山西省2017届中考数学模拟试卷(含解析)
2017中考数学模拟试卷

2017中考数学模拟试卷A卷(共100分)一.选择题(本大题共10个小题,每小题3分,共30分)1.9的平方根是()A.﹣3 B. ±3 C. 3 D.2.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()3.用科学记数法表示0.0000061,结果是()A.6.1×10﹣5B.6.1×10﹣6C.0.61×10﹣5D.61×10﹣74.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,则今年购置计算机的数量是()(A)25台(B)50台(C)75台(D)100台5.如图所示,在菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A. 6cm B. 4cm C. 3cm D. 2cm6.抛物线y=x2+2x﹣3的顶点在第()象限.A.一B.二C.三D.四7.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形8.不等式组的解在数轴上表示为()A.B.C.D.9.函数y=+中自变量x的取值范围是()A.x≤2B.x≤2且x≠1C. x<2且x≠1D.x≠110.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB 交于点P,则∠ADP的度数为()A. 40°B. 35°C. 30°D. 45°二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.二次函数y=﹣(x﹣1)(x+3)的对称轴是直线.12.如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.13.对于下面四个结论:①CH⊥BE;②HO BG;③S正方形ABCD:S正方形ECGF=1:;④EM:MG=1:(1+),其中正确结论的序号为.14.如图是由火柴棒搭成的几何图案,则第n个图案中有根火柴棒.(用含n的代数式表示)三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(本小题满分12分,每小题6分)(1)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+.(2)解方程:x(x﹣2)+x﹣2=016. (本小题满分6分)已知x=1是关于x的一元二次方程x2﹣4mx+m2=0的根,求代数式的值.17.(本小题满分8分)我市准备在相距2千米的M,N两工厂间修一条笔直的公路,但在M地北偏东45°方向、N地北偏西60°方向的P处,有一个半径为0.6千米的住宅小区(如图),问修筑公路时,这个小区是否有居民需要搬迁?(参考数据:≈1.41,≈1.73)18. (本小题满分8分)如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式;(2)求△CDE的面积.19. (本小题满分10分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~10;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1500名考生中,考试成绩评为“B”的学生大约有多少名?(3)如果第一组只有一名是女生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.20、(本小题满分10分)已知:如图1,在面积为3的正方形ABCD中,E、F分别是BC和CD边上的两点,AE⊥BF于点G,且BE=1.(1)求证:△ABE≌△BCF;(2)求出△ABE和△BCF重叠部分(即△BEG)的面积;(3)现将△ABE绕点A逆时针方向旋转到△AB′E′(如图2),使点E落在CD边上的点E′处,问△ABE 在旋转前后与△BCF重叠部分的面积是否发生了变化?请说明理由.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于点D、C两点,若直线y=﹣x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为.22.二次函数的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2008在y轴的正半轴上,点B1,B2,B3,…,B2008在二次函数位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都为等边三角形,则△A2007B2008A2008的边长=.23.如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上.其中正确的结论的序号是(把所有正确结论的序号都填在横线上).24.已知实数a,b满足:a2+1=,b2+1=,则2015|a﹣b|=.25.(1)填空:(a﹣b)(a3+a2b+ab2+b3)=.(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)=(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2=.二、解答题(本大题共3个小题,共30分,解答过程写在大题卡上)26、(本小题满分8分)为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y(台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益Z(元)会相应降低且Z与x之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益w(元)最大,政府应将每台补贴款额x定为多少并求出总收益w的最大值.27、(本小题满分10分)如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.28、(本小题满分12分)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A 为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.。
中考综合模拟测试《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列四个实数中,是无理数的为( ) A.B.27C. D.32. 如图所示的几何体的左视图是( )A. B. C. D.3. 如图,直线AB ∥CD ,∠A =70°,∠E =30°,则∠C 等于( )A. 30°B. 40°C. 60°D. 70°4. 如果分式||11x x -+的值为0,那么的值为( ) A. -1B. 1C. -1或1D. 1或05. 下列计算正确的是( ) A. 66122a a a += B. 25822232-÷⨯= C. ()721120a a a a ⋅-⋅=-D. ()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭6. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A. 275×104B. 2.75×104C. 2.75×1012D. 27.5×10117. 如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC =90°,∠BCD =60°,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A. 30°B. 15°C. 45°D. 25°8. 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则的取值范围为( )A 2m ≤B. 2m <C. 2m ≥D. 2m >9. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A. (3,2)B. (3,1)C. (2,2)D. (4,2)10. 如图,BC 是半圆的直径,,是BC 上两点,连接BD ,CE 并延长交于点,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A. 35︒B. 38︒C. 40︒D. 42︒二、填空题11. 1483的结果是_____. 12. 将一副直角三角板如图放置,点C 在FD 的延长上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =2,则CD 的长为______.13. 在光明中学组织的全校师生迎”五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是_______.14. 在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.三、解答题15. 计算:2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭. 16. 解分式方程:31133x x-=-- ______________. 17. 已知如图,△ABC 中,AB =AC ,用尺规在BC 边上求作一点P ,使△BP A ∽△BAC (保留作图痕迹,不写作法).18. 学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min )进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图. 组别课前预习时间/t min频数(人数)频率1 010t ≤<2 21020t ≤<0.103 2030t ≤< 16 0.324 3040t ≤< 540t ≥3请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为 ,表中的a = ,b = ,c = ; (2)试计算第4组人数所对应扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min 的学生人数. 19. 某商场运动服装专柜,对,A B 两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.第一次 第二次 品牌运动服装数/件 20 30 品牌运动服装数/件 30 40 累计采购款/元1020014400(1)问,A B 两种品牌运动服的进货单价各是多少元?(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?20. 在如图菱形ABCD 中,点是BC 边上一点,连接AP ,点,E F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠.(1)求证:ABF DAE ≌;(2)求证:DE BF EF =+.21. 2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用”硬科技”打造了最具独特的风景线,2018”西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F点,此时,他测得F点都塔顶A点的俯视角为30°,同时也测得F点到塔底C 点的俯视角为45°,已知塔底边心距OC=23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到01米)?(3≈1.73,2≈1.41).22. 如图,点A(32,4),B(3,m)是直线AB与反比例函数nyx(x>0)图象的两个交点.AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB的表达式;(2)△ABC和△ABD的面积分别为S1,S2,求S2-S1.23. 如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O 点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积最大值.24. 问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=42,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.答案与解析一、选择题1. 下列四个实数中,是无理数的为()A. B. 27C. D. 3【答案】D【解析】【分析】根据无理数的定义”也称为无限不循环小数,不能写作两整数之比”即可.【详解】由无理数的定义得:四个实数中,只有3是无理数故选:D.【点睛】本题考查了无理数的定义,熟记定义是解题关键.2. 如图所示的几何体的左视图是( )A. B. C. D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3. 如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于( )A. 30°B. 40°C. 60°D. 70°【答案】B 【解析】 【分析】根据平行线的性质得出∠A =∠EFD ,再根据三角形的外角性质求出∠C 即可. 【详解】解:∵AB ∥CD ,∠A =70°, ∴∠EFD =70°, ∵∠E =30°, ∴∠C =40°, 故选B .【点睛】本题考查了平行线的性质和三角形的外角性质,关键是求出∠EFD 的度数和求出∠EFD =∠A . 4. 如果分式||11x x -+的值为0,那么的值为( ) A. -1 B. 1C. -1或1D. 1或0【答案】B 【解析】 【分析】根据分式的值为零的条件可以求出x 的值. 【详解】根据题意,得 |x|-1=0且x+1≠0, 解得,x=1. 故选B .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 5. 下列计算正确的是( ) A. 66122a a a += B. 25822232-÷⨯= C. ()721120a a a a ⋅-⋅=- D. ()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭【答案】C 【解析】 【分析】根据整式的加减、有理数的乘方运算、同底数幂的乘法、积的乘方逐项判断即可.【详解】A 、6662a a a +=,此项错误B 、25825825822222222-----+=⨯=÷⨯⨯=,此项错误C 、()7211271120a a a a a ++⋅-⋅=-=-,此项正确D 、()()322236751128422ab a b ab a b a b ⎛⎫⎛⎫-⋅--⋅-= ⎪ ⎪⎝⎭⎝⎭=,此项错误故选:C .【点睛】本题考查了整式的加减、有理数的乘方运算、同底数幂的乘法、积的乘方,熟记各运算法则是解题关键.6. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A. 275×104 B. 2.75×104 C. 2.75×1012 D. 27.5×1011 【答案】C 【解析】【详解】解:将27500亿用科学记数法表示为:2.75×1012. 故选C .【点睛】本题考查科学记数法—表示较大的数.7. 如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC =90°,∠BCD =60°,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A. 30°B. 15°C. 45°D. 25°【答案】B 【解析】 解:∵∠DBC =90°,E 为DC 中点,∴BE =CE =12CD ,∵∠BCD =60°,∴∠CBE =60°,∴∠DBF =30°,∵△ABD 是等腰直角三角形,∴∠ABD =45°,∴∠ABF =75°,∴∠AFB =180°﹣90°﹣75°=15°,故选B .8. 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则的取值范围为( )A. 2m ≤B. 2m <C. 2m ≥D. 2m >【答案】A 【解析】 【分析】求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m 的不等式,解之可得. 【详解】解不等式1132x x+<-,得:x >8, ∵不等式组无解, ∴4m≤8, 解得m≤2, 故选A .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A (3,2) B. (3,1) C. (2,2) D. (4,2)【答案】A 【解析】【详解】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴AD BG =13, ∵BG =6, ∴AD =BC =2, ∵AD ∥BG , ∴△OAD ∽△OBG ,∴OA OB =13, ∴2OAOA +=13, 解得:OA =1,∴OB =3, ∴C 点坐标为:(3,2), 故选A .10. 如图,BC 是半圆的直径,,是BC 上两点,连接BD ,CE 并延长交于点,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A. 35︒B. 38︒C. 40︒D. 42︒【答案】C 【解析】 【分析】连接CD ,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可, 【详解】连接CD ,如图所示:∵BC 是半圆O 的直径, ∴∠BDC=90°, ∴∠ADC=90°,∴∠ACD=90°-∠A=20°, ∴∠DOE=2∠ACD=40°, 故选C .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.二、填空题11. 计算14893-的结果是_____.【答案】3【解析】【分析】先化简,再合并同类二次根式即可.【详解】解:14893-4333=-=3故答案为3.【点睛】此题考查二次根式的加减运算,注意先化简,再合并.12. 将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,则CD的长为______.【答案】12﹣3【解析】【分析】如图(见解析),过点B作BG CF⊥于点G,先根据直角三角形的性质、平行线的性质得出45,60,2BCF EDF BC∠=︒∠=︒=,CG DG的长,然后根据线段的和差即可得.【详解】如图,过点B作BG CF⊥于点G90,45ACB A∠=︒∠=︒9045ABC A∴∠=︒-∠=︒,即45ABC A∠=∠=︒122BC AC∴==//AB CF45ABCBCF∴==∠∠︒Rt BCG为等腰直角三角形2122CG BG BC ∴=== 又90,30F E ∠=︒∠=︒9060EDF E ∴=︒-∠=∠︒在Rt BDG 中,tan BG BDG DG ∠=,即12tan 60DG︒= 解得121243tan 603DG ===︒1243CD CG DG ∴=-=-故答案:1243-.【点睛】本题考查了直角三角形的性质、平行线的性质、解直角三角形等知识点,通过作辅助线,构造直角三角形,进而运用到解直角三角形的方法是解题关键.13. 在光明中学组织的全校师生迎”五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是_______.【答案】96分 【解析】 【分析】先根据图得出这25名同学的得分,再根据中位数的定义即可得.【详解】由图可知,得分为94分的有5人,得分为96分的有8人,得分为98分的有9人,得分为100分的有3人则将这25名同学的得分按从小到大的顺序进行排序,排在第13位的得分为96分 由中位数的定义得:这些成绩的中位数是96分 故答案为:96分.【点睛】本题考查了中位数的定义,读懂图形,掌握中位数的定义是解题关键.14. 在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______. 【答案】14【解析】 【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率. 