半导体器件物理

合集下载

半导体器件物理(三)

半导体器件物理(三)
15
GaAs Si
J
E∝V
t
• IMPATTD 的结构考虑
( 如何提高功率和效率? )

~

①单漂移区 p+nin+→p+nn+→Mnn+; 单漂移区~ 单漂移区 → p+in+ (一般不用: η低, 有电流丝损坏); → Mnνn+. ν ②双漂移区~ p+pnn+ (电场分布如右图) →Mpnn+ . 双漂移区
VB ωt
~ 总电压V = VB + VB e jωt ~ ~
总电场 E
= E0 + E e jωt
~ ~
= J0 + Ja
= J0 + JA e jωt
Ja 比 V 落后相位π/2
~
J0 ωt
2π 3π
总电流J = J0 + J ~ jωt
~
=J0 + ( JA e
)e jφ
J 比 Ja 落后相位θd / 2
9
Z = Rd + Rs + LAC , C = Aε /(W + xA) .
Rs
• 在任意注入初相φ时的漂移区阻抗Zd :
~ ~ * Zd = Vd / J = Rd + j Xd ,
Rd = { cosφ - cos (φ + θd) } / ω Cd θd φ φ
的关系(下页图)讨论 讨论: * Rd 与 θd 的关系 讨论
.
① φ = 0 时(无注入延迟): Rd > 0 . → 只靠渡越时间效应不能振荡; ② φ = π / 2 时( 势垒注入~ BARITTD ):有一定的负电阻, 在θd = 2700处最大. θ ③ φ = π 时( 雪崩注入~ IMPATTD ): Rd< 0, 在θd ≈ π 时最大 .

国科大-半导体器件物理

国科大-半导体器件物理

国科⼤-半导体器件物理第⼀章半导体物理基础1.主要半导体材料的晶体结构。

简单⽴⽅(P/Mn)、体⼼⽴⽅(Na/W)、⾯⼼⽴⽅(Al/Au)⾦刚⽯结构:属⽴⽅晶系,由两个⾯⼼⽴⽅⼦晶格相互嵌套⽽成。

Si Ge闪锌矿结构(⽴⽅密堆积),两种元素,GaAs, GaP等主要是共价键纤锌矿结构(六⽅密堆积),CdS, ZnS闪锌矿和纤锌矿结构的异同点共同点:每个原⼦均处于另⼀种原⼦构成的四⾯体中⼼,配种原⼦构成的四⾯体中⼼,配位数4不同点:闪锌矿的次近邻,上下彼此错开60,⽽纤锌矿上下相对2.⾦属、半导体和绝缘体能带特点。

1)绝缘体价电⼦与近邻原⼦形成强键,很难打破,没有电⼦参与导电。

能带图上表现为⼤的禁带宽度,价带内能级被填满,导带空着,热能或外场不能把价带顶电⼦激发到导带。

2)半导体近邻原⼦形成的键结合强度适中,热振动使⼀些键破裂,产⽣电⼦和空⽳。

能带图上表现为禁带宽度较⼩,价带内的能级被填满,⼀部分电⼦能够从价带跃迁到导带,在价带留下空⽳。

外加电场,导带电⼦和价带空⽳都将获得动能,参与导电。

3)导体导带或者被部分填充,或者与价带重叠。

很容易产⽣电流3.Ge, Si,GaAs能带结构⽰意图及主要特点。

1)直接、间接禁带半导体,导带底,价带顶所对应的k是否在⼀条竖直线上2)导带底电⼦有效质量为正,带顶有效质量为负3)有效质量与能带的曲率成反⽐,导带的曲率⼤于价带,因此电⼦的有效质量⼤;轻空⽳带的曲率⼤,对应的有效质量⼩4.本征半导体的载流⼦浓度,本征费⽶能级。

5.⾮本征半导体载流⼦浓度和费⽶能级。

<100K 载流⼦主要由杂质电离提供杂质部分电离区(凝固区) 。

100~500K,杂质渐渐全部电离,在很⼤温度范围内本征激发的载流⼦数⽬⼩于杂质浓度,载流⼦主要由掺杂浓度决定。

饱和电离区。

>500K,本征激发的载流⼦浓度⼤于掺杂浓度,载流⼦主要由本征激发决定。

本征区。

6.Hall效应,Hall迁移率。

半导体器件物理与工艺期末考试题

半导体器件物理与工艺期末考试题

半导体器件物理与工艺期末考试题一、简答题1.什么是半导体器件?半导体器件是利用半导体材料的电子特性来实现电流的控制与放大的电子元件。

常见的半导体器件包括二极管、晶体管、场效应管等。

2.请简述PN结的工作原理。

PN结是由P型半导体和N型半导体连接而成的结构。

当外加正向偏置时,P端为正极,N端为负极,电子从N端向P端扩散,空穴从P 端向N端扩散,形成扩散电流;当外加反向偏置时,P端为负极,N端为正极,由于能带反向弯曲,形成电势垒,电子与空穴受到电势垒的阻拦,电流几乎为零。

