马尔科夫及其应用(02129057)
马尔可夫模型法

马尔可夫模型法马尔可夫模型是一种概率模型,用于描述随机变量随时间变化的条件概率分布。
马尔可夫模型法的应用非常广泛,目前已被广泛应用于天气预报、语音识别、自然语言处理等领域。
本文将从原理、分类、应用等方面进行阐述。
一、原理马尔可夫模型是古典随机过程的一种形式,指的是只有当前状态和之前状态有关的随机过程。
简单来说,如果一个随机过程满足在未来的情况下,只要知道当前状态就够了,那么这个随机过程就是马尔可夫模型,也被称为一阶马尔可夫模型。
二、分类马尔可夫模型按照状态空间的性质可以分为离散状态空间和连续状态空间。
如果状态是有限的,并且每个状态之间的转移概率是确定的,则称为有限马尔可夫模型;如果状态是可能性连续的,并且状态之间的转移概率是由一个状态转移到另一个状态的概率密度函数给出的,则称为连续马尔可夫模型。
三、应用1.天气预报天气预报是一项关键的城市规划和生产活动,预测准确性对人们的生产生活具有重要意义。
马尔可夫模型可以应用于气象预测中,利用历史天气数据来预测未来天气情况。
例如,当观察到“晴”和“雨”的状态时,通过转移概率来预测下一天的天气情况。
2.语音识别语音识别是指将人类语言转换为计算机可以理解的形式,也是自然语言处理中的一个重要研究方向。
马尔可夫模型可以将语音信号转化为概率序列。
通过观察到当前状态(语音信号),马尔可夫模型可以预测下一个状态(下一个音素)的概率分布,进而识别语音。
3.自然语言处理自然语言处理是研究如何让计算机处理人类自然语言的研究领域。
马尔可夫模型可以用于分析文本中的语义信息以及确定下一个单词出现的可能性。
通过分析文本中的不同状态,例如停用词和关键字,马尔可夫模型可以预测下一个单词出现的概率,进而帮助计算机自动接下来的文本操作。
四、总结马尔可夫模型在实际应用中发挥着重要的作用。
通过分析时间状态的变化,马尔可夫模型可以预测未来状态的可能性,从而对实际工作进行有效指导。
对于天气预报、语音识别以及自然语言处理等领域,马尔可夫模型都有着广泛应用。
马尔可夫链在计算机中的应用

马尔可夫链在计算机中的应用
马尔可夫链在计算机领域中有多种应用,以下是一些例子:
1. 图像分类:马尔科夫链可以应用于图像分类中,将图像看作状态序列,每个状态表示图像像素的某个特定值。
通过马尔科夫链,可以计算出每个像素点的概率分布,以此来实现图像分类的功能。
2. 语音识别:在语音识别任务中,马尔科夫链通常被用来建立一个时间序列模型,通过不断计算每一次的观测结果来计算下一次的状态转移。
这有助于提高语音识别的准确度。
3. 隐马尔可夫模型:这是信息论和语音识别的重要工具。
4. 排队理论:马尔可夫链在优化电信网络的性能方面也有应用,其中消息必须经常竞争有限的资源,并在所有资源都已分配时排队。
5. 统计模拟:众所周知的“马尔可夫链蒙特卡罗”随机变量生成技术是基于马尔可夫链的。
6. 生物信息学和系统生物学:在生物信息学和系统生物学中,马尔可夫链也被用来建模生物系统的动态行为,如基因表达、蛋白质相互作用等。
总的来说,马尔可夫链因其强大的概率建模能力和在各种领域的广泛应用而备受瞩目。
如需了解更多有关马尔可夫链在计算机中的应用,建议查阅计算机科学领域的最新研究进展。
马尔可夫链的均匀化理论及应用

马尔可夫链的均匀化理论及应用马尔可夫链是一种随机过程模型,它具有“无记忆”的特点,即下一状态只与当前状态有关,与过去的状态无关。
由于其简洁的数学形式和广泛的应用领域,马尔可夫链吸引了众多研究者的关注。
本文将介绍马尔可夫链的均匀化理论以及其在各个领域的应用。
