和实现方法。

通过实验验证了反相放大器、非反相放大器、求和放大器和差分放大器的基本功能,并研究了它们的输入-输出特性。

实验结果符合理论预期,对于深入理解集成运放和运算放大器的工作原理具有重要意义。

相关文档
最新文档