3.简述晶体管的工作原理。

晶体管是一种三极管,由一块绝缘体将N型和P型半导体连接而成。

晶体管分为三个区域:基区、发射区和集电区。

在正常工作状态下,当基极与发射极之间施加一定电压时,发射极注入的电子会受到基区电流的控制,通过基区电流的调节,可以控制从集电区流出的电流,实现电流的放大作用。

4.请简述场效应管的工作原理。

场效应管是利用电场的作用来控制电流的一种半导体器件。

根据电场的不同作用方式,场效应管分为增强型和耗尽型两种。

在增强型场效应管中,通过控制栅极电压,可以调节漏极与源极之间的通导能力,实现电流的控制与放大。

5.简述MOSFET的结构和工作原理。

MOSFET(金属-氧化物-半导体场效应管)是一种常用的场效应管。

它由金属栅极、氧化物层和P型或N型半导体构成。

MOSFET的工作原理是通过改变栅极电势来控制氧化物层下方的沟道区域的电阻,从而控制漏极与源极之间的电流。

6.什么是集电极电流放大系数?集电极电流放大系数(β)是指集电区电流(Ic)与发射区电流(Ie)之间的比值。

在晶体管中,β值越大,表示电流放大效果越好。

7.简述三极管的放大作用。

三极管作为一种电子元件,具有电流放大的功能。

通过控制基区电流,可以影响发射极与集电极之间的电流,从而实现电流的放大作用。

二、计算题1.已知一个PN结的硅材料的势垒高度为0.7V,求该PN结的电势垒宽度。

半导体器件物理 试题库

半导体器件物理   试题库

题库(一)半导体物理基础部分1、计算分析题已知:在室温(T = 300K )时,硅本征载流子的浓度为 n i = 1.5×1010/cm 3 电荷的电量q= 1.6×10-19C µn =1350 2cm /V s ⋅ µp =500 2cm /V s ⋅ 半导体硅材料在室温的条件下,测得 n 0 = 4.5×104/cm 3,N D =5×1015/cm 3问:⑴ 该半导体是n 型还是p 型?⑵ 分别求出多子和少子的浓度⑶ 样品的电导率是多少?⑷ 分析该半导体的是否在强电离区,为什么0D n N ≠?2、说明元素半导体Si 、Ge 中的主要掺杂杂质及其作用?3、什么叫金属-半导体的整流接触和欧姆接触,形成欧姆接触的主要方法有那些?4、为什么金属与重掺杂半导体接触可以形成欧姆接触? P-N 部分5、什么叫pn 结的势垒电容?分析势垒电容的主要的影响因素及各因素导致垒电容大小变化的趋势。

6、什么是pn 结的正向注入和反向抽取?7、pn 结在正向和反向偏置的情况下,势垒区和载流子运动是如何变化的?8、简述pn 结雪崩击穿、隧道击穿和热击穿的机理.9、什么叫二极管的反向恢复时间,提高二极管开关速度的主要途径有那些?10、如图1所示,请问本PN 结的偏压为正向,还是反向?准费米能级形成的主要原因? PN 结空间电荷区宽度取决的什么因素,对本PN 结那边空间电荷区更宽?图1 pn结的少子分布和准费米能级三极管部分11、何谓基区宽变效应?12、晶体管具有放大能力需具备哪些条件?13、怎样提高双极型晶体管的开关速度?14、双极型晶体管的二次击穿机理是什么?15、如何扩大晶体管的安全工作区范围?16、详细分析PN结的自建电场、缓变基区自建电场和大注入自建电场的异同点。