一、马尔可夫链的均匀化理论马尔可夫链的均匀化理论是对马尔可夫链进行状态平衡分析的方法。
均匀化理论旨在寻找马尔可夫链的平稳分布,即在长时间的演化后,链式系统中状态的分布趋于稳定。
在实际应用中,均匀化理论提供了对系统的稳定性、收敛速度等重要指标的分析手段。
1. 马尔可夫链的平稳分布马尔可夫链的平稳分布指的是在马尔可夫链的状态转移过程中,状态的分布呈现稳定的特征。
这种稳定性由平稳分布来描述,即当状态经过足够长的时间演化后,状态分布不再发生改变。
2. 马尔可夫链的细致平衡条件马尔可夫链的细致平衡条件是均匀化理论的基础,它表明链式系统中每对状态的转移概率与从目标状态返回到原状态的转移概率之比必须等于两个状态的平稳分布之比。
3. 马尔可夫链的时间平衡方程马尔可夫链的时间平衡方程描述了状态转移概率与平稳分布之间的关系。
通过求解时间平衡方程,可以得到马尔可夫链的平稳分布,并进一步分析系统的稳定性和性能指标。
二、马尔可夫链在实际应用中的应用马尔可夫链作为一种强大的数学工具,被广泛应用于多个领域。
以下是一些典型的应用案例:1. 自然语言处理马尔可夫链在自然语言处理中被用于语言模型的建立和文本生成。
通过分析语料库中的马尔可夫链特性,可以实现自动的文本生成和语言生成。
2. 金融风险管理马尔可夫链可以用于金融领域的风险管理和投资组合优化。
基于历史数据的马尔可夫链模型可以帮助分析市场趋势和资产价格的演化规律,提供决策支持。
3. 生物信息学马尔可夫链在生物信息学中应用广泛,例如用于DNA序列分析和蛋白质结构预测。
通过马尔可夫链模型,可以揭示基因序列和蛋白质结构之间的关联性和演化规律。
马尔可夫链的应用与特性

马尔可夫链的应用与特性马尔可夫链是一种常见的数学模型,基于对随机事件的观察和统计,它可以用来描述系统状态的演化和变化过程,具有广泛的应用和重要的理论意义。
本文将介绍马尔可夫链的一些基本概念和重要特性,以及它在实际问题和学术研究中的一些应用案例。
一、基本概念和定义马尔可夫链指的是一类离散的随机过程,具有无后效性和可数的状态空间。
其转移概率矩阵是一个满足非负性和单位根性质的矩阵,表示了从一个状态到另一个状态的概率分布。
换句话说,如果当前处于某个状态,那么下一个状态只依赖于当前状态,而与过去的状态无关。
这种“不记忆”的特性使得马尔可夫链可以用来模拟很多随机现象,如天气、股票价格等。
马尔可夫链的状态可以是离散的或连续的,但必须满足可数性和 Markov 性质。
其中可数性是指状态空间的元素个数是可数的,而 Markov 性质则是指状态转移概率只与当前状态有关,而与时间和历史状态无关。
这是马尔可夫链的核心特性,也是它具有可解性和可控性的基础。
二、重要特性和性质马尔可夫链具有一些重要的数学特性和性质,为理解和应用它提供了一些基础知识。
1. 不可约性:如果系统中的任意两个状态都是可达的,那么该马尔可夫链就是不可约的。
这意味着该系统可以在任意一个状态之间自由转移,并且有可能出现循环或周期性行为。
不可约性是马尔可夫链分析的一个基本假设,它保证了系统的完整性和稳定性。
2. 非周期性:如果系统中任意一条从状态 i 到状态 i 的路径长度都是有限的,那么该马尔可夫链就是非周期的。
这意味着该系统不存在任何循环或周期性结构,而是呈现出一种无规律的变化过程。
非周期性是马尔可夫链的又一重要属性,它保证了系统的随机性和平稳性。
3. 遍历性:如果系统中从任意一个状态出发,都可以到达该系统中的任意一个状态,那么该马尔可夫链就是遍历的。
这意味着该系统具有完整的状态空间和多样的状态转移方式,可以满足更多的需求和条件。
遍历性是马尔可夫链的又一重要保证,它保证了系统具有全局性和可展性。