【详解】如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果, ∴小亮和大刚两人恰好分在同一组的概率是41164=, 故答案为14. 【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三、解答题15. 计算:2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭. 【答案】63a + 【解析】 【分析】根据分式的混合运算法则计算即可. 【详解】原式223319(3)a a a a ++=-÷--23(3)1(3)(3)3a a a a a +-=-⋅+-+313a a -=-+ 3(3)3a a a +--=+ 63a =+. 【点睛】本题考查的是分式的混合运算,掌握分式的混合运算法则、分式的通分、约分法则是解题的关键. 16. 解分式方程:31133x x-=-- ______________. 【答案】x =7 【解析】 【分析】方程两边都乘以最简公分母,注意不要漏乘没有分母的项;去括号,移项合并同类项,即可求得方程的解. 【详解】解:方程两边都乘以(x-3),得:3-(x-3)=-1 去括号,移项,得:-x=-1-6 合并同类项,得:x=7 经检验,x=7是原方程的根 故答案为:x=7【点睛】本题考查了解分式方程,注意在去分母时,不要漏乘没有分母的项,解分式方程必须验根. 17. 已知如图,△ABC 中,AB =AC ,用尺规在BC 边上求作一点P ,使△BP A ∽△BAC (保留作图痕迹,不写作法).【答案】详见解析 【解析】 【分析】作出AB 的垂直平分线,可得BP =AP ,则∠PBA =∠BAP ,进而得出△BPA ∽△BAC . 【详解】解:如图所示:点P 即为所求, 此时△BPA ∽△BAC .【点睛】此题主要考查了相似变换以及复杂作图,正确把握相似三角形的判定方法是解题关键.18. 学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min)进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图.组别课前预习时间/t min频数(人数) 频率t≤< 21 010t≤<0.102 1020t≤<16 0.323 2030t≤<4 3040t≥ 35 40请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为,表中的a=,b=,c=;(2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min的学生人数.【答案】(1)50,5,24,0.48;(2)第4组人数所对应的扇形圆心角的度数为172.8;(3)九年级每天课前预习时间不少于20min的学生约有860人.【解析】【分析】(1)根据3组的频数和百分数,即可得到本次调查的样本容量,根据2组的百分比即可得到a的值,进而得到2组的人数,由本次调查的样本容量-其他小组的人数即可得到b,用b÷本次调查的样本容量得到c;(2)根据4组的人数占总人数的百分比乘上360°,即可得到扇形统计图中”4”区对应的圆心角度数;(3)根据每天课前预习时间不少于20min的学生人数所占的比例乘上该校九年级总人数,即可得到结果.【详解】(1)16÷0.32=50,a=50×0.1=5,b=50-2-5-16-3=24,c=24÷50=0.48;故答案为50,5,24,0.48;(2)第4组人数所对应的扇形圆心角的度数=360°×0.48=172.8°;(3)每天课前预习时间不少于20min的学生人数的频率=1-250-0.10=0.86,∴1000×0.86=860,答:这些学生中每天课前预习时间不少于20min的学生人数是860人.【点睛】本题主要考查了扇形统计图的应用,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.19. 某商场的运动服装专柜,对,A B两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.(1)问,A B两种品牌运动服的进货单价各是多少元?(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?【答案】(1),A B两种品牌运动服的进货单价分别为240元和180元;(2)最多能购进65件品牌运动服. 【解析】【分析】(1)直接利用两次采购的总费用得出等式进而得出答案;(2)利用采购B品牌的件数比A品牌件数的32倍多5件,在采购总价不超过21300元,进而得出不等式求出答案.【详解】(1)设,A B两种品牌运动服的进货单价分别为元和元.根据题意,得203010200304014400x y x y +=⎧⎨+=⎩,解之,得240180x y =⎧⎨=⎩.经检验,方程组的解符合题意.答:,A B 两种品牌运动服的进货单价分别为240元和180元.(2)设购进品牌运动服件,则购进品牌运动服352m ⎛⎫+⎪⎝⎭件, ∴32401805213002m m ⎛⎫++≤⎪⎝⎭, 解得,40m ≤.经检验,不等式的解符合题意,∴3354056522m +≤⨯+=. 答:最多能购进65件品牌运动服.【点睛】此题主要考查了一元一次不等式的应用和二元一次方程组的应用,正确得出等量关系是解题关键. 20. 在如图菱形ABCD 中,点是BC 边上一点,连接AP ,点,E F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠.(1)求证:ABF DAE ≌;(2)求证:DE BF EF =+. 【答案】(1)见解析;(2)见解析. 【解析】 【分析】(1)根据菱形的性质得到AB=AD ,AD ∥BC ,由平行线的性质得到∠BOA=∠DAE ,等量代换得到∠BAF=∠ADE ,求得∠ABF=∠DAE ,根据全等三角形的判定定理即可得到结论; (2)根据全等三角形的性质得到AE=BF ,DE=AF ,根据线段的和差即可得到结论. 【详解】证明:(1)∵四边形ABCD 为菱形, ∴AB AD =,AD BC ∥, ∴BPA DAE ∠=∠.在ABP ∆和DAE ∆中, 又∵ABC AED ∠=∠, ∴BAF ADE ∠=∠.∵ABF BPF ∠=∠且BPA DAE ∠=∠, ∴ABF DAE ∠=∠, 又∵AB DA =, ∴()ABF DAE ASA ≅ (2)∵ABF DAE ≅, ∴AE BF =,DE AF =. ∵AF AE EF BF EF =+=+, ∴DE BF EF =+.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的性质是解题的关键. 21. 2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用”硬科技”打造了最具独特的风景线,2018”西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F 点,此时,他测得F 点都塔顶A 点的俯视角为30°,同时也测得F 点到塔底C 点的俯视角为45°,已知塔底边心距OC =23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到0.1米)?(3≈1.73,2 ≈1.41).【答案】大雁塔的大体高度是65.1米. 【解析】 【分析】作FD ⊥BC ,交BC 的延长线于D ,作AE ⊥DF 于E ,则四边形AODE 是矩形.解直角△CDF ,得出CD =DF =185米,那么OD =OC+CD =208米,AE =OD =208米.再解直角△AEF ,求出EF =AE•tan ∠FAE =20833米,然后根据OA=DE=DF﹣EF即可求解.【详解】解:如图,作FD⊥BC,交BC的延长线于D,作AE⊥DF于E,则四边形AODE是矩形.由题意,可知∠FAE=30°,∠FCD=45°,DF=185米.在直角△CDF中,∵∠D=90°,∠FCD=45°,∴CD=DF=185米,∴OD=OC+CD=208米,∴AE=OD=208米.在直角△AEF中,∵∠AEF=90°,∠FAE=30°,∴EF=AE•tan∠FAE=208×33=20833(米),∴DE=DF﹣EF=185﹣20833≈185﹣119.95≈65.1(米),∴OA=DE≈65.1米.故大雁塔的大体高度是65.1米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.22. 如图,点A(32,4),B(3,m)是直线AB与反比例函数nyx(x>0)图象的两个交点.AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB 的表达式;(2)△ABC 和△ABD 的面积分别为S 1,S 2,求S 2-S 1.【答案】(1)463y x =-+;(2)34 【解析】【分析】(1)先由A 点坐标求出反比例函数的表达式,再求出B 点坐标,最后运用待定系数法求直线AB 的表达式即可;(2)ABC 的面积可由”底乘高除以2”直接求得,ABD △的面积运用”补”的思想求出,然后两者作差即可得.【详解】(1)由点3(,4)2A 在反比例函数(0)n y x x=>的图象上 ∴432n=∴6n = ∴反比例函数的表达式为6(0)y x x=> 将点(3,)B m 代入6y x =得623m == ∴(3,2)B设直线AB 的表达式为y kx b =+ 将点3(,4),(3,2)2A B 代入得34232k b k b ⎧+=⎪⎨⎪+=⎩, 解得436k b ⎧=-⎪⎨⎪=⎩ 则直线AB 的表达式为463y x =-+;(2)由点A 、B 的坐标得4AC =,点B 到AC 的距离为33322-= ∴1134322S =⨯⨯= 如图,设直线AB 与y 轴的交点为E令0x =得6y =,则点E 坐标为(0,6)E(0,1)D∴615DE =-=由点3(,4),(3,2)2A B 得:点A 、B 到DE 的距离分别为32,3 ∴2113155352224BDE ADE S S S=-=⨯⨯-⨯⨯= 则21153344S S -=-=.【点睛】本题考查了运用待定系数法求反比例函数、一次函数的表达式,在平面直角坐标系中求几何图形的面积,正确求出两个函数的表达式是解题关键.23. 如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣2,0),点B (4,0),与y 轴交于点C (0,8),连接BC ,又已知位于y 轴右侧且垂直于x 轴的动直线l ,沿x 轴正方向从O 运动到B (不含O 点和B 点),且分别交抛物线、线段BC 以及x 轴于点P ,D ,E .(1)求抛物线的表达式;(2)连接AC ,AP ,当直线l 运动时,求使得△PEA 和△AOC 相似点P 的坐标;(3)作PF ⊥BC ,垂足为F ,当直线l 运动时,求Rt △PFD 面积的最大值.【答案】(1) y =﹣x 2+2x +8;(2)点P (1523,416);(3)165 【解析】【分析】(1)将点A 、B 、C 的坐标代入二次函数表达式,即可求解;(2)只有当∠PEA =∠AOC 时,PEA △∽AOC ,可得:PE =4AE ,设点P 坐标(4k ﹣2,k ),即可求解; (3)利用Rt △PFD ∽Rt △BOC 得: 2()PFD BOC S PD S BC=,再求出PD 的最大值,即可求解. 【详解】解:(1)将点A 、B 、C 的坐标代入二次函数表达式得:42016408a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:a = -1,b =2,c =8,故抛物线的表达式为:y =﹣x 2+2x +8;(2)∵点A (﹣2,0)、C (0,8),∴OA =2,OC =8,∵l ⊥x 轴,∴∠PEA =∠AOC =90°,∵∠P AE ≠∠CAO ,∴只有当∠PEA =∠AOC 时,PEA △∽AOC , 此时AE PE CO AO =,即:82AE PE =, ∴AE =4PE ,设点P 的纵坐标为k ,则PE =k ,AE =4k ,∴OE =4k ﹣2,将点P 坐标(4k ﹣2,k )代入二次函数表达式并解得:k =0或2316(舍去0),则点P (1523,416); (3)在Rt △PFD 中,∠PFD =∠COB =90°,∵l ∥y 轴,∴∠PDF =∠COB ,∴Rt △PFD ∽Rt △BOC , ∴2()PFD BOC S PD S BC=, ∴S △PDF =2()PD BC •S △BOC , 而S △BOC =12OB •OC =12×4×8=16,BC==∴S △PDF =2()PD BC•S △BOC =15PD 2, 即当PD 取得最大值时,S △PDF 最大,将B 、C 坐标代入一次函数表达式y kx b =+得:408k b b +=⎧⎨=⎩, 解得:28k b =-⎧⎨=⎩, ∴直线BC 的表达式为:y =﹣2x +8,设点P (m ,﹣m 2+2m +8),则点D (m ,﹣2m +8),则PD =﹣m 2+2m +8+2m ﹣8=﹣(m ﹣2)2+4,当m =2时,PD 的最大值为4,故当PD =4时,∴S △PDF =15PD 2=165. 【点睛】本题主要考查了待定系数法求二次函数和一次函数的解析式,相似三角形的判定和性质,利用数形结合的思想把代数和几何结合起来,利用点的坐标的意义表示线段的长度,从而求得线段之间的关系是正确解答本题的关键.24. 问题探究(1)如图①,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF=45°,则线段BE 、EF 、FD 之间的数量关系为 ;(2)如图②,在△ADC 中,AD=2,CD=4,∠ADC 是一个不固定的角,以AC 为边向△ADC 的另一侧作等边△ABC ,连接BD ,则BD 的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由; 问题解决(3)如图③,在四边形ABCD 中,AB=AD ,∠BAD=60°,,若BD ⊥CD ,垂足为点D ,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.【答案】(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为26.【解析】【分析】(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.。
2017年中考数学模拟卷附答案

2017年中考数学模拟卷1.(2013年福建漳州)用下列一种多边形不能铺满地面的是( )A.正方形B.正十边形C.正六边形D.等边三角形2.(2013年湖南长沙)下列多边形中,内角和与外角和相等的是( )A.四边形B.五边形C.六边形D.八边形3.(2013年海南)如图439,在▱ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )A.BO=DOB.CD=ABC.∠BAD=∠BCDD.AC=BD图439图4310图4311图4312图43134.(2013年黑龙江哈尔滨)如图4310,在▱ABCD中,AD=2AB,CE平分∠BCD,并交AD边于点E,且AE=3,则AB的长为( )A.4B.3C.52D.25.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限6.(2013年山东烟台)如图4311,▱ABCD的周长为36,对角线AC,BD 相交于点O,点E是CD的中点,BD=12,则△DOE的周长为____________.7.(2013年江西)如图4312,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为__________.8.(2013年福建泉州)如图4313,顺次连接四边形 ABCD四边的中点E,F,G,H,则四边形 EFGH 的形状一定是__________.9.(2012年四川德阳)已知一个多边形的内角和是外角和的32,则这个多边形的边数是________.10.(2013年四川南充)如图4314,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.11.(2013年福建漳州)如图4315,在▱ABCD中,E,F是对角线BD上两点,且BE=DF.(1)图中共有______对全等三角形;(2)请写出其中一对全等三角形:________≌__________,并加以证明.B级中等题12.(2013年广东广州)如图4316,已知四边形ABCD是平行四边形,把△ABD沿对角线BD翻折180°得到△A′BD.(1)利用尺规作出△A′BD(要求保留作图痕迹,不写作法);(2)设DA′与BC交于点E,求证:△BA′E≌△DCE.13.(2012年辽宁沈阳)如图4317,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.C级拔尖题14.(1)如图4318(1),▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.(2)如图4318(2),将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.2017年中考数学模拟卷答案1.B2.A3.D4.B5.C6.157.25°8.平行四边形9.510.证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD.∴∠OAE=∠OCF.∵∠AOE=∠COF,∴△OAE≌△OCF(ASA).∴OE=OF.11.解:(1)3(2)①△ABE≌△CDF.证明:在▱ABCD中,AB∥CD,AB=CD,∴∠ABE=∠CDF.又∵BE=DF,∴△ABE≌△CDF(SAS).②△ADE≌△CBF.证明:在▱ABCD中,AD∥BC,AD=BC,∴∠ADE=∠CBF,∵BE=DF,∴BD-BE=BD-DF,即DE=BF.∴△ADE≌△CBF(SAS).③△ABD≌△CDB.证明:在▱ABCD中,AB=CD,AD=BC,又∵BD=DB,∴△ABD≌△CDB(SSS).(任选其中一对进行证明即可)12.解:(1)略(2)∵四边形ABCD是平行四边形,∴AB=CD,∠BAD=∠C,由折叠性质,可得∠A′=∠A,A′B=AB,设A′D与BC交于点E,∴∠A′=∠C,A′B=CD,在△BA′E和△DCE中,∠A′=∠C,∠BEA′=∠DEC,BA′=DC,∴△BA′E≌△DCE(AAS).13.证明:(1)∵四边形ABCD是平行四边形,∴∠DAB=∠BCD.∴∠EAM=∠FCN.又∵AD∥BC,∴∠E=∠F.又∵AE=CF,∴△AEM≌△CFN(ASA).(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.又由(1),得AM=CN,∴BM=DN.又∵BM∥DN∴四边形BMDN是平行四边形.14.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC.∴∠1=∠2.又∵∠3=∠4,∴△AOE≌△COF(ASA).∴AE=CF.(2)∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D.由(1),得AE=CF.由折叠的性质,得AE=A1E,∠A1=∠A,∠B1=∠B,∴A1E=CF,∠A1=∠C,∠B1=∠D.又∵∠1=∠2,∴∠3=∠4.∵∠5=∠3,∠4=∠6,∴∠5=∠6.在△A1IE与△CGF中,∠A1=∠C,∠5=∠6,A1E=CF,∴△A1IE≌△CGF(AAS).∴EI=FG.2017年中考数学模拟卷A级基础题1.(2013年浙江丽水)若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点( )A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c的值为( )A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.(2013年浙江宁波)如图3411,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是( )A.abc<0B.2a+b<0C.a-b+c<0D.4ac-b2<04.