17、晶体管的方向电流I CBO、I CEO是如何定义的?二者之间有什么关系?18、高频时,晶体管电流放大系数下降的原因是什么?19、如图2所示,请问双极型晶体管的直流特性曲线可分为哪些区域,对应图中的什么位置?各自的特点是什么?从图中特性曲线的疏密程度,总结电流放大系数的变化趋势,为什么?图2 双极型晶体管共发射极直流输出特性曲线20、如图3所示,对于一个N +PN -N +结构的双极晶体管,随着集电极电流的增大出现了那种效应?请详细描述图3(a-c )曲线的形成的过程。

施敏 半导体器件物理与工艺 pdf

施敏 半导体器件物理与工艺 pdf

施敏半导体器件物理与工艺 pdf 施敏半导体器件物理与工艺pdf:详细解析半导体器件的物理性质和制程技术 施敏半导体器件物理与工艺pdf是一本系统地介绍半导体器件物理性质和制程技术的文档。

本文将以一个逐步思考的方式,详细描述半导体器件的物理性质和制程技术,并通过举例来加深理解。

本文具有清晰的结构,包括前言、主体部分和总结,以确保读者能够全面了解半导体器件的物理性质和制程技术。

第一部分:半导体器件的物理性质 在本部分,我们将首先介绍半导体器件的基本概念和性质。

我们将从半导体材料的能带结构开始,解释导电性差异的原因以及控制电流的机制。

我们将详细讨论pn结的形成、载流子注入和扩散,并介绍不同类型的半导体器件如二极管、晶体管和场效应晶体管。

此外,我们还将介绍半导体器件的基本特性,如电流-电压特性和频率响应特性。

第二部分:半导体器件的制程技术 在本部分,我们将重点讨论半导体器件的制程技术。

我们将详细描述半导体器件的制造过程,并重点介绍光刻、扩散、蚀刻和沉积等关键制程步骤。

我们将解释每个制程步骤的原理、方法和影响因素,并提供实际例子来说明。

此外,我们还将讨论半导体器件的封装技术和测试技术,以确保器件的可靠性和性能。

第三部分:半导体器件物理与工艺的联系 在本部分,我们将探讨半导体器件物理性质与制程技术的密切联系。

我们将详细说明物理性质如材料的能带结构、载流子注入和扩散是如何影响制程技术的选择和结果的。

我们还将介绍如何通过物理性质的优化来改进器件的性能,并讨论不同制程参数对器件性能的影响。

通过本文的详细解析,我们可以深入了解半导体器件的物理性质和制程技术。

我们了解了半导体器件的基本概念和性质,以及其在电流控制和信号放大中的重要作用。

我们还学习了半导体器件的制程技术,以及如何根据物理性质来改进器件的制程过程。

通过这些知识,我们能够更好地设计、制造和测试半导体器件,以满足不同应用领域的需求。

总结起来,施敏半导体器件物理与工艺pdf通过清晰的结构、逐步思考的方式,详细描述了半导体器件的物理性质和制程技术。

半导体器件物理_2孟庆巨 ppt课件

半导体器件物理_2孟庆巨  ppt课件

单晶
有周期性
非晶
无周期性
PPT课件
多晶
每个小区域有周期性
6
3、晶体的结构
1)晶体和晶格:由于构成晶体的粒子的不同性质,使 得其空间的周期性排列也不相同;为了研究晶体的结 构,将构成晶体的粒子抽象为一个点,这样得到的空 间点阵成为晶格。
2)晶体结构与原子结合的形式有关
晶体结合的基本形式:共价结合、离子结合、金属结 合、范德瓦耳斯结合
半导体的基本特性
温度效应-----负温度系数 掺杂效应-----杂质敏感性 光电效应-----光电导 电场、磁场效应
4 PPT课件
常见的半导体材料
5 PPT课件
2、固体的结构
固体从其结构来讲有规则和不规则,如玻璃的结 构则是不规则的,而硅单晶的结构是规则的:
– 按照构成固体的粒子在空间的排列情况,可以将固体分为:
当导体处于热力学温度0K时,导体中没有自 由电子。当温度升高或受到光的照射时,价电 子能量增高,有的价电子可以挣脱原子核的束 缚,而参与导电,成为自由电子。
这一现象称为本征激发,也称热激发。
自由电子产生的同时,在其原来的共价键中 就出现了一个空位,原子的电中性被破坏,呈现 出正电性,其正电量与电子的负电量相等,人们 常称呈现正电性的这个空位为空穴。
• 绝缘体的带隙很大
24 PPT课件
三、半导体中的载流子
半导体中的载流子:能够导电的自由粒子
• 电子:带负电的导电载流子,是价电子脱离原子束 缚后形成的自由电子,对应于导带中占据的电子。
• 空穴:带正电的导电载流子,是价电子脱离原子束 缚后形成的电子空位,对应于价带中的电子空位。
25 PPT课件
(1)电子空穴对
硅原子有:

半导体器件物理施敏答案

半导体器件物理施敏答案

半导体器件物理施敏答案【篇一:施敏院士北京交通大学讲学】t>——《半导体器件物理》施敏 s.m.sze,男,美国籍,1936年出生。

台湾交通大学电子工程学系毫微米元件实验室教授,美国工程院院士,台湾中研院院士,中国工程院外籍院士,三次获诺贝尔奖提名。

学历:美国史坦福大学电机系博士(1963),美国华盛顿大学电机系硕士(1960),台湾大学电机系学士(1957)。

经历:美国贝尔实验室研究(1963-1989),交通大学电子工程系教授(1990-),交通大学电子与资讯研究中心主任(1990-1996),国科会国家毫微米元件实验室主任(1998-),中山学术奖(1969),ieee j.j.ebers奖(1993),美国国家工程院院士(1995), 中国工程院外籍院士 (1998)。

现崩溃电压与能隙的关系,建立了微电子元件最高电场的指标等。

施敏院士在微电子科学技术方面的著作举世闻名,对半导体元件的发展和人才培养方面作出了重要贡献。

他的三本专著已在我国翻译出版,其中《physics of semiconductor devices》已翻译成六国文字,发行量逾百万册;他的著作广泛用作教科书与参考书。

由于他在微电子器件及在人才培养方面的杰出成就,1991年他得到了ieee 电子器件的最高荣誉奖(ebers奖),称他在电子元件领域做出了基础性及前瞻性贡献。

施敏院士多次来国内讲学,参加我国微电子器件研讨会;他对台湾微电子产业的发展,曾提出过有份量的建议。

主要论著:1. physics of semiconductor devices, 812 pages, wiley interscience, new york, 1969.2. physics of semiconductor devices, 2nd ed., 868 pages, wiley interscience, new york,1981.3. semiconductor devices: physics and technology, 523 pages, wiley, new york, 1985.4. semiconductor devices: physics and technology, 2nd ed., 564 pages, wiley, new york,2002.5. fundamentals of semiconductor fabrication, with g. may,305 pages, wiley, new york,20036. semiconductor devices: pioneering papers, 1003 pages, world scientific, singapore,1991.7. semiconductor sensors, 550 pages, wiley interscience, new york, 1994.8. ulsi technology, with c.y. chang,726 pages, mcgraw hill, new york, 1996.9. modern semiconductor device physics, 555 pages, wiley interscience, new york, 1998. 10. ulsi devices, with c.y. chang, 729 pages, wiley interscience, new york, 2000.课程内容及参考书:施敏教授此次来北京交通大学讲学的主要内容为《physics ofsemiconductor device》中的一、四、六章内容,具体内容如下:chapter 1: physics and properties of semiconductors1.1 introduction 1.2 crystal structure1.3 energy bands and energy gap1.4 carrier concentration at thermal equilibrium 1.5 carrier-transport phenomena1.6 phonon, optical, and thermal properties 1.7 heterojunctions and nanostructures 1.8 basic equations and exampleschapter 4: metal-insulator-semiconductor capacitors4.1 introduction4.2 ideal mis capacitor 4.3 silicon mos capacitorchapter 6: mosfets6.1 introduction6.2 basic device characteristics6.3 nonuniform doping and buried-channel device 6.4 device scaling and short-channel effects 6.5 mosfet structures 6.6 circuit applications6.7 nonvolatile memory devices 6.8 single-electron transistor iedm,iscc, symp. vlsi tech.等学术会议和期刊上的关于器件方面的最新文章教材:? s.m.sze, kwok k.ng《physics of semiconductordevice》,third edition参考书:? 半导体器件物理(第3版)(国外名校最新教材精选)(physics of semiconductordevices) 作者:(美国)(s.m.sze)施敏 (美国)(kwok k.ng)伍国珏译者:耿莉张瑞智施敏老师半导体器件物理课程时间安排半导体器件物理课程为期三周,每周六学时,上课时间和安排见课程表:北京交通大学联系人:李修函手机:138******** 邮件:lixiuhan@案2013~2014学年第一学期院系名称:电子信息工程学院课程名称:微电子器件基础教学时数: 48授课班级: 111092a,111092b主讲教师:徐荣辉三江学院教案编写规范教案是教师在钻研教材、了解学生、设计教学法等前期工作的基础上,经过周密策划而编制的关于课程教学活动的具体实施方案。