随机过程中的马尔可夫链应用

随机过程中的马尔可夫链应用马尔可夫链(Markov Chain)是一种数学模型,用于描述一系列随机事件之间的转移关系。
它是通过状态和概率转移矩阵来表示的。
在现实生活中,马尔可夫链在许多领域中都有广泛的应用,如经济学、生态学、计算机科学等。
本文将从几个具体的应用领域出发,介绍随机过程中马尔可夫链的应用。
一、经济学中的马尔可夫链应用在经济学中,马尔可夫链被广泛用于描述和分析经济系统的状态转移。
例如,在宏观经济中,可以将经济的不同状态定义为就业、通货膨胀和经济增长等。
通过构建一个状态空间和状态转移概率矩阵,可以模拟和预测不同状态之间的转移情况。
这对于政府制定经济政策和公司的投资决策具有重要意义。
二、生态学中的马尔可夫链应用在生态学研究中,马尔可夫链可以用于分析生态系统的演替和物种多样性变化。
生态系统中的物种组成和数量通常会发生变化,而马尔可夫链可以描述不同物种之间的种群转移。
通过观察和记录不同物种间的转移规律,可以更好地理解和预测生态系统的演替过程,为保护生物多样性提供科学依据。
三、计算机科学中的马尔可夫链应用在计算机科学中,马尔可夫链被广泛用于模拟和预测随机过程。
例如,在自然语言处理中,可以通过构建一个基于马尔可夫链的模型来生成自然语言的句子和文本。
通过学习和分析大量的文本数据,模型可以识别出不同单词之间的转移规律,从而生成具有连贯性和自然性的句子。
另外,在搜索引擎中,马尔可夫链也可以用于优化搜索结果的排序。
通过分析用户的搜索行为和点击模式,可以构建一个基于马尔可夫链的模型,预测用户在搜索结果中的点击概率。
这样,搜索引擎可以根据用户的偏好和行为,为其提供更加准确和个性化的搜索结果。
总结:以上介绍了随机过程中马尔可夫链的几个应用领域,包括经济学、生态学和计算机科学。
在这些领域中,马尔可夫链提供了一种有效的数学工具,用于模拟和预测随机事件的转移情况。
通过构建状态空间和转移概率矩阵,我们可以更好地理解和掌握系统的演变规律,并为相关领域的决策和优化提供科学依据。
马尔可夫的应用

Rearch on the Supply Chain Product Market Forecasting Based onMarkov Chain(基于马尔可夫链的供应链产品市场预测研究)摘要:本文通过介绍马尔可夫链的原理·特点以及一种用来统计预测分析随机现象的方法,研究了产品市场预测,并在是市场占有率这一随机过程的基础上建立了有关市场占有率的预测马尔可夫模型。
一、介绍:供应链建立后,工厂就有了固定不变的可用资源,不可能为顾客提供无限的产品和服务。
对市场机会不准确的预测和评价会增加成本,而对供应链市场机会的分析能够直接决定谁是核心业务的合作伙伴以及我们应该建立怎样的供应链加工过程,所以,市场机会预测是很重要的。
从动态的角度看,市场中产品的竞争主要依赖目前的状况,与之前的状况没有关系,这一点符合马尔可夫链要求的特点。
因此,本文用马尔可夫链预测市场机会。
二、基于马尔可夫链的产品市场预测的建立A.马尔可夫链的定义,性质和转移概率1.定义设随机序列状态空间E(1)2.性质1)转移概率,k≥1 (2) 其转移概率记为当转移概率与n无关时,马尔可夫链是齐次的。
这时,k 步转移概率可表示成,当k=1时,称为一步转移概率,记为。
产品市场机会的随机过程属于齐次马尔可夫链。
转移概率矩阵中,,,且(3)2)遍历性(4)(5)等式(4)是遍历性的定义,等式(5)是遍历性的充分条件。
(6)(7)B.以马尔可夫链为基础创建市场预测模型1.创建初始转移概率矩阵假设p ij表示前一次买产品i顾客这一次买产品j的概率,P ii表示前一次买产品i的顾客这一次又买i的概率,p ji表示前一次买产品j的顾客这一次买i的概率。