(2013年山东聊城)二次函数y=ax2+bx的图象如图3412,那么一次函数y=ax+b的图象大致是( )5.(2013年四川内江)若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是( )A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)6.(2013年江苏徐州)二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x … -3 -2 -1 0 1 …y … -3 -2 -3 -6 -11 …则该函数图象的顶点坐标为( )A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)7.(2013年湖北黄石)若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.8.(2013年北京)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.9.(2013年浙江湖州)已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.B级中等题10.(2013年江苏苏州)已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( )A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.(2013年四川绵阳)二次函数y=ax2+bx+c的图象如图3413,给出下列结论:①2a+b>0;②b>a>c;③若-112.(2013年广东)已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图3414,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.(2013年黑龙江绥化)如图3415,已知抛物线y=1a(x-2)(x+a)(a>0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14.(2012年广东肇庆)已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x1<0(1)求证:n+4m=0;(2)求m,n的值;(3)当p>0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2013年广东湛江)如图3416,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.2017年中考数学模拟卷答案1.A2.B 解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又∵1-2=-1,-4+3=-1,∴平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,∴b=2,c=0.3.D4.C5.C6.B7.k=0或k=-1 8.y=x2+1(答案不唯一)9.解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),∴抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,∴抛物线的顶点坐标为(1,4).10.B 11.①③④12.解:(1)将点O(0,0)代入,解得m=±1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,∴D(2,-1).当x=0时,y=3,∴C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,∴P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.∵点B在点C的左侧,∴B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).∴S△BCE=12×6×2=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2.∴直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.14.(1)证明:∵二次函数y=mx2+nx+p图象的顶点横坐标是2,∴抛物线的对称轴为x=2,即-n2m=2,化简,得n+4m=0.(2)解:∵二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x1<0∴OA=-x1,OB=x2,x1+x2=-nm,x1•x2=pm.令x=0,得y=p,∴C(0,p).∴OC=|p|.由三角函数定义,得tan∠CAO=OCOA=-|p|x1,tan∠CBO=OCOB=|p|x2.∵tan∠CAO-tan∠CBO=1,即-|p|x1-|p|x2=1.化简,得x1+x2x1•x2=-1|p|.将x1+x2=-nm,x1•x2=pm代入,得-nmpm=-1|p|化简,得⇒n=p|p|=±1.由(1)知n+4m=0,∴当n=1时,m=-14;当n=-1时,m=14.∴m,n的值为:m=14,n=-1(此时抛物线开口向上)或m=-14,n=1(此时抛物线开口向下).(3)解:由(2)知,当p>0时,n=1,m=-14,∴抛物线解析式为:y=-14x2+x+p.联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,化简,得x2-4(p-3)=0.∵二次函数图象与直线y=x+3仅有一个交点,∴一元二次方程根的判别式等于0,即Δ=02+16(p-3)=0,解得p=3.∴y=-14x2+x+3=-14(x-2)2+4.当x=2时,二次函数有最大值,最大值为4.15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,此抛物线过点A(0,-5),∴-5=a(0-3)2+4,∴a=-1.∴抛物线的解析式为y=-(x-3)2+4,即y=-x2+6x-5.(2)抛物线的对称轴与⊙C相离.证明:令y=0,即-x2+6x-5=0,得x=1或x=5,∴B(1,0),C(5,0).设切点为E,连接CE,由题意,得,Rt△ABO∽Rt△BCE.∴ABBC=OBCE,即12+524=1CE,解得CE=426.∵以点C为圆心的圆与直线BD相切,⊙C的半径为r=d=426.又点C到抛物线对称轴的距离为5-3=2,而2>426.则此时抛物线的对称轴与⊙C相离.(3)假设存在满足条件的点P(xp,yp),∵A(0,-5),C(5,0),∴AC2=50,AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.①当∠A=90°时,在Rt△CAP中,由勾股定理,得AC2+AP2=CP2,∴50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,整理,得xp+yp+5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,∴yp=-x2p+6xp-5.∴xp+(-x2p+6xp-5)+5=0,解得xp=7或xp=0,∴yp=-12或yp=-5.∴点P为(7,-12)或(0,-5)(舍去).②当∠C=90°时,在Rt△ACP中,由勾股定理,得AC2+CP2=AP2,∴50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,整理,得xp+yp-5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,∴yp=-x2p+6xp-5,∴xp+(-x2p+6xp-5)-5=0,解得xp=2或xp=5,∴yp=3或yp=0.∴点P为(2,3)或(5,0)(舍去)综上所述,满足条件的点P的坐标为(7,-12)或(2,3).。
2017年中考数学模拟卷附答案

2017年中考数学模拟卷附答案2017年中考数学模拟卷附答案学习数学没有捷径,但是多做模拟卷一定会有收获的。
接下来,小编为你分享2017年中考数学模拟卷附答案。
2017年中考数学模拟卷1.(2013年福建漳州)用下列一种多边形不能铺满地面的是( )A.正方形B.正十边形C.正六边形D.等边三角形2.(2013年湖南长沙)下列多边形中,内角和与外角和相等的是( )A.四边形B.五边形C.六边形D.八边形3.(2013年海南)如图439,在ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )A.BO=DOB.CD=ABC.∠BAD=∠BCDD.AC=BD图439 图4310 图4311 图4312 图43134.(2013年黑龙江哈尔滨)如图4310,在ABCD中,AD=2AB,CE平分∠BCD,并交AD边于点E,且AE=3,则AB的长为( )A.4B.3C.52D.25.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限6.(2013年山东烟台)如图4311,ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为____________.7.(2013年江西)如图4312,ABCD与DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为__________.8.(2013年福建泉州)如图4313,顺次连接四边形 ABCD四边的中点E,F,G,H,则四边形 EFGH 的形状一定是__________.9.(2012年四川德阳)已知一个多边形的内角和是外角和的32,则这个多边形的`边数是________.10.(2013年四川南充)如图4314,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.11.(2013年福建漳州)如图4315,在ABCD中,E,F是对角线BD上两点,且BE=DF.(1)图中共有______对全等三角形;(2)请写出其中一对全等三角形:________≌__________,并加以证明.B级中等题12.(2013年广东广州)如图4316,已知四边形ABCD是平行四边形,把△ABD沿对角线BD翻折180°得到△A′BD.(1)利用尺规作出△A′BD(要求保留作图痕迹,不写作法);(2)设DA′与BC交于点E,求证:△BA′E≌△DCE.13.(2012年辽宁沈阳)如图4317,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.C级拔尖题14.(1)如图4318(1),ABCD的对角线AC,BD交于点O,直线EF 过点O,分别交AD,BC于点E,F.求证:AE=CF.(2)如图4318(2),将ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.2017年中考数学模拟卷答案1.B2.A3.D4.B5.C6.157.25°8.平行四边形 9.510.证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥CD.∴∠OAE=∠OCF.∵∠AOE=∠COF,∴△OAE≌△OCF(ASA).∴OE=OF.11.解:(1)3(2)①△ABE≌△CDF.证明:在ABCD中,AB∥CD,AB=CD,∴∠ABE=∠CDF.又∵BE=DF,∴△ABE≌△CDF(SAS).②△ADE≌△CBF.证明:在ABCD中,AD∥BC,AD=BC,∴∠ADE=∠CBF,∵BE=DF,∴BD-BE=BD-DF,即DE=BF.∴△ADE≌△CBF(SAS).③△ABD≌△CDB.证明:在ABCD中,AB=CD,AD=BC,又∵BD=DB,∴△ABD≌△CDB(SSS).(任选其中一对进行证明即可)12.解:(1)略(2)∵四边形ABCD是平行四边形,∴AB=CD,∠BAD=∠C,由折叠性质,可得∠A′=∠A,A′B=AB,设A′D与BC交于点E,∴∠A′=∠C,A′B=CD,在△BA′E和△DCE中,∠A′=∠C,∠BEA′=∠DEC,BA′=DC,∴△BA′E≌△DCE(AAS).13.证明:(1)∵四边形ABCD是平行四边形,∴∠DAB=∠BCD.∴∠EAM=∠FCN.又∵AD∥BC,∴∠E=∠F.又∵AE=CF,∴△AEM≌△CFN(ASA).(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.又由(1),得AM=CN,∴BM=DN.又∵BM∥DN∴四边形BMDN是平行四边形.14.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC.∴∠1=∠2.又∵∠3=∠4,∴△AOE≌△COF(ASA).∴AE=CF.(2)∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D.由(1),得AE=CF.由折叠的性质,得AE=A1E,∠A1=∠A,∠B1=∠B,∴A1E=CF,∠A1=∠C,∠B1=∠D.又∵∠1=∠2,∴∠3=∠4.∵∠5=∠3,∠4=∠6,∴∠5=∠6.在△A1IE与△CGF中,∠A1=∠C,∠5=∠6,A1E=CF,∴△A1IE≌△CGF(AAS).∴EI=FG.。
2017年中考数学模拟试题及答案

2021年中考模拟试题数学试题卷本卷共六大题,24小题,共120分。
考试时间120分钟一、选择题〔本大题共6小题,每题3分,共18分〕1、比-2021小1的数是〔〕A、-2021B、2021C、-2021 D、20212、如图,直线l1∥l2,∠1=40°,∠2=75°,那么∠3=〔〕A、70°B、65°C、60°D、55°3、从棱长为aa的小正方体,得到一个如下图的零件,那么这个零件的左视图是〔〕A、 B、 C、 D、4、某红外线遥控器发出的红外线波长为0.000 00094m,用科学计数法表示这个数是〔〕×10-7m ×107m ×10-8m ×108m5、以下计算正确的选项是〔〕A、(2a-1)2=4a2-1B、3a6÷3a3=a2C、(-2)4=-a4b6D、-2a+(2a-1)=-16、某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低4元。
某天,一位零售商分别用去240元,160元来购进四星级及五星级这两种枇杷,其中,四星级枇杷比五星级枇杷多购进10千克。
假设零售商当天购进四星级枇杷x千克,那么列出关于x的方程为〔〕A、+4=B、-4=C、+4=D、-4=二、填空题〔本大题共8小题,每题3分,共24分〕7、因式分解:2-x=。
8、x=1是关于x的方程x2+x+2k=0的一个根,那么它的另一个根是。
9、=,那么分式的值为。
312l1l2AFCBGDE正面10、如图,正五边形,∥交的延长线于点F ,那么∠= 度。
11、x =-1,2) ,y =+1,2) ,那么x 2++y 2的值为 。
12、分式方程+=1的解为。
13、现有一张圆心角为108°,半径为作成一个底面半径为10的圆锥形纸帽〔接缝处不重叠〕,那么剪去的扇形纸片的圆心角θ为 。
14、如图,正方形及正方形起始时互相重合, 现将正方形绕点A 逆时针旋转,设旋转角∠=α 〔0°<α<360°〕,那么当α= 时,正方形的 顶点F 会落在正方形的对角线或所在直线上。
中考仿真模拟测试《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列实数中,无理数是( )A. 3.14B. 2.12122C. 39D. 237 2. 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D. 3. 下列计算正确的是( )A. ()222a b a b +=+B. ()3326a a -=- C. 428a a a ⋅= D. ()()2111a a a -+--=- 4. 如图所示,已知AB ∥CD ,EF 平分∠CEG ,∠1=80°,则∠2的度数为( )A. 20°B. 40°C. 50°D. 60°5. 若正比例函数y kx =图象的经过一、三象限,且过点()2,4A a 和()2,B a ,则的值为( ) A. B. C. D.6. 如图,ABC ∆中,,70,AB AC C BD =∠=︒是AC 边上的高线,点在AB 上,且BE BD =,则ADE ∠的度数为( )A. 20︒B. 25︒C. 30D. 35︒ 7. 将直线1:12L y x =-向左平移个单位长度得到直线,则直线解析式为( ) A. 112y x =+ B. 122y x =+ C. 132y x =+ D. 112y x =-+ 8. 如图,菱形ABCD 的对角线,AC BD 相交于点,过点作AE BC ⊥于点,连接OE .若6OB =,菱形ABCD 的面积为,则OE 的长为( )A. B. 4.5 C. D.9. 如图,四边形ABCD 内接于半径为的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A. 3B. 62C. 3D. 9210. 已知抛物线2:4W y x x c =-+,其顶点为,与轴交于点,将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则的值为( )A. 32-B. 3C. 32D. 52二、填空题11. 分解因式:224ax ay -=________.12. 已知正六边形的周长为,则这个正六边形的边心距是_______. 13. 如图,在平面直角坐标系中,过原点的直线与反比例函数80y x x=-(<)交于点,与反比例函数 ()0k y x x=>交于点,过点作轴的垂线,过点作轴的垂线,两直线交于点,若ABC ∆的面积为,则的值为_______.14. 如图,正方形ABCD 的边长为,点在AD 上,连接 BP CP 、,则 s in BPC ∠的最大值为________.三.解答题15. 计算:211133tan 3033-⎛⎫⨯-+︒ ⎪⎝⎭. 16. 化简:221111x x x x x ⎛⎫-+--÷ ⎪++⎝⎭. 17. 如图,已知ABC ∆,点AB 边上,且90ACD ∠=︒,请用尺规作图法在BC 边上求作一点,使得APC ADC ∠=∠.(保留作图痕迹,不写作法)18. 如图,已知点 ,,,A D C B 在同一直线上,,//,//AD BC DE CF AE BF =;求证:AE BF =.19. 2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生人数,并将条形统计图补充完整;(2)求扇形统计图中的等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等学生有多少人?20. 如图,在建筑物顶部有一长方形广告牌架CDEF ,已知2CD m =,在地面上处测得广告牌 上端的仰角为,且34tan α=,前进10m 到达处,在处测得广告牌架下端的仰角为45︒,求广告牌 架下端到地面的距离.21. 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量 (微克)与时间 (小时)之间的关系近似地满足图中折线.(1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.22. 现有,,,A B C D 四张不透明的卡片,除正面上的图案不同外,其他均相同,将这四张卡片背 面向上洗匀后放在桌面上.(1)从中随机取出一张卡片,卡片上图案是中心对称图形的概率是_____;(2)若从四张卡片中随机拿出两张卡片,请用画树状图或列表的方法,求抽取的两张卡片都是轴对称图形的概率.23. 如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于,交O 于,过作//EF AC 交BA 的延长线于.(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.24. 如图,已知抛物线2y x bx c =-++与直线AB 交于点()3,0A -,点()1,4B .(1)求抛物线的解析式;(2)点M 是轴上方抛物线上一点,点是直线AB 上一点,若A O M N 、、、以为顶点的四边形是以 OA 为边的平行四边形,求点M 的坐标.25. 