半导体器件物理简答题

半导体器件物理简答题

简答题答案:1.空间电荷区是怎样形成的。

画出零偏与反偏状态下pn结的能带图。

答:当p型半导体和n型半导体紧密结合时,在其交界面附近存在载流子的浓度梯度,它将引起p区空穴向n区扩散,n区电子向p区扩散。

因此在交界面附近,p区留下了不能移动的带负电的电离受主,n区留下了不能移动的带正电的电离施主,形成所谓空间电荷区。

PN结零偏时的能带图:PN结反偏时的能带图:2.为什么反偏状态下的pn结存在电容?为什么随着反偏电压的增加,势垒电容反而下降?答:①由于空间电荷区宽度是反偏电压的函数,其随反偏电压的增加而增加。

空间电荷区内的正电荷与负电荷在空间上又是别离的,当外加反偏电压时,空间电荷区内的正负电荷数会跟随其发生相应的变化,这样PN结就有了电容的充放电效应。

对于大的正向偏压,有大量载流子通过空间电荷区,耗尽层近似不再成立,势垒电容效应不凸显。

所以,只有在反偏状态下的PN结存在电容。

②由于反偏电压越大,空间电荷区的宽度越大。

势垒电容相当于极板间距为耗尽层宽度的平板电容,电容的大小又与宽度成反比。

所以随着反偏电压的增加,势垒电容反而下降。

3.什么是单边突变结?为什么pn结低掺杂一侧的空间电荷区较宽?答:①对于一个半导体,当其P区的掺杂浓度远大于N区(即N d>>Na〕时,我们称这种结为P+N;当其N区的掺杂浓度远大于N区(即Na >>岫)时,我们称这种结为N+P。

这两类特殊的结就是单边突变结。

②由于PN结空间电荷区内P区的受主离子所带负电荷量与N区的施主离子所带正电荷的量是相等的,而这两种带电离子是不能自由移动的。

所以,对于空间电荷区内的低掺杂一侧,其带电离子的浓度相对较低,为了与高掺杂一侧的带电离子的数量进行匹配,只有增加低掺杂一侧的宽度。

因此,PN结低掺杂一侧的空间电荷区较宽。

4.对于突变p+-n结,分别示意地画出其中的电场分布曲线和能带图:答:①热平衡状态时:突变p+-n结的电场分布曲线:突变p+-n 结的能带图:注:画的时候把两条虚线对齐。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体器件物理
半导体器件物理学是一门关于半导体器件特性和功能的物理学
研究领域。

它涵盖了从半导体物质属性到复杂半导体器件的研究和技术设计,从而有助于现代半导体工艺和电子器件的更新,向我们展示了半导体器件物理学方面的重要性和作用。

半导体器件物理学研究的目标是深入探究半导体物质的性质,以及它们如何在器件中影响性能,以及它们如何在特定的工艺条件下作用。

研究的一个重要方面是确定半导体的物理性质,以及这些性质如何影响半导体器件的功能,特别是在不同的物理和电子系统中的功能。

研究的另一个重要方面是确定半导体的电性质,以及这些电性质如何影响器件的电气特性。

研究还包括研究半导体器件的特性,从电子传输特性到包括特异性再现在内的物理性能测量、电气性能分析和建模。

有了这些性能分析,我们可以深入了解器件的特性,并评估不同的器件参数如何影响性能,从而有助于进一步的设计改进和优化。

此外,半导体器件物理学研究也着重于半导体器件结构分析、器件设计和技术分析,特别是在大规模集成电路(LSI)系统设计方面。

研究者开发出一系列先进的分析技术,用于计算器件结构、分析器件功能和性能,以及研究半导体器件的失效机理,从而支持半导体技术在未来不断改进过程中的发展。

半导体器件物理学的研究结果具有重要的实际意义,它们可以用于改善器件的性能、延长器件的使用寿命和提高工作效率,同时还有助于我们更好地控制器件的可靠性。

现代的半导体器件的发展离不开
半导体器件物理学的研究,研究者们不断改进技术让其性能越来越好,使其适应不断变化的时代需求。

因此,半导体器件物理学是一门相当重要的物理学研究,它对于半导体器件的性能改善具有重要的作用,同时也促进了智能系统的发展,给我们带来了更多便利。

相关文档
最新文档