基于以上假设得到转移概率矩阵:通过等式3,可得k步转移概率矩阵。
(9) 2.决定初始状态的市场概率矩阵设(S)是所有产品总销量,(S j)是产品j的销量,(S j(0))是产品j的市场销售比率。
有以上假设得到初始概率矩阵:(10) 3.建立马尔可夫链模型由等式(9),(10)可得(11) 4.求解稳态下销售比率的概率矩阵具有遍历性的马尔可夫链其极限分是方程组的满足条件的唯一解。
马尔可夫链的基本概念与应用实例

马尔可夫链的基本概念与应用实例马尔可夫链是一种数学模型,用于描述一个过程,该过程在任何给定状态下进行的概率取决于前一状态,而与过去状态无关。
它在许多领域中有着广泛的应用,如统计学、经济学、化学、物理学等等。
本文将对马尔可夫链的基本概念和一些应用实例进行阐述。
一、马尔可夫链的基本概念马尔可夫链是一种随机过程,在任何给定状态下,转移到另一个状态的概率只取决于前一个状态,而与之前的状态无关。
这被称为马尔可夫性质。
因此一个马尔可夫链可以完全由初始状态和转移概率矩阵来描述。
1. 状态空间状态空间是指一个马尔可夫链中所有可能的状态的集合。
它可以是有限的,也可以是无限的。
例如,一个投掷硬币的例子,状态空间为{正面, 反面}。
2. 转移概率矩阵转移概率矩阵描述的是从一个状态到另一个状态的概率。
在一个马尔可夫链中,概率矩阵的每一行表示从一个状态转移到所有其他状态的概率。
在一个有限状态空间中,概率矩阵是一个n x n 的矩阵(n表示状态的数量)。
例如一个2 x 2的矩阵表示如下:s1 s2s1 p11 p12s2 p21 p22其中,p11 表示从状态 s1 转移到状态 s1 的概率;p12 表示从状态 s1 转移到状态 s2 的概率;p21 表示从状态 s2 转移到状态 s1 的概率;p22 表示从状态 s2 转移到状态 s2 的概率。
3. 初始状态概率分布每个马尔可夫链起始状态可以是任何一个状态。
初始状态概率分布表示从哪个可能的起始状态开始进行模型。
它通常会假定为一个向量,其中每个元素表示该状态成为起始状态的概率。
二、马尔可夫链的应用实例随机漫步是马尔可夫链的一个重要应用。
在随机漫步中,一个行动的结果只取决于之前的状态,而与其之前的状态无关。
这种情况下,马尔可夫链为该过程提供了一个可靠的模型。
在金融领域,股市价格变动也被认为是一个形式的马尔可夫链。
一个股票的价格在任何时间不仅取决于过去的价格,还受到多种经济因素的影响。
马尔科夫应用实例

马尔科夫链的应用实例非常广泛,以下是一些常见的应用:
1. 天气预报:马尔科夫链可以用于预测天气变化,例如根据当前的天气状况预测未来几小时的天气情况。
2. 股票市场预测:马尔科夫链可以用于预测股票市场的价格变化,例如根据历史价格数据预测未来一段时间内的股票价格走势。
3. 语音识别:马尔科夫链在语音识别中也有应用,例如根据当前语音信号的特性预测下一个可能的语音音素。
4. 自然语言处理:马尔科夫链可以用于处理自然语言文本,例如通过计算单词之间的转移概率来生成文本摘要或自动翻译文本。
5. 生物信息学:马尔科夫链在生物信息学中也有应用,例如通过计算基因序列之间的转移概率来预测基因结构或蛋白质功能。
6. 推荐系统:马尔科夫链可以用于构建推荐系统,例如根据用户的历史行为和兴趣来预测他们可能感兴趣的内容。
这种推荐系统可以应用于各种场景,如电商网站、音乐流媒体平台等。
7. 交通流量预测:马尔科夫链可以用于预测交通流量,例如根据历史交通数据预测未来一段时间内的交通状况。
这对于城市规划、交通管理等方面非常有用。