问题发现(1)如图①,ABC ∆为边长为的等边三角形,是AB 边上一点且CD 平分ABC ∆的面积,则线段CD 的长度为____;问题探究(2)如图②,ABCD 中,6,8,60AB BC B ==∠=︒,点M 在AD 上,点在BC 上,若MN 平分ABCD 的面积,且MN 最短,请你画出符合要求的线段MM ,并求出此时MN 与AM 的长度.问题解决(3)如图③,某公园的一块空地由三条道路围成,即线段AC AB BC 、、,已知160AB =米,120BC =米,90,AC ABC ∠=︒的圆心在AB 边上,现规划在空地上种植草坪,并AC 的中点修一条直路PM (点M 在 AB 上).请问是否存在PM ,使得PM 平分该空地的面积?若存在,请求出此时AM 的长度;若不存在,请说明理由.答案与解析一、选择题1. 下列实数中,无理数是()A. 3.14B. 2.12122C. 39D. 23 7【答案】C【解析】【分析】根据无理数的定义,逐一判断选项,即可得到答案.【详解】∵3.14,2.12122,237是分数,属于有理数,39是无理数,∴C符合题意,故选C.【点睛】本题主要考查无理数的定义,掌握实数的分类以及无理数的定义,是解题的关键.2. 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D.【答案】B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.3. 下列计算正确的是()A. ()222a b a b +=+B. ()3326a a -=- C. 428a a a ⋅=D. ()()2111a a a -+--=- 【答案】D【解析】【分析】 根据完全平方公式,积的乘方公式,同底数幂的乘法法则以及平方差公式,逐一判断选项,即可.【详解】A. ()2222a b a ab b +=++,故本选项错误,B. ()3328a a -=-,故本选项错误,C 426a a a ⋅=,故本选项错误,D. ()()22211(1)1a a a a -+--=--=-,故本选项正确. 故选D .【点睛】本题主要考查完全平方公式,积的乘方公式,同底数幂的乘法法则以及平方差公式,熟练掌握上述公式和法则是解题的关键.4. 如图所示,已知AB∥CD,EF 平分∠CEG,∠1=80°,则∠2的度数为( )A. 20°B. 40°C. 50°D. 60°【答案】C【解析】 【详解】解:∵EF 平分∠CEG ,∴∠CEG=2∠CEF又∵AB ∥CD ,∴∠2=∠CEF=(180°-∠1)÷2=50°,故选:C .5. 若正比例函数y kx =图象的经过一、三象限,且过点()2,4A a 和()2,B a ,则的值为( ) A.B. C. D.【答案】D【解析】【分析】把()2,4A a 和()2,B a 代入y kx =,结合函数y kx =图象的经过一、三象限,即可得到答案. 【详解】∵正比例函数y kx =图象过点()2,4A a 和()2,B a , ∴422ak a k =⎧⎨=⎩,解得:1k =±, ∵正比例函数y kx =图象的经过一、三象限,∴k >0,∴k=1.故选D .【点睛】本题主要考查正比例函数的待定系数法以及比例系数的几何意义,掌握正比例函数y kx =图象的经过一、三象限,则k >0,是解题的关键.6. 如图,ABC ∆中,,70,AB AC C BD =∠=︒是AC 边上的高线,点在AB 上,且BE BD =,则ADE ∠的度数为( )A. 20︒B. 25︒C. 30D. 35︒【答案】B【解析】【分析】 根据等腰三角形的性质,得∠ABC=∠C ,∠A=40°,由直角三角形的性质得∠ABD=50°,从而得∠BDE=65°,进而即可求解.【详解】∵ABC ∆中,,70AB AC C =∠=︒,∴∠ABC=∠C=70°,∠A=180°-70°=70°=40°,∵BD 是AC 边上的高线,∴∠ADB=90°,∴∠ABD=90°-40°=50°,∵BE BD =,∴∠BDE=∠BED=(180°-50°)÷2=65°,∴ADE ∠=90°-65°=25°.故选B .【点睛】本题主要考查等腰三角形的性质定理,直角三角形的性质定理,掌握等腰三角形的底角相等,直角三角形的两个锐角互余,是解题的关键.7. 将直线1:12L y x =-向左平移个单位长度得到直线,则直线的解析式为( ) A 112y x =+ B. 122y x =+ C. 132y x =+ D. 112y x =-+ 【答案】A【解析】【分析】根据一次函数的平移规律:”左加右减,上加下减”,即可得到答案.【详解】将直线1:12L y x =-向左平移个单位长度得到:11(4)1122y x x =+-=+, 故选A .【点睛】本题主要考查一次函数的平移后所得的新一次函数解析式,掌握一次函数的平移规律:”左加右减,上加下减”,是解题的关键.8. 如图,菱形ABCD 的对角线,AC BD 相交于点,过点作AE BC ⊥于点,连接OE .若6OB =,菱形ABCD 的面积为,则OE 的长为( )A.B. 4.5C.D.【答案】B【解析】【分析】由6OB =,菱形ABCD 的面积为,得OC=4.5,根据直角三角形的性质,即可求解.【详解】∵6OB =,菱形ABCD 的面积为,∴54413.5BOC S =÷=,∵AC ⊥BD ,∴OC=13.5×2÷6=4.5, ∵AE BC ⊥,AO=CO ,∴OE=OC=4.5,故选B .【点睛】本题主要考查菱形的性质定理和直角三角形的性质定理,掌握菱形的对角线互相垂直平分,直角三角形斜边上的中线等于斜边的一半,是解题的关键.9. 如图,四边形ABCD 内接于半径为的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A. 63B. 2C. 93D. 2【答案】A【解析】【分析】 连接OA ,OB ,OC ,OD ,过点O 作OM ⊥BC 于点M ,易得∠AOB=∠COD=90°,∠DAC=∠ACB=45°,从而得∠OAD=∠CAB ,进而得∠OAD=∠AOD ,可得∠AOD=60°,∠BOC=120°,进而即可求解.【详解】连接OA ,OB ,OC ,OD ,过点O 作OM ⊥BC 于点M ,∵在四边形ABCD 内接于半径为的O 中,,45AB CD ACB =∠=︒,∴∠AOB=∠COD=2∠ACB=90°,∠DAC=∠ACB=45°,∵OA=OB ,∴∠OAB=45°,∴∠OAD=∠DAC+∠CAO=∠OAB+∠CAO=∠CAB ,又∵∠ACD=12∠AOD ,12ACD BAC ∠=∠, ∴∠AOD=∠BAC ,∴∠OAD=∠AOD ,∴AD=OD ,∵OD=OA ,∴∆AOD 是等边三角形,∴∠AOD=60°,∴∠BOC=360°-90°-90°-60°=120°,∵OC=OC=6,∴∠OCM=30°, ∴CM=32OC=33, ∴BC=2 CM==63.故选A .【点睛】本题主要考查圆的基本性质,熟练掌握圆周角定理以及推论,圆心角定理,垂径定理,等腰三角形的性质定理,是解题的关键.10. 已知抛物线2:4W y x x c =-+,其顶点为,与轴交于点,将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则的值为( )A. 3 3 C. 32 D. 52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形性质,列出关于c 的方程,即可求解. 【详解】∵抛物线2:4W y x x c =-+,其顶点为,与轴交于点,∴A(2,c-4),B(0,c),∵将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键. 二、填空题11. 分解因式:224ax ay -=________.【答案】a(x-2y)( x+2y)【解析】【分析】先提取公因式,再利用平方差公式进行分解因式,即可.【详解】224ax ay -=a(x 2-4y 2)= a(x-2y)( x+2y).故答案是:a(x-2y)( x+2y).【点睛】本题主要考查分解因式,掌握提取公因式法和公式法分解因式,是解题的关键.12. 已知正六边形的周长为,则这个正六边形的边心距是_______.【解析】【分析】设正六边形的中心为点O ,AB 为一条边,过点O 作OC ⊥AB 于点C ,连接OA ,OB ,易得∆AOB 是等边三角形,进而即可求解.【详解】设正六边形的中心为点O ,AB 为一条边,过点O 作OC ⊥AB 于点C ,连接OA ,OB , ∴∠AOB=60°,OA=OB ,即:∆AOB 是等边三角形,∴∠OAB=60°,∵正六边形的周长为,∴OA=OB =AB=2,∴OC=32OA=3. ∴这个正六边形的边心距是:3.故答案是:3.【点睛】本题主要考查正六边形的性质以及等边三角形的判定和性质定理,掌握等边三角形的性质定理,是解题的关键.13. 如图,在平面直角坐标系中,过原点的直线与反比例函数80y x x=-(<)交于点,与反比例函数 ()0k y x x=>交于点,过点作轴的垂线,过点作轴的垂线,两直线交于点,若ABC ∆的面积为,则的值为_______.【答案】-2【解析】【分析】设A(a ,8a -),B(b ,k b ),AC 交x 轴于点D ,BC 交y 轴于点E ,易得∆DAO ~∆ EOB ,从而得2()AOD BOE S AD S OE=,进而得228b k a-=,由ABC ∆的面积为,得1610b a ka -=+,进而得到关于b a 的方程,即可求解. 【详解】设A(a ,8a -),B(b ,k b ),AC 交x 轴于点D ,BC 交y 轴于点E ,由题意得:k <0,a <0,b >0, ∴4AOD S =,22BOE k k S ==-,AD=8a -,OE=k b-, ∵AD ∥OE ,OD ∥BE ,∴∠DAO=∠EOB ,∠AOD=∠OBE ,∴∆DAO ~∆ EOB ,∴2()AOD BOE S AD S OE =,即:2842a k k b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭,化简得:228a k b =-, ∴228b k a -=, ∵ABC ∆的面积为,∴(b-a )(8a --k b)=18,化简:22810a k b ab kab -=+, ∴21610b ab kab -=+,即:1610b a ka -=+,∴24-8-5=0b b a a ⎛⎫ ⎪⎝⎭,解得:12b a =-或52b a =(不合题意,舍去), ∴228b k a-==-2. 故答案是:-2.【点睛】本题主要考查反比例函数的图象和性质,比例系数的几何意义以及相似三角形的判定和性质定理,根据函数图象上点的坐标特征,三角形的面积公式以及相似三角形的性质,列出方程,是解题的关键. 14. 如图,正方形ABCD 的边长为,点在AD 上,连接 BP CP 、,则 s in BPC ∠的最大值为________.【答案】45【解析】【分析】 先证明当AP=DP=2时, s in BPC ∠有最大值,过点B 作BE ⊥PC 于点E ,根据勾股定理求出PB=PC=25根据三角形的面积法,求出BE 的值,进而即可得到答案.【详解】设∠APB=x ,∠DPC=y ,∴∠BPC=180°-∠APB -∠DPC=180°-(x+y ),∵当x >0,y >0时,2()0x y ≥, ∴20x y xy +-≥,即:2x y xy +≥x=y 时,2x y xy +=,∴当x=y 时,x+y 有最小值,此时,∠BPC=180°-(x+y )有最大值,即 s in BPC ∠有最大值.∵在正方形ABCD 中,∠A=∠D ,AB=CD ,当∠APB=∠DPC 时,∴∆APB ≅ DPC (AAS ),∴AP=DP=2,∴PB=PC=222425+=,过点B 作BE ⊥PC 于点E ,∵114422BCP S PC BE =⨯⨯=⋅, ∴BE=855, ∴ s in BPC ∠=8545525BE PB ==. 故答案是:45.【点睛】本题主要考查正方形的性质定理,勾股定理,锐角三角函数的定义以及全等三角形的判定和性质定理,证明当点P 是AD 的中点时, s in BPC ∠有最大值,是解题的关键.三.解答题15. 计算:211133tan 3033-⎛⎫⨯-+︒ ⎪⎝⎭. 【答案】【解析】【分析】先算负整数指数幂,绝对值以及特殊角三角函数值,再进行加减运算,即可求解.【详解】原式=13931)333⨯-+⨯=3313=.【点睛】本题主要考查实数的混合运算,掌握负整数指数幂的运算法则,求绝对值法则以及特殊角三角函数值,是解题的关键.16. 化简:221111x x x x x ⎛⎫-+--÷ ⎪++⎝⎭. 【答案】-x+1【解析】【分析】先算分式的减法运算,再把除法化为乘法,然后进行约分,即可得到答案.【详解】原式=212111x x x x x x ⎛⎫+-+-+⋅ ⎪+-⎝⎭=221111x x x x x ⎛⎫-+-+⋅ ⎪+-⎝⎭=2(1)111x x x x -+-⋅+- =-(x-1)=-x+1.【点睛】本题主要考查分式的化简,掌握分式的通分和约分,是解题的关键.17. 如图,已知ABC ∆,点在AB 边上,且90ACD ∠=︒,请用尺规作图法在BC 边上求作一点,使得APC ADC ∠=∠.(保留作图痕迹,不写作法)【答案】见详解【解析】【分析】作AD 的垂直平分线交AD 于点O ,以点O 为圆心,OD 长为半径,画圆,交BC 于点P ,即可.【详解】如图所示:∆ADC 的外接圆与BC 的交点P ,即为所求.【点睛】本题主要考查尺规作垂直平分线以及三角形的外接圆,掌握直角三角形的外接圆的圆心是斜边的中点,圆周角定理的推论,是解题的关键.18. 如图,已知点 ,,,A D C B 在同一直线上,,//,//AD BC DE CF AE BF =;求证:AE BF =.【答案】见详解【解析】【分析】根据平行线的性质得∠A=∠B ,∠CDE=∠DCF ,从而得∠ADE=∠BCF ,再根据ASA ,即可得到结论.【详解】∵//DE CF ,∴∠CDE=∠DCF ,∴∠ADE=∠BCF ,∵//AE BF ,∴∠A=∠B ,又∵AD BC =,∴∆ADE ≅∆BCF (ASA ),∴AE BF =.【点睛】本题主要考查三角形全等的判定和性质定理以及平行线的性质定理,掌握 ASA 证明三角形全等,是解题的关键.19. 2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整;(2)求扇形统计图中的等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等的学生有多少人?【答案】(1)被调查学生的人数为200人.补全条形统计图见解析;(2)等对应的圆心角的度数为18︒;(3)对政策内容了解程度达到等的学生人数有75人.【解析】【分析】(1)从两个统计图中可得B 组的人数为50人,占调查人数的25%,可求出调查人数,从而计算出A 等人数和D 等人数,补全条形统计图,(2)用360°乘以D 组所占的百分比即可,(3)样本估计总体,用样本中D 组所占的百分比乘以总人数即可.【详解】(1)5020025%=(人) ∴被调查学生的人数为200人.等的人数:20060%120⨯=(人),等的人数:200120502010---=(人),补全条形统计图如下.(2)1036018200⨯︒=︒ ∴等对应的圆心角的度数为18︒. (3)10150075200⨯=(人) ∴对政策内容了解程度达到等的学生人数有75人.【点睛】考查条形统计图、扇形统计图的制作方法,从两个统计图中获取有用的数据,理清统计图中各个数据之间的关系是解决问题的关键,用样本估计总体是统计中常用的方法.20. 如图,在建筑物顶部有一长方形广告牌架CDEF ,已知2CD m =,在地面上处测得广告牌 上端的仰角为,且34tan α=,前进10m 到达处,在处测得广告牌架下端的仰角为45︒,求广告牌 架下端到地面的距离.【答案】22m【解析】【分析】延长CD 交AB 的延长线于H ,设DH=xm ,在Rt △DHB 中,利用正切的定义,用x 表示出BH ,在Rt △CAH 中,根据正切的定义,列出关于x 的方程,即可求解.【详解】延长CD 交AB 延长线于H ,则CD ⊥AB ,设DH=xm ,则CH=(x+2)m ,在Rt △DHB 中,tan45°=DH BH, ∴BH=DH tan45°=xm ,∴AH=AB+BH=(x+10)m ,在Rt △CAH 中,tan=CH AH ,即210x x ++=0.75, 解得:x=22, 答:广告牌架下端D 到地面的距离为22m .【点睛】本题主要考查解直角三角形的实际应用,熟练掌握锐角三角函数的定义,添加合适的辅助线,构造直角三角形,是解题的关键.21. 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量 (微克)与时间 (小时)之间的关系近似地满足图中折线. (1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.【答案】(1)2206(110)33(01)y t t t t ⎧⎪=⎨-+<≤≤≤⎪⎩;(2)103(小时) 【解析】【分析】(1)当0≤t ≤1时,是正比例函数,用待定系数法进行求解,即可,当1<t ≤10时,是一次函数,用待定系数法求函数的关系式,即可;(2)当0≤t ≤1时,当含药量上升到4微克时,控制病情开始有效,令y=4,代入y=6t ,求出对应的t 值,同理,当1<t ≤10时,求出另一个t 值,他们的差就是药的有效时间.【详解】(1)当0≤t ≤1时,设y=k 1t ,则6=k 1×1,∴k 1=6,∴y=6t .当1<t ≤10时,设y=k 2t+b ,∴226010k b k b =+=+⎧⎨⎩,解得:223203k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴ y=23-t+203, 综上所述:2206(110)33(01)y t t t t ⎧⎪=⎨-+<≤≤≤⎪⎩; (2)当0≤t ≤1时,令y=4,即:6t=4,解得:t=23, 当0<t ≤10时,令y=4,即:23-t+203=4,解得:t=4, ∴控制病情的有效时间为:4−23=103(小时). 【点睛】本题主要考查一次函数的实际应用,掌握一次函数的图象上的点的坐标特征和待定系数法,是解题的关键.22. 现有,,,A B C D 四张不透明的卡片,除正面上的图案不同外,其他均相同,将这四张卡片背 面向上洗匀后放在桌面上.(1)从中随机取出一张卡片,卡片上的图案是中心对称图形的概率是_____;(2)若从四张卡片中随机拿出两张卡片,请用画树状图或列表的方法,求抽取的两张卡片都是轴对称图形的概率.【答案】(1)14;(2)12 【解析】【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】(1)∵4中卡片中,只有1张是中心对称图形,∴从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为14, 故答案为:14; (2)画树状图如下:由树状图知,共有12种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果, ∴两次所抽取的卡片恰好都是轴对称图形的概率为:61122=.【点睛】本题主要考查等可能随机事件的概率,学会画树状图,掌握概率公式,是解题的关键. 23. 如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于,交O 于,过作//EF AC 交BA 的延长线于.(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.【答案】(1)见详解;(2)35【解析】【分析】(1)要证EF 是 O 的切线,只要连接OE ,再证∠FEO=90°即可;(2)证明△FEA ∽△FBE ,得出EF AF BF EF =,从而得到AF 的值,进而得到12AE BE =,结合勾股定理得到关于AE 的方程,即可求出AE 的长.【详解】(1)连接OE ,∵∠B 的平分线BE 交AC 于D ,∴∠CBE=∠OBE ,∵EF ∥AC ,∴∠CAE=∠FEA ,∵∠OBE=∠OEB ,∠CBE=∠CAE ,∴∠FEA=∠OEB ,∵AB 是O 的直径,∴∠AEB=90°,∴∠FEO=90°,∴EF 是O 切线;(2)∵∠FEA=∠OEB=∠OBE ,∠F=∠F ,∴∆FEA ~∆FBE , ∴EF AF BF EF =, 即:2EF AF BF =⋅,∴AF×(AF+15)=10×10,解得:AF=5或AF=-20(舍去), ∴51102AE AF BE EF ===, ∵在Rt ∆ABE 中,AE 2+BE 2=AB 2,∴AE 2+(2AE )2=152,∴AE=35.