8. 医疗诊断:马尔科夫链可以用于辅助医疗诊断,例如根据患者的症状和历史数据来预测可能的疾病。
这可以帮助医生更快地做出诊断,提高医疗效率。
9. 图像识别:马尔科夫链可以用于图像识别,例如通过计算图像特征之间的转移概率来识别图像中的物体或场景。
10. 机器人控制:马尔科夫链可以用于机器人的控制和决策,例如根据机器人的当前状态和环境信息来预测下一步的行为。
总之,马尔科夫链是一种广泛应用于各种领域的数学工具,它可以帮助我们更好地理解和预测各种复杂系统的行为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马尔可夫过程及其应用一. 马尔可夫过程的简介马尔科夫过程(MarKov Process)是一个典型的随机过程。
设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。
无后效的随机过程称为马尔科夫过程。
马尔科夫过程中的时同和状态既可以是连续的,又可以是离散的。
我们称时间离散、状态离散的马尔科夫过程为马尔科夫链。
马尔科夫链中,各个时刻的状态的转变由一个状态转移的概率矩阵控制。
二. 马尔可夫过程的一般概念2.1定义设有一随机过程X(t),t ∈T ,若在t1,t1,…tn-1,tn(t1<t2<…<tn-1<tn ∈T ) 时刻对X(t)观测得到相应的观测值x1,x2,…,xn-1,xn 满足条件:或则称此类过程为具有马尔科夫性质的过程或马尔科夫过程,简称马氏过程。
其中代表在X(tn-1)=xn-1,…,X(t2)=x2,X(t1)=x1,的条件下,时刻X(tn)取xn 值的条件分布函数。
若把tn-1看做“现在”,因为t1<t2<…<tn-1<tn 则tn 就可以看成“将来”,t1,t2,…,tn-2就当做“过去”。
因此上述定义可表述为在现在状态X(tn-1)取值为xn-1的条件下,将来状态X(tn)与过去状态X(tn-2)X(tn-3),…,X(t1)是无关的。
2.2转移概率分布定义马氏过程的转移概率分布为或()12211221;|,,,,;,,,,X n n n n n n F x t x x x x t t t t ----()()(){}1111;|;|X n n n n n n n n F x t x t P X t x X t x ----=≤=()()(){}00000;|;|,X F x t x t P X t x X t x t t =≤=>转移概率分布是条件概率分布,对X 而言,它是一个分布函数,有以下性质: 1) FX(x;t|x0;t0)>=0 2) FX(∞;t|x0;t0)=1 3) FX(-∞;t|x0;t0)=04) FX(x;t|x0;t0)是关于x 的单调非降、右连续的函数。
5) 满足切普曼-科尔莫哥洛夫方程应用全概率公式,可以证明上式成立。
2.3转移概率密度如果FX(x;t|x0;t0)关于x 的导数存在,则:称之为马尔科夫过程的转移概率密度。
反之,可得并且还有此时,无后效性可表示为马氏过程的转移概率密度也满足切普曼-科尔莫哥洛夫方程三. 马尔可夫过程的统计特性及性质由前面的内容可知,随机过程的统计特性可由有限维联合概率分布来近似的描述。
对于马尔科夫过程来说,其维概率密度可以表示为()()()()()001111001001100101;|;;|;;|;;|;;|;,X X X X X F x t x t F x t x t dF x t x t dF x t x t f x t x t dx t t t ∞-∞==<<⎰()()0000;|;;|;X X f x t x t F x t x t x ∂=∂()()()000000;|;;|;;|;xxX X X f u t x t dF u t x t F x t x t -∞-∞==⎰⎰()()0000;|;;|;1X X f x t x t dx F t x t ∞-∞=∞=⎰()()000;|;t t X f x t x t x x δ→−−−→-()()1221122111;|;,,;;,,;|;X n n n n n n X n n n n f x t x x x x t t t t f x t x t ------=()()();|;;|;;|;,X n n k k X n n r r X r r k k r n r kf x t x t f x t x t f x t x t dx t t t ∞-∞=>>⎰当取t1为初始时刻时,fx(x1,t1)表示初始概率分布(密度)。
上式表明:马氏过程的统计特性完全由它的初始概率分布(密度)和转移概率分布(密度)所确定。
上面已经介绍了马氏过程的定义及一些特征,下面给出马氏过程的几个有用性质。
1) 同马尔科夫序列的情况一样,逆向的马尔科夫过程仍为马尔科夫过程。
对任意的整数n 和k ,有2) 若马尔科夫过程的现在状态已知,则将来状态与过去状态无关。
若tn>tr>ts 则在已知Xr(过程在t 时刻的条件下),随机变量Xn 和Xs 是独立的,满足3) 若对每个t<=t1<t2,X(t2)-X(t1)与X(t)皆是独立的,则过程X(t)是马氏过程。
4) 由转移概率密度的无后效性可推出四.马尔可夫过程的应用4.1马尔可夫应用概述马尔可夫随机过程的发展史说明了理论与实际之间的密切关系。
许多研究方向的提出,归根到底是有其实际背景的。
反过来,当这些方向被深入研究后,又可指导实践,进一步扩大和深化应用范围。
下面简略介绍一下马尔可夫随机过程本身在各方面的应用情况。
在物理学方面,高能电子或核子穿过吸收体时,产生级联(或倍增)现象,在研究电了-光子级联过程的起伏问题时,要用到随机过程,常以泊松过程、弗瑞过程或波伊亚过程作为实际级联的近似,有时还要用到更新过程(见点过程)的概念。
当核子穿到吸收体的某一深度时,则可用扩散方程来计算核子的概率分布。
物理学中的放射性衰变,粒子计数器,原子核照相乳胶中的径迹理论和原子核反应堆中的问题等的研究,都要用到泊松过程和更新理论。
()()()()()()()()()121212112112112111112222111111111121,,,;,,,;|,,,;,,,,,,;,,,;|;;|;;|;;;;|;,X n n X n n n n X n n X n n n n X n n n n X X n X X i i i i ni f x x x t t t f x t x x x t t t f x x x t t t f x t x t f x t x t f x t x t f x t f x t f x t x t t t t -----------++=====<<<∏()()121211;|,,,;,,,,|;X n n n n n k n n n k X n n n n f x t x x x t t t f x t x t ++++++++=()()(),;,|;;|;;|;X n s n s r r X n n r r X s s r r f x x t t x t f x t x t f x t x t =()()()()()111|,,|n n n n E X t X t X t E X t X t --=⎡⎤⎡⎤⎣⎦⎣⎦湍流理论以及天文学中的星云密度起伏、辐射传递等研究要用到随机场的理论。