【点睛】本题主要考查切线的判定定理,圆周角定理,相似三角形的判定和性质定理以及勾股定理,掌握切线的判定定理以及相似三角形的判定和性质定理是解题的关键.24. 如图,已知抛物线2y x bx c =-++与直线AB 交于点()3,0A -,点()1,4B .(1)求抛物线的解析式;(2)点M 是轴上方抛物线上一点,点是直线AB 上一点,若A O M N 、、、以为顶点的四边形是以 OA 为边的平行四边形,求点M 的坐标.【答案】(1)2 6y x x =--+;(2)(0,6)或(-2,4)或(17-+17-).【解析】【分析】(1)根据待定系数法,即可得到答案;(2)先求出直线AB 的解析式,由平行四边形的性质得AO=MN=3且AO ∥MN ,设M(x ,26x x --+),则N(x+3,x+6)或N(x-3,x),根据M ,N 的纵坐标相等,列出关于x 的方程,即可求解.【详解】(1)∵抛物线2y x bx c =-++与直线AB 交于点() 3,0A -,点() 1,4B , ∴ 09341b c b c =--+=-++⎧⎨⎩,解得: 16b c =-=⎧⎨⎩, ∴抛物线解析式为:26y x x =--+; (2)设直线AB 的解析式为:y=kx+m , 把() 3,0A -,() 1,4B ,代入得: 034k m k m =-+=+⎧⎨⎩,解得: 13k m ==⎧⎨⎩, ∴直线AB 的解析式为:y=x+3.∵以A O M N 、、、为顶点的四边形是以OA 为边的平行四边形,∴AO=MN=3且AO ∥MN ,∵点M 是轴上方抛物线上一点,点是直线AB 上一点,∴设M(x ,26x x --+),则N(x+3,x+6)或N(x-3,x),∴26x x --+=x+6或26x x --+=x ,解得:10x =,22x =-,317x =-417x =-令y=0代入26y x x =--+,得:2 60x x --+=,解得:x=-3或x=2,∴抛物线与x 轴的另一个交点坐标为(2,0),∵点M 是轴上方抛物线上一点,∴点M 的横坐标取值范围为:-3<x <2,∴点M 的坐标为:(0,6)或(-2,4)或(17-+,17-+).【点睛】本题主要考查二次函数与一次函数的综合以及平行四边形的性质,掌握待定系数法,函数图象上的点的坐标特征以及平行四边形的对边平行且相等,是解题的关键.25. 问题发现(1)如图①,ABC ∆为边长为的等边三角形,是AB 边上一点且CD 平分ABC ∆的面积,则线段CD 的长度为____;问题探究(2)如图②,ABCD 中,6,8,60AB BC B ==∠=︒,点M 在AD 上,点在BC 上,若MN 平分ABCD 的面积,且MN 最短,请你画出符合要求的线段MM ,并求出此时MN 与AM 的长度.问题解决(3)如图③,某公园的一块空地由三条道路围成,即线段AC AB BC 、、,已知160AB =米,120BC =米,90,AC ABC ∠=︒的圆心在AB 边上,现规划在空地上种植草坪,并AC 的中点修一条直路PM (点M 在 AB 上).请问是否存在PM ,使得PM 平分该空地的面积?若存在,请求出此时AM 的长度;若不存在,请说明理由.【答案】(12)AM=2.5,作图见详解;(3)存在PM ,使得PM 平分该空地的面积,AM= 146(米).【解析】【分析】(1)作CD ⊥AB 于点D ,利用等边三角形三线合一的性质和直角三角形的性质求出AD 的长,即可;(2)经过平行四边形对角线的交点的直线将平行四边形的面积分成相等的两部分,当MN ⊥BC 时,MN 最短,过A 作AE ⊥BC 于点E ,根据三角函数的定义,求AE 的长,即是MN 的长,再求出EN 的长,即AM 的长;(3)作AC 的垂直平分线EF 交AB 于点O ,交AC 于点D ,则点O 为AC 所在圆的圆心,通过锐角三角函数的定义,求得OD 的值,从而得AOD S ,OBCD S 四边形,在线段OB 上取点M ,连接PM ,使∆OPM 的面积=1050,进而求出OM ,即可求出AM 的值,然后得到结论.【详解】(1)如图①,作CD ⊥AB 于点D ,∵ABC ∆为边长为的等边三角形,∴AD=BD ,∴CD 平分ABC ∆的面积,∴(2)连接AC 、BD 交于点O ,过点O 作直线MN ,交AD 于M ,交BC 于N ,如图②,∵四边形ABCD 为平行四边形,∴OA=OC ,AD ∥BC ,∴∠CAD=∠ACB ,∵∠AOM=∠CON ,∴△AOM ≌△CON (ASA ),∴S △AOM =S △CON ,同理可得:△OMD ≌△ONB ,△AOB ≌△COD ,∴S △OMD =S △ONB ,S △AOB =S △COD ,∴S △AOM +S △AOB +S △BON =S △CON +S △COD +S △OMD ,即:MN 将四边形ABCD 分成面积相等的两部分,当MN ⊥BC 时,MN 最短,如图③所示,过A 作AE ⊥BC 于点E ,在Rt △ABE 中,∵∠ABC=60°,∴sin60°=AE AB,∴AE=2× ∵AD ∥BC ,AE ⊥BC ,MN ⊥BC ,∴∴此时MN 的长度为∵AE ∥MN ,AO=CO ,∴EN=CN ,∵BE=12AB=3, ∴CE=BC-BE=8-3=5,∴EN=2.5,∵AD ∥BC ,AE ⊥BC ,MN ⊥BC ,∴四边形AENM 是矩形,即:AM=EN=2.5;(3)存在PM ,使得PM 平分该空地的面积,理由如下:作AC 的垂直平分线EF 交AB 于点O ,交AC 于点D ,则点O 为AC 所在圆的圆心,如图④, ∵点P 是AC 的中点,∴点P 在直线EF 上,∵160AB =(米),120BC =(米),90ABC ∠=︒,∴=200(米),AD=12AC=100(米), ∵tan ∠BAC =34OD BC AD AB ==, ∴OD=34AD=75(米),∴11007537502AOD S =⨯⨯=(平方米), ∵112016096002ABC S =⨯⨯=(平方米), ∴960037505850OBCD S =-=四边形(平方米),∴图形OBCP 的面积比图形AOP 的面积多2100平方米,∴在线段OB 上取点M ,连接PM ,使∆OPM 的面积=1050(平方米),即可.∵sin ∠BAC=35OD BC OA AC ==, ∴OA=53OD=53×75=125(米), ∴OP=OA=125(米),过点M 作MN ⊥EF 于点N ,∴12OP ∙MN=1050,即:MN=2100÷125=845(米), ∵MN ∥AC ,∴∆AOD ~∆MON ,∴AD AO MN MO =,即:100125845MO =,解得:MO=21(米), ∴AM=AO+MO=125+21=146(米),∵AM <AB ,∴存在PM ,使得PM 平分该空地的面积,此时,AM= 146(米).【点睛】本题主要等边三角形的性质,平行四边形的性质,圆的基本性质,三角函数的定义以及相似三角形的判定和性质,熟练掌握垂径定理,三角函数的定义和相似三角形的性质,合理添加辅助线,构造直角三角形和相似三角形,是解题的关键.。
中考模拟检测《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列实数中,无理数是( )A. B. 3.333 C. π- D. 42. 下列计算中,结果是6a 的是A. 24a a +B. 23a a ⋅C. 122a a ÷D. 23()a3. 一粒米的质量约是0.000021kg ,这个数据用科学记数法表示为( )A 40.1210-⨯ B. 5 2. 110-⨯ C. 42.110-⨯ D. 62110-⨯ 4. 下列命题是假命题的是( )A 经过两点有且只有一条直线B. 三角形的中位线平行且等于第三边的一半C. 平行四边形的对角线相等D. 圆的切线垂直于经过切点的半径5. 在线段、角、平行四边形、矩形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A. 2个B. 3个C. 4个D. 5个6. 实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A. a >﹣2B. a <﹣3C. a >﹣bD. a <﹣b 7. (2016广西贺州市)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( )A. 17B. 27C. 37D. 478. 已知反比例函数10y x =,当1<x <2时,y 的取值范围是( ) A. 0<y <5 B. 1<y <2 C. 5<y <10 D. y >109. 如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点为圆心,菱形的高DF 为半径画弧,交AD 于点,交CD 于点,则图中阴影部分的面积是( )A. 183π-B. 1839π-C. 9932π-D. 1833π-10. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有 11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 53B. 51C. 45D. 43二、填空题(本大题共8小题,每小题4分,满分32分.)11. 若二次根式x 1-有意义,则x 的取值范围是 ▲ .12. 在一次”爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为6, 7,6,15,9,6,9.这组数据的众数和中位数分别是________.13. 钟表在12时15分时刻的时针与分针所成的角是_______°.14. 一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为________.15. 如图,将线段AB 绕点O 顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是_________________.16. 如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为_____.17. 某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m 2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m 2.18. 定义:有三个内角相等的四边形叫三等角四边形.三等角四边形ABCD 中,∠A =∠B=∠C ,则∠A 的取值范围________.三、解答题(本大题共8小题,满分78分,解答应写出文字说明、证明过程或演算步骤) 19. 计算:|1﹣3|﹣3tan30°﹣(35-)°. 20. 先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中313x -= 21. 如图,某学校在”国学经典”中新建了一座吴玉章雕塑,小林站在距离雕塑3米的A 处自B 点看雕塑头顶D 的仰角为45°,看雕塑底部C 的仰角为30°,求塑像CD 的高度.(最后结果精确到0.1米,参考数据:3 1.732≈)22. 今年我县中考的体育测试成绩改为等级制,即把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格.我县5月份举行了全县九年级学生体育测试.现从中随机抽取了部分学生的体育成绩,并将其绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生9000名,如果全部参加这次中考体育科目测试,请估算不及格的人数是多少?23. 某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元. 则有哪几种购车方案?24. 如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=22,求圆O的半径.25. 已知正方形ABCD,P为射线AB上一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.26. 将抛物线C1:y=﹣2x2+3沿x轴翻折,得到抛物线C2,如图所示(1)请直接写出抛物线C2解析式(2)现将抛物线C1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由答案与解析一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列实数中,无理数是( )A.B. 3.333C. π-D. 【答案】C【解析】A. 是有理数;B. 3.333 是有理数;C. π- 是无理数;D. 2=是有理数;故选C.2. 下列计算中,结果是6a 的是A. 24a a +B. 23a a ⋅C. 122a a ÷D. 23()a【答案】D【解析】【分析】根据幂的乘方、同底数幂的乘法的运算法则计算后利用排除法求解.【详解】解:A 、a 2+a 4≠a 6,不符合;B 、a 2•a 3=a 5,不符合;C 、a 12÷a 2=a 10,不符合;D 、(a 2)3=a 6,符合.故选D.【点睛】本题考查了合并同类项、同底数幂的乘法、幂的乘方.需熟练掌握且区分清楚,才不容易出错. 3. 一粒米质量约是0.000021kg ,这个数据用科学记数法表示为( )A. 40.1210-⨯B. 5 2. 110-⨯C. 42.110-⨯D. 62110-⨯ 【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000021=2.1×10−5;故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4. 下列命题是假命题的是( )A. 经过两点有且只有一条直线B. 三角形的中位线平行且等于第三边的一半C. 平行四边形的对角线相等D. 圆的切线垂直于经过切点的半径【答案】C【解析】【分析】【详解】选项A,经过两点有且只有一条直线,正确;选项B,三角形的中位线平行且等于第三边的一半,正确;选项C,平行四边形的对角线相等,错误.矩形的对角线相等,平行四边形的对角线不一定相等.选项D,圆的切线垂直于经过切点的半径,正确.故答案选C.5. 在线段、角、平行四边形、矩形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】角只是轴对称图形;平行四边形只是中心对称图形;线段、矩形、圆既是轴对称图形又是中心对称图形,故选B.6. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A. a >﹣2B. a <﹣3C. a >﹣bD. a <﹣b【答案】D【解析】 试题分析:A .如图所示:﹣3<a <﹣2,故此选项错误;B .如图所示:﹣3<a <﹣2,故此选项错误;C .如图所示:1<b <2,则﹣2<﹣b <﹣1,又﹣3<a <﹣2,故a <﹣b ,故此选项错误;D .由选项C 可得,此选项正确.故选D .考点:实数与数轴7. (2016广西贺州市)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( ) A. 17 B. 27 C. 37 D. 47【答案】D【解析】试题分析:∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:47.故选D . 考点:1.概率公式;2.绝对值.8. 已知反比例函数10y x =,当1<x <2时,y 的取值范围是( ) A. 0<y <5B. 1<y <2C. 5<y <10D. y >10 【答案】C【解析】∵反比例函数y=10x中当x=1时y=10,当x=2时,y=5, ∴当1<x<2时,y 的取值范围是5<y<10,故选C.9. 如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点为圆心,菱形的高DF 为半径画弧,交AD 于点,交CD 于点,则图中阴影部分的面积是( )A. 183π-B. 1839π-C. 9932π-D. 1833π-【答案】B【解析】【分析】 由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴DF=AD•sin60°=6×3? 2=33, ∴阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积=6×32120(33)3? 360π⨯-=183-9π. 故选B .【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.10. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有 11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 53B. 51C. 45D. 43【答案】B【解析】【分析】根据给出的图示可得:我们可以将这些星星分成两部分,找出其规律即可得出解. 【详解】根据给出的图示可得:我们可以将这些星星分成两部分,最下面的一横作为一部分,规律为(2n-1),上面的就是等差数列求和,规律为:(1)2n n+,则所有的五角星的数量的和的规律为:(1)2n n++(2n-1),则图形8中的星星的个数=89(281)2⨯+⨯-=36+15=51.故选:B考点:规律题.二、填空题(本大题共8小题,每小题4分,满分32分.)11. 有意义,则x的取值范围是▲ .【答案】x1≥.【解析】【分析】根据二次根式有意义的条件:被开方数大于等于0列出不等式求解.【详解】根据二次根式被开方数必须是非负数的条件,得x10x1-≥⇒≥.【点睛】本题考查二次根式有意义条件,牢记被开方数必须是非负数.12. 在一次”爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为6, 7,6,15,9,6,9.这组数据的众数和中位数分别是________.【答案】6,7【解析】∵6出现了3次,出现的次数最多,∴众数是6;∵从小到大排列后7排在中间位置,∴中位数是7;13. 钟表在12时15分时刻的时针与分针所成的角是_______°.【答案】82.5【解析】90°-30°÷4=82.5°.14. 一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为________.【答案】3【解析】试题分析:设这个圆锥的底面半径为r,根据题意得2πr=,解得r=3.故答案为3.考点:圆锥的计算.15. 如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是_________________.【答案】(5,2)【解析】【详解】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,∵∠ACO=∠A′C′O,∠AOC=∠A′OC′,AO=A′O,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故答案为(5,2).考点:坐标与图形变化-旋转.16. 如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为_____.【答案】2【解析】分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC 即可解决问题.【详解】如图所示,以为直径作圆,圆心为,解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,在中,2222=+=+=,OC OB BC345∴PC=OC-OP=5-3=2.∴PC最小值为2.故答案为2.【点睛】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.17. 某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m2.