探讨太阳黑子的规律及其预测时,时间序列方法非常有用。
化学反应动力学中,研究化学反应的时变率及影响这些时变率的因素问题,自动催化反应,单分子反应,双分子反应及一些连锁反应的动力学模型等,都要以生灭过程(见马尔可夫过程)来描述。
随机过程理论所提供的方法对于生物数学具有很大的重要性,许多研究工作者以此来构造生物现象的模型。
研究群体的增长问题时,提出了生灭型随机模型,两性增长模型,群体间竞争与生尅模型,群体迁移模型,增长过程的扩散模型等等。
有些生物现象还可以利用时间序列模型来进行预报。
传染病流行问题要用到具有有限个状态的多变量非线性生灭过程。
在遗传问题中,着重研究群体经过多少代遗传后,进入某一固定类和首次进入此固定类的时间,以及最大基因频率的分布等。
许多服务系统,如电话通信,船舶装卸,机器损修,病人候诊,红绿灯交换,存货控制,水库调度,购货排队,等等,都可用一类概率模型来描述。
这类概率模型涉及的过程叫排队过程,它是点过程的特例。
排队过程一般不是马尔可夫型的。
当把顾客到达和服务所需时间的统计规律研究清楚后,就可以合理安排服务点。
在通信、雷达探测、地震探测等领域中,都有传递信号与接收信号的问题。
传递信号时会受到噪声的干扰,为了准确地传递和接收信号,就要把干扰的性质分析清楚,然后采取办法消除干扰。
这是信息论的主要目的。
噪声本身是随机的,所以概率论是信息论研究中必不可少的工具。
信息论中的滤波问题就是研究在接收信号时如何最大限度地消除噪声的干扰,而编码问题则是研究采取什么样的手段发射信号,能最大限度地抵抗干扰。
在空间科学和工业生产的自动化技术中需要用到信息论和控制理论,而研究带随机干扰的控制问题,也要用到马尔可夫随机过程。
4.2马尔可夫应用举例假定西安电子科技大学有1万学生,每人每月用1支牙膏,并且只使用“中华”牙膏与“黑妹”牙膏两者之一。
根据本月(12月)调查,有3000人使用黑妹牙膏,7000人使用中华牙膏。
又据调查,使用黑妹牙膏的3000人中,有60%的人下月将继续使用黑妹牙膏,40%的人将改用中华牙膏;使用中华牙膏的7000人中,有70%的人下月将继续使用中华牙膏,30%的人将改用黑妹牙膏。
据此,可以得到如表-1所示的统计表。
表-1 两种牙膏之间的转移概率上表中的4个概率就称为状态的转移概率,而这四个转移概率组成的矩阵称为转移概率矩阵。
可以看出,转移概率矩阵的一个特点是其各行元素之和为1。
在本例中,其经济意义是:现在使用某种牙膏的人中,将来使用各种品牌牙膏的人数百分比之和为1。
2.用转移概率矩阵预测市场占有率的变化有了转移概率矩阵,就可以预测,到下个月(1月份)使用黑妹牙膏和中华牙膏的人数,计算过程如下:即:1月份使用黑妹牙膏的人数将为3900,而使用中华牙膏的人数将为6100。
假定转移概率矩阵不变,还可以继续预测到2月份的情况为:这里称为二步转移矩阵,也即由12月份的情况通过2步转移到2月份的情况。
二步转移概率矩阵正好是一步转移概率矩阵的平方。
一般地,k步转移概率矩阵正好是一步转移概率矩阵的k次方。
可以证明,k步转移概率矩阵中,各行元素之和也都为1。
转移概率矩阵案例分析案例一: 用转移概率矩阵预测市场占有率的变化[1]有了转移概率矩阵,就可以预测,到下个月(1月份)使用黑妹牙膏和中华牙膏的人数,计算过程如下:即:1月份使用黑妹牙膏的人数将为3900,而使用中华牙膏的人数将为6100。
假定转移概率矩阵不变,还可以继续预测到2月份的情况为:===(4170,5830)这里称为二步转移矩阵,也即由12月份的情况通过2步转移到2月份的情况。
二步转移概率矩阵正好是一步转移概率矩阵的平方。