【答案】150【解析】设绿化面积与工作时间的函数解析式为,因为函数图象经过,两点,将两点坐标代入函数解析式得得,将其代入得,解得,∴一次函数解析式为,将代入得,故提高工作效率前每小时完成的绿化面积为.18. 定义:有三个内角相等的四边形叫三等角四边形.三等角四边形ABCD中,∠A =∠B=∠C,则∠A的取值范围________.【答案】60°<∠A<120°【解析】由”四边形内角和为“得,,即.因为,所以,即,即.三、解答题(本大题共8小题,满分78分,解答应写出文字说明、证明过程或演算步骤)19. 计算:|13﹣3tan30°﹣35)°.【答案】-2【解析】解:|1﹣3|﹣3tan30°﹣(35-)° =﹣=﹣2. 20. 先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中313x -= 【答案】3x+1;3. 【解析】 【分析】首先将括号里面的分式进行通分,然后根据分式的乘法法则进行计算. 【详解】原式=[2(1)1(1)(1)(1)(1)x x x x x x +-++-+-] (x+1)(x -1)=221(1)(1)x x x x ++-+- (x+1)(x -1)=3x+1当x=313-时,原式=3x+1=3×313-+1=3-1+1=3. 考点:分式的化简求值.21. 如图,某学校在”国学经典”中新建了一座吴玉章雕塑,小林站在距离雕塑3米的A 处自B 点看雕塑头顶D 的仰角为45°,看雕塑底部C 的仰角为30°,求塑像CD 的高度.(最后结果精确到0.1米,参考数据:3 1.732≈)【答案】1.2米 【解析】试题分析:根据锐角三角函数,在Rt △DEB 中,求得DE 的长,在Rt △CEB 中,求得CE 的长,再根据CD=DE-CE 即可求出塑像CD 的高度.试题解析:解:在Rt△DEB中,DE=BE•tan45°=2.7米,在Rt△CEB中,CE=BE•tan30°=0.93米,则CD=DE-CE=2.7-0.93≈1.2米.故塑像CD的高度大约为1.2米.考点:解直角三角形的应用.22. 今年我县中考的体育测试成绩改为等级制,即把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格.我县5月份举行了全县九年级学生体育测试.现从中随机抽取了部分学生的体育成绩,并将其绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生9000名,如果全部参加这次中考体育科目测试,请估算不及格的人数是多少?【答案】(1)40;(2)54°,补全条形图见解析;(3)这次不及格的人数约是1800人.【解析】解:(1)本次抽样测试的学生人数是:12÷30%=40(人).(2)54°(3)89000180040⨯=,∴这次不及格的人数约是1800人.23. 某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元. 则有哪几种购车方案?【答案】(1)18,26;(2)两种方案:方案1:购买A型车2辆,购买B型车4辆;方案2:购买A型车3辆,购买B型车3辆.【解析】【分析】(1)方程组的应用解题关键是设出未知数,找出等量关系,列出方程组求解.本题设每辆A型车的售价为x 万元,每辆B型车的售价为y万元,等量关系为:售1辆A型车和3辆B型车,销售额为96万元;售2辆A型车和1辆B型车,销售额为62万元.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解.本题不等量关系为:购车费不少于130万元,且不超过140万元.【详解】(1)设每辆A型车的售价为x万元,每辆B型车的售价为y万元,根据题意,得396{262x yx y+=+=,解得18{26xy==.答;每辆A型车的售价为18万元,每辆B型车的售价为26万元.(2)设购买A型车a辆,则购买B型车(6-a)辆,根据题意,得1826(6)130{1826(6)140a aa a+-≥+-≤,解得1234a≤≤.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案1:购买A型车2辆,购买B型车4辆;方案2:购买A型车3辆,购买B型车3辆考点:二元一次方程组的应用;一元一次不等式的应用.24. 如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=22,求圆O的半径.【答案】(1)证明见解析;(2)⊙O的半径为4.【解析】试题分析:(1)、根据题意得出△CAD和△CDE相似,从而得出∠CAD=∠CDE,结合∠CAD=∠CBD得出∠CDB=∠CBD,从而得出答案;(2)、连接OC,根据OC∥AD得出PC=2CD,根据题意得出△PCB和△PAD相似,即PC PBPA PD,从而得出r的值.试题解析:(1)、∵DC2=CE•CA,∴=,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CB D,∴BC=DC;(2)、连结OC,如图,设⊙O的半径为r,∵CD=CB,∴=,∴∠BOC=∠BAD,∴OC∥AD,∴===2,∴PC=2CD=4,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴=,即=,∴r=4,即⊙O的半径为4.25. 已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.【答案】(1)详见解析;(2)△ACE为直角三角形,理由见解析;(3)∠AEC=45°.【解析】试题分析:(1)根据正方形的性质和全等三角形的判定定理易证△APE≌△CFE,由全等三角形的性质即可得结论;(2)①根据正方形的性质、等腰直角三角形的性质即可判定△ACE为直角三角形;②根据PE∥CF,得到,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.试题解析:(1)证明:∵四边形ABCD为正方形∴AB=AC∵四边形BPEF为正方形∴∠P=∠F=90°,PE=EF=FB=BP∵AP=AB+BP,CF=BC+BF∴CF=AP在△APE和△CFE中:EP="EF," ∠P="∠F=90°," AP= CF∴△APE≌△CFE∴EA=EC(2)①∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形;②∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a∵PE∥CF,∴,即,解得,a=b;作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=×(2b﹣2b)=(2﹣)b,又BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.∴a:b=:1;∴∠AEC=45°.考点:四边形综合题.26. 将抛物线C1:y=2x23x轴翻折,得到抛物线C2,如图所示(1)请直接写出抛物线C2的解析式(2)现将抛物线C1向左平移m个单位长度,平移后得到新抛物线顶点为M,与x轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由【答案】(1)233y x =-(2)①2,1/2,②是矩形,m =1 【解析】试题分析:因为二次函数的图像关于x 轴对称时,函数中的a,c,互为相反数,b 值不变,函数向左平移时,纵坐标不变,横坐标均减少平移个单位,可假定成立,由直角三角形性质得到验证.解:(1)抛物线c 2的表达式是; 2分;(2)①点A 的坐标是(1m --,0), 3分; 点E 的坐标是(1m +,0). 4分;②假设在平移过程中,存在以点A ,M ,E 为顶点的三角形是直角三角形. 由题意得只能是90AME ∠=. 过点M 作MG ⊥x 轴于点G . 由平移得:点M 的坐标是(m -3, 5分; ∴点G 的坐标是(m -,0), ∴1GA =,3MG =,21EG m =+,在Rt △AGM 中, ∵ tan 3MG MAG AG ∠==,∴60MAG ∠=, 6分;∵ 90AME ∠=,∴30MEA ∠=,∴tan MG MEG EG ∠==,=, 7分; ∴1m =. 8分.所以在平移过程中,当1m =时,存在以点A ,M ,E 为顶点的三角形是直角三角形.考点:二次函数的图像与性质,直角三角形的性质.函数图像翻折时,解析式的系数的变换.点评:要熟练掌握以上各种性质,在解题时要掌握正确的方法,本题由一定的难度有三问需认真的思考一一作答,属于中档题.。
山西省百校联考中考数学模拟试卷(四)含答案解析

山西省百校联考中考数学模拟试卷(四)一、选择题:本大题共10小题,每小题3分,共30分1.﹣3的倒数是()A.﹣3 B.3 C.﹣D.2.下列运算正确的是()A.a2•a3=a6B.a3÷a2=a C.a2+a2=a4D.(a2)3=a53.如图所示几何体的俯视图是()A.B. C.D.4.下列说法正确的是()A.“任意画出一个圆,它是中心对称图形”是随机事件B.为了解我省中学生的体能情况,应采用普查的方式C.天气预报明天下雨的概率是99%,说明明天一定会下雨D.任意掷一枚质地均匀的硬币10次,正面朝上的次数不一定是5次5.不等式组的解集在数轴上表示为()A. B.C. D.6.如图6×7的方格中,点A,B,C,D是格点,线段CD是由线段AB位似放大得到的,则它们的位似中心是()A.P1B.P2C.P3D.P47.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,AB,CB分别交直线m 于点D和点E,且DB=DE,若∠B=25°,则∠1的度数为()A.60°B.65°C.70°D.75°8.天然气公司为了解某社区居民使用天然气的情况,随机对该社区10户居民进行了调查,如表是这10户居民3月份用气量的调查结果:居民户数 1 2 3 4月用气量(立方米)14 15 22 25则这10户居民月用气量(单位:立方米)的中位数是()A.14 B.15 C.22 D.259.某网上电器商城销售某种品牌的高端电器.已知该电器按批发价上浮50%进行标价,若按照标价的九折销售,则可获纯利润350元,现由于商城搞促销,该电器按照标价的八折销售,则可获纯利润()A.180元B.200元C.220元D.240元10.如图,在以点O为圆心的半圆中,AB为直径,且AB=4,将该半圆折叠,使点A和点B落在点O处,折痕分别为EC和FD,则图中阴影部分面积为()A.4﹣B.4﹣C.2﹣D.2﹣二、填空题:本大题共5个小题,每小题3分,共15分11.计算×﹣的结果是______.12.从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是______.13.如图,小明家所在住宅楼楼前广场的宽AB为30米,线段BC为AB正前方的一条道路的宽.小明站在家里点D处观察B,C两点的俯角分别为60°和45°,已知DA垂直地面,则这条道路的宽BC为______米(≈1.732)14.如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有______种.15.如图,为一块面积为1.5m2的直角三角形模板,其中∠B=90°,AB=1.5m,现要把它加工成正方形DEFG木板(EF在AC上,点D和点G分别在AB和BC上),则该正方形木板的边长为______m.三、解答题:本大题共8个小题,共75分16.(1)计算:()﹣3﹣|﹣1|×(﹣3)2+()0(2)化简:﹣.17.阅读与观察:我国古代数学的许多发现都曾位居世界前列,如图1的“杨辉三角”就是其中的一例.杨辉,字谦光,南宋时期杭州人,在他所著的《详解九章算法》艺术中,揖录了如图1所示的三角形数表,称之为“开方作法本源”图,经观察研究发现,在两腰上的数位1的前提下,杨辉三角有许多重要的特点,例如:每个数都等于它上方两数之和等等.如图2,某同学发现杨辉三角给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)通过观察,请你写出杨辉三角具有的任意两个特点;(阅读材料中的特点除外)(2)计算:993+3×992+3×99+1;(3)请你直接写出(a+b)4的展开式.18.作图与证明:如图,已知⊙O和⊙O上的一点A,请完成下列任务:(1)作⊙O 的内接正六边形ABCDEF ;(2)连接BF ,CE ,判断四边形BCEF 的形状并加以证明.19.某艺术类学校进行绘画特长生的招生工作,每名考生需要参加“素描”“色彩”“速写”三个项目的测试,三个项目的满分均为100分,“素描”“色彩”“速写”按照4:4:2的比例计算得到选手最终成就,现有20名考生报名参加测试,测试结束后,考生的素描成绩如下(单位:分):88,85,90,99,86,68,94,98,78,9796,93,89,94,89,85,80,95,89,77请根据上述数据,解决下列问题:(1)补全下面考生素描成绩的表格(每组数据含最小值不含最大值)和频数分布直方图; 分组 人数(频数)60﹣70 170﹣80 280﹣90 990﹣100 8合计20 (2)如表为甲、乙两名选手比赛成绩的记录表,现要在甲、乙二人中录取一名,请通过计算得出谁最终被录取.项目 成绩素描 色彩 速写 甲98 93 95 乙95 95 10020.如图,在平面直角坐标系xOy 中,一次函数y=k 1x +b 与反比例函数y=的图象交于点A (﹣1,6)和点B (3,m ),与y 轴交于点C ,与x 轴交于点D .(1)求一次函数y=k 1x +b 和反比例函数y=的表达式; (2)点P 是双曲线y=上的一点,且满足S △PCD =S △DOE ,求点P 的坐标.21.为弘扬中华传统文化,某徽章设计公司设计了如图所示的一种新式徽章,每件的成本是50元,为了合理定价,先投放在某饰品店进行试销.试销发现,该徽章销售单价为100元时,每天的销售量是50件,且当销售单价每降低1元时,每天就可多售出5件.(1)如果该店每天要使该徽章的销售利润为4000元,则销售单价应定为多少元?(2)该店每天该徽章的销售是否有最大利润?若有,请求出最大利润及销售单价,若没有,请说明理由.22.如图1,在△ABC和△MNB中,∠ACB=∠MBN=90°,AC=BC=4,MB=NB=2,点N 在BC边上,连接AN,CM,点E,F,D,G分别为AC,AN,MN,CM的中点,连接EF,FD,DG,EG.(1)判断四边形EFDG的形状,并证明;(2)求FD的长;(3)如图2,将图1中的△MBN绕点B逆时针旋转90°,其他条件不变,猜想此时四边形EFDG的形状,并证明.23.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+6与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,直线l经过点A和点C,连接BC.将直线l沿着x轴正方形平移m个单位(0<m<10)得到直线l′,l′交x轴于点D,交BC于点E,交抛物线于点F.(1)求点A,点B和点C的坐标;(2)如图2,将△EDB沿直线l′翻折得到△EDB′,求点B′的坐标(用含m的代数式表示);(3)在(2)的条件下,当点B′落在直线AC上时,请直接写出点F的坐标.山西省百校联考中考数学模拟试卷(四)参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.﹣3的倒数是()A.﹣3 B.3 C.﹣D.【考点】倒数.【分析】根据倒数的定义可得﹣3的倒数是﹣.【解答】解:﹣3的倒数是﹣.故选:C.2.下列运算正确的是()A.a2•a3=a6B.a3÷a2=a C.a2+a2=a4D.(a2)3=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A:根据同底数幂的乘法法则判断即可.B:根据同底数幂的除法法则判断即可.C:根据合并同类项的方法判断即可.D:根据幂的乘方的运算方法判断即可.【解答】解:∵a2•a3=a5,∴选项A不正确;∵a3÷a2=a,∴选项B正确;∵a2+a2=2a2,∴选项C不正确;∵(a2)3=a6,∴选项D不正确.故选:B.3.如图所示几何体的俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中并且注意虚线和实线的不同.【解答】解:从上往下看,易得一个长方形,其中有两条实线和两条虚线虚线,如图所示:故选D.4.下列说法正确的是()A.“任意画出一个圆,它是中心对称图形”是随机事件B.为了解我省中学生的体能情况,应采用普查的方式C.天气预报明天下雨的概率是99%,说明明天一定会下雨D.任意掷一枚质地均匀的硬币10次,正面朝上的次数不一定是5次【考点】概率的意义;全面调查与抽样调查;随机事件.【分析】根据随机事件、概率的意义以及全面调查与抽样调查的定义即可作出判断.【解答】解:A、“任意画出一个圆,它是中心对称图形”是必然事件,本选项错误;B、为了解我省中学生的体能情况,应采用抽查的方式,本选项错误;C、天气预报明天下雨的概率是99%,该事件不是必然事件,说明明天不一定会下雨,本选项错误;D、任意掷一枚质地均匀的硬币10次,正面朝上的次数不一定是5次,该事件是随机事件,本选项正确.故选D.5.不等式组的解集在数轴上表示为()A. B.C. D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.【解答】解:,由x+2≤3得x≤1,由<3得x>﹣3,则不等式组的解集为﹣3<x≤1,在数轴上表示为:故选A.6.如图6×7的方格中,点A,B,C,D是格点,线段CD是由线段AB位似放大得到的,则它们的位似中心是()A.P1B.P2C.P3D.P4【考点】位似变换.【分析】连接CA,DB,并延长,则交点即为它们的位似中心.继而求得答案.【解答】解:∵如图,连接CA,DB,并延长,则交点即为它们的位似中心.∴它们的位似中心是P3.故选C.7.如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°,AB,CB分别交直线m 于点D和点E,且DB=DE,若∠B=25°,则∠1的度数为()A.60°B.65°C.70°D.75°【考点】平行线的性质.【分析】先根据等腰三角形的性质和三角形外角的性质求出∠3的度数,再根据平行线的性质求出∠4的度数,再由∠ACB=90°得出∠5的度数,根据平角的定义即可得出结论.【解答】解:如图,∵DB=DE,∠B=25°,∴∠2=25°,∴∠3=25°+25°=50°,∵m∥n,∴∠4=50°,∵∠C=90°,∴∠5=65°,∴∠1=180°﹣50°﹣65°=65°.故选:B.8.天然气公司为了解某社区居民使用天然气的情况,随机对该社区10户居民进行了调查,如表是这10户居民3月份用气量的调查结果:居民户数 1 2 3 4月用气量(立方米)14 15 22 25则这10户居民月用气量(单位:立方米)的中位数是()A.14 B.15 C.22 D.25【考点】中位数.【分析】根据中位数的定义解答即可.【解答】解:10个数,最中间的数为第5个数和第6个数,它们都是22,所以这10户居民用水量的中位数为(22+22)÷2=22.故选C.9.某网上电器商城销售某种品牌的高端电器.已知该电器按批发价上浮50%进行标价,若按照标价的九折销售,则可获纯利润350元,现由于商城搞促销,该电器按照标价的八折销售,则可获纯利润()A.180元B.200元C.220元D.240元【考点】一元一次方程的应用.【分析】设该商品批发价为x元/件,则该商品的标价为(1+50%)x元/件,根据:标价×0.9﹣批发价=纯利润,列方程求得商品的批发价,继而可得该电器按照标价的八折销售可获纯利润.【解答】解:设该商品批发价为x元/件,则该商品的标价为(1+50%)x元/件,根据题意,得:(1+50%)x•0.9﹣x=350,解得:x=1000,则其标价为(1+50%)×1000=1500元/件,∴该电器按照标价的八折销售,则可获纯利润为1500×0.8﹣1000=200元,故选:B.10.如图,在以点O为圆心的半圆中,AB为直径,且AB=4,将该半圆折叠,使点A和点B落在点O处,折痕分别为EC和FD,则图中阴影部分面积为()A.4﹣B.4﹣C.2﹣D.2﹣【考点】扇形面积的计算;翻折变换(折叠问题).【分析】根据题意求得AC=OC=OD=DB=1,CD=2,EC==,进一步求得△EOF 是等边三角形,然后根据S 阴影=S 长方形﹣(S 半圆﹣S 长方形CDFE )+2(S 扇形OEF ﹣S △EOF )即可求得.【解答】解:∵AB 为直径,且AB=4,∴OA=OE=2,∵点A 和点B 落在点O 处,折痕分别为EC 和FD ,∴AC=OC=OD=DB=1,∴CD=2,EC==,∴△EOF 是等边三角形,∴∠EOF=60°,∴S 半圆=π×22=2π,S 长方形CDFE =2×=2, ∴S 阴影=S 长方形﹣(S 半圆﹣S 长方形CDFE )+2(S 扇形OEF ﹣S △EOF ) =4﹣2π+2(﹣×2×) =2﹣. 故选D .二、填空题:本大题共5个小题,每小题3分,共15分11.计算×﹣的结果是 1 .【考点】实数的运算. 【分析】根据实数的运算顺序,首先计算开方和乘法,然后计算减法,求出算式×﹣的结果是多少即可.【解答】解:×﹣ =3×﹣2=3﹣2=1故答案为:1.12.从5,6,7这三个数字中,随机抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是.【考点】列表法与树状图法.【分析】根据所抽取的数据拼成两位数,得出总数及能被3整除的数,求概率.【解答】解:如下表,∵任意抽取两个不同数字组成一个两位数,共6种情况,其中能被3整除的有57,75两种,∴组成两位数能被3整除的概率为=.故答案为:.13.如图,小明家所在住宅楼楼前广场的宽AB为30米,线段BC为AB正前方的一条道路的宽.小明站在家里点D处观察B,C两点的俯角分别为60°和45°,已知DA垂直地面,则这条道路的宽BC为21.96米(≈1.732)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意求出∠ABD和∠C的度数,根据正切的定义计算即可.【解答】解:由题意得,∠ABD=∠EDB=60°,∠C=∠EDC=45°,∴AD=AB×tan∠ABD=30米,∴AC=AD=30米,∴BC=AC﹣AB=30﹣30≈21.96米,故答案为:21.96.14.如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有4种.【考点】轴对称图形.【分析】结合图象根据轴对称图形的概念求解即可.【解答】解:根据轴对称图形的概念可知,一共有四种涂法,如下图所示:.故答案为:4.15.如图,为一块面积为1.5m2的直角三角形模板,其中∠B=90°,AB=1.5m,现要把它加工成正方形DEFG木板(EF在AC上,点D和点G分别在AB和BC上),则该正方形木板的边长为m.【考点】相似三角形的应用.【分析】直接利用勾股定理结合直角三角形的性质得出BN的长,再利用相似三角形的判定与性质表示出AD的长,进而得出答案.【解答】解:过点B作BN⊥AC于点N,∵面积为1.5m2的直角三角形模板,其中∠B=90°,AB=1.5m,∴BC=2cm,∴AC==2.5(m),∴2.5BN=1.5×2,解得:BN=1.2,∵∠A=∠A,∠AED=∠ABC,∴△AED∽△ABC,∴=,设DE=x,则=,解得:AD=x,∵DG∥AC,∴△GBD∽△CBA,∴=∴=解得:x=.故该正方形木板的边长为m.故答案为:.三、解答题:本大题共8个小题,共75分16.(1)计算:()﹣3﹣|﹣1|×(﹣3)2+()0(2)化简:﹣.【考点】分式的加减法;实数的运算;零指数幂;负整数指数幂.【分析】(1)原式利用零指数幂、负整数指数幂法则,乘方的意义,以及绝对值的代数意义化简,计算即可得到结果;(2)原式通分并利用同分母分式的减法法则计算,即可得到结果.【解答】解:(1)原式=8﹣9+1=0;(2)原式=﹣==.17.阅读与观察:我国古代数学的许多发现都曾位居世界前列,如图1的“杨辉三角”就是其中的一例.杨辉,字谦光,南宋时期杭州人,在他所著的《详解九章算法》艺术中,揖录了如图1所示的三角形数表,称之为“开方作法本源”图,经观察研究发现,在两腰上的数位1的前提下,杨辉三角有许多重要的特点,例如:每个数都等于它上方两数之和等等.如图2,某同学发现杨辉三角给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数等等.(1)通过观察,请你写出杨辉三角具有的任意两个特点;(阅读材料中的特点除外)(2)计算:993+3×992+3×99+1;(3)请你直接写出(a+b)4的展开式.【考点】完全平方公式.【分析】(1)从每行的数字个数和数字之和可得规律;(2)根据图中第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数即可求得;(3)根据(a+b)n展开后,各项是按a的降幂排列的,系数依次是从左到右(a+b)n﹣1系数之和.它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和即可得出.【解答】解:(1)∵第1行有1个数字,数字之和为1=20,第2行有2个数字,数字之和为2=21,第3行有3个数字,数字之和为4=22,第4行有4个数字,数字之和为8=23,…第n行有n个数字,数字之和为2n﹣1;(2)993+3×992+3×99+1=(99+1)3=1003=106;(3)(a+b)4=a4+4a3b+6a2b2+4ab3+b4.18.作图与证明:如图,已知⊙O和⊙O上的一点A,请完成下列任务:(1)作⊙O的内接正六边形ABCDEF;(2)连接BF,CE,判断四边形BCEF的形状并加以证明.【考点】正多边形和圆;作图—复杂作图.【分析】(1)由正六边形ABCDEF的中心角为60°,可得△OAB是等边三角形,继而可得正六边形的边长等于半径,则可画出⊙O的内接正六边形ABCDEF;(2)首先连接OE,由六边形ABCDEF是正六边形,易得EF=BC,=,则可得BF=CE,证得四边形BCEF是平行四边形,然后由∠EDC=∠DEF=120°,∠DEC=30°,求得∠CEF=90°,则可证得结论.【解答】解:(1)如图1,首先作直径AD,然后分别以A,D为圆心,OA长为半径画弧,分别交⊙O于点B,F,C,E,连接AB,BC,CD,DE,EF,AF,则正六边形ABCDEF即为⊙O所求;(2)四边形BCEF是矩形.理由:如图2,连接OE,∵六边形ABCDEF是正六边形,∴AB=AF=DE=DC,FE=BC,∴===,∴=,∴BF=CE,∴四边形BCEF是平行四边形,∵∠EOD==60°,OE=OD,∴△EOD是等边三角形,∴∠OED=∠ODE=60°,∴∠EDC=∠FED=2∠ODE=120°,∵DE=DC,∴∠DEC=∠DCE=30°,∴∠CEF=∠DEF﹣∠CED=90°,∴四边形BCEF是矩形.19.某艺术类学校进行绘画特长生的招生工作,每名考生需要参加“素描”“色彩”“速写”三个项目的测试,三个项目的满分均为100分,“素描”“色彩”“速写”按照4:4:2的比例计算得到选手最终成就,现有20名考生报名参加测试,测试结束后,考生的素描成绩如下(单位:分):88,85,90,99,86,68,94,98,78,9796,93,89,94,89,85,80,95,89,77请根据上述数据,解决下列问题:(1)补全下面考生素描成绩的表格(每组数据含最小值不含最大值)和频数分布直方图;分组人数(频数)60﹣70 170﹣80 280﹣90 990﹣100 8合计20(2)如表为甲、乙两名选手比赛成绩的记录表,现要在甲、乙二人中录取一名,请通过计算得出谁最终被录取.项目素描色彩速写成绩甲98 93 95乙95 95 100【考点】频数(率)分布直方图;频数(率)分布表;加权平均数.【分析】(1)根据考生的素描成绩可得70﹣80的人数(频数),90﹣100的人数(频数),进一步补全频数分布直方图;(2)根据加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数,求出甲、乙两名选手比赛成绩,再比较大小即可求解.【解答】解:(1)填表如下:分组人数(频数)60﹣70 170﹣80 280﹣90 990﹣100 8合计20如图所示:(2)4+4+2=10,4÷10=0.4,2÷10=0.2,=98×0.4+95×0.4+95×0.2=96.2,=98×0.4+95×0.4+100×0.2=96,∵96.2>96,∴甲最终被录取.20.如图,在平面直角坐标系xOy 中,一次函数y=k 1x +b 与反比例函数y=的图象交于点A (﹣1,6)和点B (3,m ),与y 轴交于点C ,与x 轴交于点D .(1)求一次函数y=k 1x +b 和反比例函数y=的表达式; (2)点P 是双曲线y=上的一点,且满足S △PCD =S △DOE ,求点P 的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A 坐标代入反比例函数解析式中求出k 2的值,即可确定出反比例函数解析式;将B 坐标代入反比例解析式中求出m 的值,确定出B 坐标,将A 与B 坐标代入一次函数解析式中求出k 1与b 的值,即可确定出一次函数解析式;(2)如图,当P 在第二象限时,连接PC ,PO ,作PE ⊥y 轴于E ,求得D 的横坐标为2,根据已知条件得到PE=OD=2,求得P 的横坐标为﹣2,把x=﹣2代入y=﹣中得y=3,于是得到结论;同理可得当点P 在第四象限时,求得P (2,﹣3).【解答】解:∵A (﹣1,6)在y=上得k 2=﹣6.∴y=﹣,∵B (3,m )反比例函数y=﹣的图象上,∴m=﹣2,因为y=k 1x +b 过A (﹣1,6)、B (3,﹣2)两点, ∴, 解得:,∴一次函数的表达式是y=﹣2x +4;(2)如图,当P 在第二象限时,连接PC ,PO ,作PE ⊥y 轴于E ,把y=0代入y=﹣2k +4中得x=2,∴D 的横坐标为2,∵S △PCD =S △DOE , ∴CO •PE=CO •OD ,∴PE=OD=2,∴P 的横坐标为﹣2,把x=﹣2代入y=﹣中得y=3,∴此时点P 的坐标为(﹣2,3),同理可得当点P 在第四象限时,P (2,﹣3),∴点P 的坐标是(﹣2,3),(2,﹣3).21.为弘扬中华传统文化,某徽章设计公司设计了如图所示的一种新式徽章,每件的成本是50元,为了合理定价,先投放在某饰品店进行试销.试销发现,该徽章销售单价为100元时,每天的销售量是50件,且当销售单价每降低1元时,每天就可多售出5件. (1)如果该店每天要使该徽章的销售利润为4000元,则销售单价应定为多少元?(2)该店每天该徽章的销售是否有最大利润?若有,请求出最大利润及销售单价,若没有,请说明理由.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)利用每件商品利润×销量=总利润4000,得出关系式求出即可;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.【解答】解:(1)设应将单价降低x 元,则商店每天的销售量为(50+5x )件,由题意得(50﹣x )(50+5x )=4000,解得:x 1=10,x 2=30.答:如果要使该企业每天的销售利润为4000元,应将销售单价应定为70元或90元; (2)y=﹣5x 2+800x ﹣27500=﹣5(x ﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,=4500;∴当x=80时,y最大值即销售单价为80元时,每天的销售利润最大,最大利润是4500元.22.如图1,在△ABC和△MNB中,∠ACB=∠MBN=90°,AC=BC=4,MB=NB=2,点N 在BC边上,连接AN,CM,点E,F,D,G分别为AC,AN,MN,CM的中点,连接EF,FD,DG,EG.(1)判断四边形EFDG的形状,并证明;(2)求FD的长;(3)如图2,将图1中的△MBN绕点B逆时针旋转90°,其他条件不变,猜想此时四边形EFDG的形状,并证明.【考点】几何变换综合题.【分析】(1)四边形EFDG是平行四边形,理由为:如图1,连接AM,由E、F、G、H分别为中点,利用利用中位线定理得到两组对边相等,即可得证;(2)如图1,过点M作MH⊥AB,交AB的延长线于点H,根据内错角相等,两直线平行,得到AC与BM平行,由三角形ACB与三角形MBN都为等腰直角三角形,由BC求出AB 的长,进而求出BH的长,由AB+BH求出AH的长,在直角三角形AMH中,利用勾股定理求出AM的长,利用中位线定理求出FD的长即可;(3)四边形EFDG为正方形,理由为:如图2,连接CN,AM,分别交EF、CN于点L与K,由CB﹣BM求出CM的长,得到CM=BN,再由一对直角相等,AC=BC,利用SAS得到三角形ACM与三角形CBN全等,利用全等三角形对应边、对应角相等得到AM=CN,∠CAM=∠BCN,利用同角的余角相等,求出∠AKC为直角,利用两组对边平行的四边形为平行四边形得到四边形EFDG为平行四边形,再由一个内角为直角,且邻边相等即可得证.【解答】解:(1)四边形EFDG是平行四边形,证明:如图1,连接AM,∵E、F、D、G分别为AC、AN、MN、CM的中点,∴FD=EG=AM,EF=GD=CN,∴四边形EFDG是平行四边形;(2)如图1,过点M作MH⊥AB,交AB的延长线于点H,∵∠ACB=∠MBN=90°,AC=BC=4,MB=NB=2,∴AC∥BM,∴∠MBH=∠CAB=45°,∴AB==4,∴BH=MH=MBsin45°=,∴AH=AB+BH=4+=5,在Rt△AMH中,由勾股定理得:AM===2,则FD=AM=;(3)四边形EFDG是正方形,证明:如图2,连接CN,AM,分别交EF、CN于点L与K,由已知得:点M和点D分别落在BC与AB边上,∴CM=CB﹣BM=4﹣2=2,∴CM=BN,∵∠ACM=∠CBN=90°,AC=BC,∴△ACM≌△CBN(SAS),∴AM=CN,∠CAM=∠BCN,∵∠ACK+∠KCM=90°,∴∠ACK+∠CAK=90°,在△ACK中,∠AKC=180°﹣(∠ACK+∠CAK)=180°﹣90°=90°,由(1)可得EG∥AM∥FD,EF∥CN∥GD,∴四边形EFDG是平行四边形,∴∠GEL=∠ELA=∠AKC=90°,∴四边形EFDG是矩形,∵EG=AM=CN=EF,∴四边形EFDG是正方形.23.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+x+6与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,直线l经过点A和点C,连接BC.将直线l沿着x轴正方形平移m个单位(0<m<10)得到直线l′,l′交x轴于点D,交BC于点E,交抛物线于点F.(1)求点A,点B和点C的坐标;(2)如图2,将△EDB沿直线l′翻折得到△EDB′,求点B′的坐标(用含m的代数式表示);(3)在(2)的条件下,当点B′落在直线AC上时,请直接写出点F的坐标.【考点】二次函数综合题.【分析】(1)通过解方程,﹣x2+x+6=0可得A点和B点坐标,再计算自变量为0时的函数值可得到C点坐标;(2)根据勾股定理求得BC=10,即可证得AB=BC,根据AC∥FD,得出=,求得BE=BD,即可证得四边形EB′DB是菱形,得出B′D∥BC,然后过点B′作B′H⊥AB与H,证得△B′HD∽△COB,即可求得B′H=﹣m+6,HD=﹣m+8,进一步求得OH,得出B′的坐标;(3)根据菱形的性质得出BM=B′M,由平移的定义可知DE∥AC,根据平行线分线段成比例定理证得BD=AD=AB=5,求得D的坐标,根据勾股定理求得AC的解析式,进而求得DF的解析式,然后联立方程,即可求得F的坐标.【解答】解:(1)将y=0代入y=﹣x2+x+6得,﹣x2+x+6=0,解得x1=﹣2,x2=8,∴点A的坐标为(﹣2,0),点B的坐标为(8,0);将x=0代入y=﹣x2+x+6得y=6,∴点C的坐标为(0,6);(2)在RT△COB中,由勾股定理得BC===10,∵AB=AO+OB=2+8=10,∴AB=BC,∵AD=m,∴DB=AB﹣AD=10﹣m,∵AC∥FD,∴=,∴BE=BD=B′E=B′D=10﹣m,∴四边形EB′DB是菱形,∴B′D∥BC,过点B′作B′H⊥AB与H,∴∠B′DH=∠CBO,∠B′HD=∠COB=90°,∴△B′HD∽△COB,∴==,即==,∴B′H=﹣m+6,HD=﹣m+8,当点B′在y轴的右侧时,OH=OB﹣HD﹣DB=8﹣(﹣m+8)﹣(10﹣m)=m﹣10,当点B′在y轴的左侧时,OH=HD+DB﹣OB=(﹣m+8)+(10﹣m)﹣8=10﹣m,∴点B′的坐标为(m﹣10,﹣m+6);(3)∵四边形EB′DB是菱形,∴BM=B′M,由平移的定义可知DE∥AC,∴==1,∴BD=AD=AB=5,∵OA=2,∴OD=3,∴D的坐标为(3,0),设直线AC的解析式为y=kx+b,代入A(﹣2,0),C(0,6)得:,解得,∵DF∥AC,设直线DF的解析式为y=3x+b,代入D(3,0)得9+b=0,解得b=﹣9,∴直线DF为y=3x﹣9,解得或,∴F的坐标为(﹣1,3﹣12).9月28日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年山西省中考数学模拟试卷一、选择题1.在﹣2,,﹣3,6四个数中,最小的数是()A.﹣2 B.C.﹣3 D.62.上学期期末考试,某小组五位同学的数学成绩分别是90,113,102,90,98,则这五个数据的中位数是()A.90 B.98 C.100 D.1053.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A.28° B.38° C.48° D.88°4.如图,线段AB经过平移得到线段A1B1,其中A、B的对应点分别为A1、B1,这四个点都在格点上,若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P1的坐标为()A.(a﹣4,b+2)B.(a﹣4,b﹣2)C.(a+4,b+2) D.(a+4,b﹣2)5.某快递公司,今年1月份与3月份完成投递的快递总件数分别为6.8万件和9万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6.8(1+2x)=9 B.6.8(1+x)=9C.6.8+6.8(1+x)+6.8(1+x)2=9 D.6.8(1+x)2=96.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.7.如图,过点A的一次函数的图象与正比例函数y=3x的图象相交于点B,则这个一次函数的表达式是()A.y=x+2 B.y=2x+5 C.y=﹣x+4 D.y=﹣x+58.如图,直线l1∥l2∥l3于点A、B、C,直线DF分别交l1、l2、l3于点D、E、F,AC与DF相交于点H,如果AB=5,BH=1,CH=2,那么的值等于()A.B.C.D.9.如图,将宽为1cm的纸条沿AC折叠,使∠ABC=60°,则折叠后重叠部分三角形的周长为()A.B.2 C.D.310.如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=1,则下列结论错误的是()A.a>0B.2a+b=0C.a﹣b+c<0D.若(,y1),(3,y2)是抛物线上两点,则y1<y2二、填空题11.据微信公布的数据,1月27日(除夕),从零点到24点,微信用户共收发红包142亿个,数据142亿个用科学记数法表示为个.12.课程改革以来,数学老师积极组织学生参与“综合与实践”活动,学校随机调查了七年级部分同学某月参与“综合与实践”活动的时间,并用得到的数据绘制了不完整的统计图(如图所示),根据图中信息可知扇形图中的“1.5小时”部分圆心角是.13.《孙子算经》是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣算题:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?”歌谣的意思是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五,同时立一根一尺五的小标杆,它的影长五寸(提示:仗和尺是古代的长度单位,1丈=10尺,1尺=10寸),可以求出竹竿的长为尺.14.如图,已知反比例函数y=(k>0)的图象经过Rt△OAB斜边OB的中点C,且与直角边AB相交于点D,若B的坐标为(4,6),则△BOD的面积为.15.如图,△ABC中,BD平分∠ABC,且AD⊥BD,E为AC的中点,AD=6cm,BD=8cm,BC=16cm,则DE的长为cm.三、解答题16.(10分)(1)计算:a3(1﹣a5)﹣a10÷a2+(﹣3a4)2.(2)先化简,再求值:(﹣)÷,其中x=﹣2.17.(6分)实践与操作:一般地,如果把一个图形绕着一个定点旋转一定角度α(α小于360°)后,能够与原来的图形重合,那么这个图形叫做旋转对称图形,这个定点叫做旋转对称中心,α叫做这个旋转对称图形的一个旋转角,请根据上述规定解答下列问题:(1)请写出一个有一个旋转角是90°旋转对称图形,这个图形可以是;(2)尺规作图:在图中的等边三角形内部作出一个图形,使作出的图形和这个等边三角形构成的整体既是一个旋转对称图形又是一个轴对称图形(作出的图形用实线,作图过程用虚线,保留痕迹,不写做法).18.(7分)阅读下列材料,然后解答问题.学会从不同的角度思考问题学完平方差公式后,小军展示了以下例题:例求(2+1)(22+1)(24+1)(28+1)(216+1)+1值的末尾数字.解:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)+1=(22﹣1)(22+1)(24+1)(28+1)(216+1)+1=(24﹣1)(24+1)(28+1)(216+1)+1=(28﹣1)(28+1)(216+1)+1=(216﹣1)(216+1)+1=232由2n(n为正整数)的末尾数的规律,可得232末尾数数字是6.爱动脑筋的小明,想出了一种新的解法:因为22+1=5,而2+1,24+1,28+1,216+1均为奇数,几个奇数与5相乘,末尾数字是5,这样原式的末尾数字是6.在数学学习中,要向小明那样,学会观察,独立思考,尝试从不同角度分析问题,这样才能学会数学.请解答下列问题:(1)计算:(2+1)(22+1)(23+1)(24+1)(25+1)…(2n+1)+1(n为正整数)的值的末尾数字是;(2)计算:2(3+1)(32+1)(34+1)(38+1)(316+1)+1值的末尾数字是;(3)计算:2(3+1)(32+1)(34+1)(38+1)+1.19.(9分)小明一家人春节期间参与了“支付宝集五福”活动,小明和姐姐都缺一个“敬业福”,恰巧爸爸有一个可以送给其中一个,两个人各设计了一个游戏,获胜者得到“敬业福”,请用适当的方法说明这两个游戏对小明和姐姐是否公平.在一个不透明盒子里放入标号分别为1,2,3,4,5,6的六个小球,这些小球除了标号数字外都相同,将小球摇匀.游戏1的规则是:从盒子中随机摸出一个小球,摸到标号数字为奇数小球,则判小明获胜,否则,判姐姐获胜.游戏2的规则是:小明从盒子中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,姐姐再从盒中随机摸出一个小球,并记下标号数字,若两次摸到小球的标号数字同为奇数或同为偶数,则判小明获胜,若两次摸到小球的标号数字为一奇一偶,则判姐姐获胜.20.(8分)如图,已知PA为⊙O的切线,A为切点,B为⊙O上一点,∠AOB=120°,过点B作BC⊥PA于点C,BC交⊙O于点D,连接AB、AD.(1)求证:OD平分∠AOB;(2)若OA=2cm,求阴影部分的面积.21.(9分)2016年太原市地铁2号线一期工程建设如火如荼.预计2020年底投入运营.从此省城将进入立体大交通新时代.甲、乙两个工程队计划参与其中的一项工程建设,甲队单独施工40天完成该项工程的,这时乙队加入,两队还需同时施工8天才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过45天,则乙队至少施工多少天才能完成该项工程?22.(13分)如图,已知抛物线y=x﹣5与x轴交于A、B两点(点B在点A的右侧),与y轴交于点C,有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线AC于点M和点N,交x轴于点E和点F.(1)求点A、B、C的坐标;(2)当点M和点N都在线段AC上时,连接EN,如果点E的坐标为(﹣4,0),求sin∠ANE 的值;(3)在矩形平移过程中,当以点P、Q、N、M为顶点的四边形是平行四边形时,求点N的坐标.23.(13分)问题情境:如图1,已知点E、F分别在正方形ABCD的边AB、BC上,且BE=BF,点M为AF的中点,连接CE、BM.(1)线段CE与BM之间的数量关系是,位置关系是.猜想证明:(2)如图2,将线段BE和BF绕点B逆时针旋转,旋转角均为α(0°<α<90°),点M 为线段AF的中点,连接BM,请你判断(1)中的两个结论是否仍然成立,若成立,请证明;若不成立,说明理由.探索发现:(3)将图1中的线段BE和BF绕点逆时针旋转,旋转角为α=90°,点M为线段AF的中点,得到如图3所示的图形,请你判断线段CE与BM之间的数量关系是否发生变化,请说明理由.2017年山西省中考数学模拟试卷参考答案与试题解析一、选择题1.在﹣2,,﹣3,6四个数中,最小的数是()A.﹣2 B.C.﹣3 D.6【考点】18:有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣2<<6,∴在﹣2,,﹣3,6四个数中,最小的数是﹣3.故选:C.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.上学期期末考试,某小组五位同学的数学成绩分别是90,113,102,90,98,则这五个数据的中位数是()A.90 B.98 C.100 D.105【考点】W4:中位数.【分析】根据中位数的定义先把这些数从小到大排列,找出最中间的数即可得出答案.【解答】解:把这些数从小到大排列为:90,90,98,102,113,最中间的数是98,则这五个数据的中位数是98;故选B.【点评】此题考查了中位数,掌握中位数的定义是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.3.如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为()A.28° B.38° C.48° D.88°【考点】JA:平行线的性质.【分析】根据平行线的性质得∠BFD=∠B=68°,再根据三角形的一个外角等于与它不相邻的两个内角和,得∠D=∠BFD﹣∠E,由此即可求∠D.【解答】解:∵AB∥CD,∠B=68°,∴∠BFD=∠B=68°,∴∠D=∠BFD﹣∠E=68°﹣20°=48°.故选:C.【点评】此题主要运用了平行线的性质,解题时注意:三角形的一个外角等于和它不相邻的两个内角和.4.如图,线段AB经过平移得到线段A1B1,其中A、B的对应点分别为A1、B1,这四个点都在格点上,若线段AB上有一个点P(a,b),则点P在A1B1上的对应点P1的坐标为()A.(a﹣4,b+2)B.(a﹣4,b﹣2)C.(a+4,b+2) D.(a+4,b﹣2)【考点】Q3:坐标与图形变化﹣平移.【分析】根据点A、B平移后横纵坐标的变化可得,线段AB向左平移4个单位,向上平移了2个单位,然后再确定点P1的坐标.【解答】解:由题意可得,线段AB向左平移4个单位,向上平移了2个单位,故点P(a,b)向左平移4个单位,向上平移了2个单位,可得P1(a﹣4,b+2),故选:A.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.5.某快递公司,今年1月份与3月份完成投递的快递总件数分别为6.8万件和9万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是()A.6.8(1+2x)=9 B.6.8(1+x)=9C.6.8+6.8(1+x)+6.8(1+x)2=9 D.6.8(1+x)2=9【考点】AC:由实际问题抽象出一元二次方程.【分析】设该快递公司这两个月投递总件数的月平均增长率为x,根据1月份投递的快递总件数×1加增长率和的平方=3月份投递的快递总件数,即可列出关于x的一元二次方程,此题得解.【解答】解:设该快递公司这两个月投递总件数的月平均增长率为x,根据题意得:6.8(1+x)2=9.故选D.【点评】本题考查了由实际问题抽象出一元二次方程,根据1月份投递的快递总件数×1加增长率和的平方=3月份投递的快递总件数列出关于x的一元二次方程是解题的关键.6.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.【考点】U3:由三视图判断几何体;U2:简单组合体的三视图.【分析】根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.【解答】解:主视图,如图所示:.故选:B.【点评】此题主要考查了画几何体的三视图;用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.7.如图,过点A的一次函数的图象与正比例函数y=3x的图象相交于点B,则这个一次函数的表达式是()A.y=x+2 B.y=2x+5 C.y=﹣x+4 D.y=﹣x+5【考点】FF:两条直线相交或平行问题.【分析】先根据直线的方向判定一次函数解析式中k的符号,再根据直线经过点B(1,3),判断函数解析式即可.【解答】解:∵直线经过第一、二、四象限,即一次函数图象从左往右下降,∴k<0,故A、B选项错误;∵直线经过点B(1,3),∴y=﹣x+4中,当x=1时,y=3,故C选项正确;y=﹣x+5中,当x=1时,y=4,故D选项错误;故选:C.【点评】本题主要考查了两直线相交或平行问题,解题时注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.8.如图,直线l1∥l2∥l3于点A、B、C,直线DF分别交l1、l2、l3于点D、E、F,AC与DF相交于点H,如果AB=5,BH=1,CH=2,那么的值等于()A.B.C.D.【考点】S4:平行线分线段成比例.【分析】根据平行线分线段成比例,可以解答本题.【解答】解:∵直线l1∥l2∥l3,∴,∵AB=5,BH=1,CH=2,∴BC=BH+CH=3,∴=,∴=,故选D.【点评】本题考查平行线分线段成比例,解题的关键是明确题意,找出所求问题需要的条件.9.如图,将宽为1cm的纸条沿AC折叠,使∠ABC=60°,则折叠后重叠部分三角形的周长为()A.B.2 C.D.3【考点】PB:翻折变换(折叠问题).【分析】根据翻折的性质可得∠1=∠2,根据两直线平行,内错角相等可得∠1=∠3,从而得到∠2=∠3,再判断出△ABC是等边三角形,然后根据等边三角形的性质求出边长,然后求解即可.【解答】解:如图,由翻折得,∠1=∠2,∵纸条对边互相平行,∴∠1=∠3,∴∠2=∠3,∵∠ABC=60°,∴△ABC是等边三角形,∵纸条宽度为1cm,∴等边三角形的边长=1÷=,∴折叠后重叠部分三角形的周长=3×=2.故选B.【点评】本题考查了翻折变换的性质,等边三角形的判定与性质,翻折前后对应角相等,对应边相等,本题判断出等边三角形是解题的关键.10.如图是二次函数y=ax2+bx+c的图象,其对称轴为直线x=1,则下列结论错误的是()A.a>0B.2a+b=0C.a﹣b+c<0D.若(,y1),(3,y2)是抛物线上两点,则y1<y2【考点】H4:二次函数图象与系数的关系.【分析】根据抛物线的开口方向、对称轴、二次函数的性质进行判断即可.【解答】解:∵抛物线开口向上,∴a>0,A正确,不合题意;∵对称轴为直线x=1,∴﹣=1,即2a+b=0,B正确,不合题意;当x=﹣1时,y>0,则a﹣b+c>0,C错误,符合题意;当x=时,y1<0,y2>0,∴y1<y2,D正确,不合题意,故选:C.【点评】本题考查的是二次函数图象与系数的关系,掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定是解题的关键.二、填空题11.据微信公布的数据,1月27日(除夕),从零点到24点,微信用户共收发红包142亿个,数据142亿个用科学记数法表示为 1.42×1010个.【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:142亿=1.42×1010.故答案为:1.42×1010.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.12.课程改革以来,数学老师积极组织学生参与“综合与实践”活动,学校随机调查了七年级部分同学某月参与“综合与实践”活动的时间,并用得到的数据绘制了不完整的统计图(如图所示),根据图中信息可知扇形图中的“1.5小时”部分圆心角是144°.【考点】VC:条形统计图;VB:扇形统计图.【分析】根据学生参加活动“1小时”的人数除以占的百分比,求出总人数,进而求出劳动“1.5小时”的人数,以及占的百分比,乘以360即可得到结果.【解答】解:根据题意得:30÷30%=100(人),∴学生活动时间为“1.5小时”的人数为100﹣(12+30+18)=40(人),40%×360°=144°,则扇形图中的“1.5小时”部分圆心角是144°,故答案为:144°.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.13.《孙子算经》是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣算题:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?”歌谣的意思是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五,同时立一根一尺五的小标杆,它的影长五寸(提示:仗和尺是古代的长度单位,1丈=10尺,1尺=10寸),可以求出竹竿的长为45 尺.【考点】SA:相似三角形的应用.【分析】根据同一时刻物高与影长成正比可得出结论.【解答】解:设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴=,解得x=45(尺).故答案为:45.【点评】本题考查的是相似三角形的应用,熟知同一时刻物髙与影长成正比是解答此题的关键.14.如图,已知反比例函数y=(k>0)的图象经过Rt△OAB斜边OB的中点C,且与直角边AB相交于点D,若B的坐标为(4,6),则△BOD的面积为9 .【考点】G5:反比例函数系数k的几何意义.【分析】过点C作CE⊥OA于点E,由点C为线段OB的中点结合点B的坐标,即可求出点C 的坐标,利用反比例函数系数k的几何意义即可得出S△OCE=S△ODA=3,再根据三角形的面积结合S△BOD=S△OAB﹣S△ODA即可求出△BOD的面积.【解答】解:过点C作CE⊥OA于点E,如图所示.∵点C为线段OB的中点,且点B的坐标为(4,6),∴点C(2,3).∵点C、D在反比例函数y=的图象上,∴S△OCE=S△ODA=×2×3=3,∴S△BOD=S△OAB﹣S△ODA=×4×6﹣3=9.故答案为:9.【点评】本题考查了反比例函数系数k的几何意义以及三角形的面积,根据反比例函数系数k的几何意义找出S△OCE=S△ODA=3是解题的关键.15.如图,△ABC中,BD平分∠ABC,且AD⊥BD,E为AC的中点,AD=6cm,BD=8cm,BC=16cm,则DE的长为 3 cm.【考点】KX:三角形中位线定理.【分析】延长AD交BC于F,利用“角边角”证明△BDF和△BDA全等,根据全等三角形对应边相等可得DF=AD,FB=AB=10cm,再求出CF并判断出DE是△ACF的中位线,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得DE=CF.【解答】解:如图,延长AD交BC于F,∵BD平分∠ABC,∴∠ABD=∠FBD,∵AD⊥BD,∴∠BDA=∠BDF=90°,AB===10(cm),在△BDF和△BDA中,,∴△BDF≌△BDA(ASA),∴DF=AD,FB=AB=10cm,∴CF=BC﹣FB=16﹣10=6cm,又∵点E为AC的中点,∴DE是△ACF的中位线,∴DE=CF=3cm.故答案为:3.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,全等三角形的判定与性质,熟记性质并作出辅助线构造成全等三角形是解题的关键.三、解答题16.(10分)(2017•山西模拟)(1)计算:a3(1﹣a5)﹣a10÷a2+(﹣3a4)2.(2)先化简,再求值:(﹣)÷,其中x=﹣2.【考点】6D:分式的化简求值;4I:整式的混合运算.【分析】(1)根据单项式乘多项式、同底数幂的乘法、除法和积的乘方可以解答本题;(2)先化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(1)a3(1﹣a5)﹣a10÷a2+(﹣3a4)2=a3﹣a8﹣a8+9a8=a3+7a8;(2)(﹣)÷==(x+2)2﹣4x=x2+4x+4﹣4x=x2+4,当x=﹣2时,原式==8+4=12.【点评】本题考查分式的化简求值、整式的混合运算,解答本题的关键是明确它们各自的计算方法.17.实践与操作:一般地,如果把一个图形绕着一个定点旋转一定角度α(α小于360°)后,能够与原来的图形重合,那么这个图形叫做旋转对称图形,这个定点叫做旋转对称中心,α叫做这个旋转对称图形的一个旋转角,请根据上述规定解答下列问题:(1)请写出一个有一个旋转角是90°旋转对称图形,这个图形可以是正方形;(2)尺规作图:在图中的等边三角形内部作出一个图形,使作出的图形和这个等边三角形构成的整体既是一个旋转对称图形又是一个轴对称图形(作出的图形用实线,作图过程用虚线,保留痕迹,不写做法).【考点】R8:作图﹣旋转变换;R3:旋转对称图形.【分析】(1)根据一个图形绕着一个定点旋转90°后,能够与原来的图形重合,进行判断即可;(2)先作出正三角形的旋转中心,再根据图形既是一个旋转对称图形,又是一个轴对称图形进行作图即可.【解答】解:(1)有一个旋转角是90°旋转对称图形,这个图形可以是正方形或正八边形或圆等(答案不唯一),故答案为:正方形(或正八边形或圆等);(2)如图所示,(答案不唯一)【点评】本题主要考查了旋转变换以及旋转对称图形,解题时注意:如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.18.阅读下列材料,然后解答问题.学会从不同的角度思考问题学完平方差公式后,小军展示了以下例题:例求(2+1)(22+1)(24+1)(28+1)(216+1)+1值的末尾数字.解:原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)+1=(22﹣1)(22+1)(24+1)(28+1)(216+1)+1=(24﹣1)(24+1)(28+1)(216+1)+1=(28﹣1)(28+1)(216+1)+1=(216﹣1)(216+1)+1=232由2n(n为正整数)的末尾数的规律,可得232末尾数数字是6.爱动脑筋的小明,想出了一种新的解法:因为22+1=5,而2+1,24+1,28+1,216+1均为奇数,几个奇数与5相乘,末尾数字是5,这样原式的末尾数字是6.在数学学习中,要向小明那样,学会观察,独立思考,尝试从不同角度分析问题,这样才能学会数学.请解答下列问题:(1)计算:(2+1)(22+1)(23+1)(24+1)(25+1)…(2n+1)+1(n为正整数)的值的末尾数字是 6 ;(2)计算:2(3+1)(32+1)(34+1)(38+1)(316+1)+1值的末尾数字是 1 ;(3)计算:2(3+1)(32+1)(34+1)(38+1)+1.【考点】4F:平方差公式;1Q:尾数特征.【分析】(1)根据题意给出的方法即可求出答案.(2)根据题意可知原式=332,然后根据尾数特征即可求出答案.(3)根据题意化简原式即可求出答案.【解答】解:(1)由小明的方法可知:2+1,23+1,24+1,25+1,26+1…,2n+1均为奇数,∴几个奇数与5相乘,末尾数字是5,∴(2+1)(22+1)(23+1)(24+1)(25+1)…(2n+1)+1(n为正整数)的值的末尾数字是6,(2)原式=(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)+1=(32﹣1)(32+1)(34+1)(38+1)(316+1)+1=(34﹣1)(34+1)(38+1)(316+1)+1=(38﹣1)(38+1)(316+1)+1=(316﹣1)(316+1)+1=332故尾数为1,(3)原式=(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)+1=(32﹣1)(32+1)(34+1)(38+1)(316+1)+1=(34﹣1)(34+1)(38+1)(316+1)+1=(38﹣1)(38+1)(316+1)+1=(316﹣1)(316+1)+1=332故答案为:(1)6;(2)1;【点评】本题考查平方差公式,解题的关键是熟练运用平方差公式进行解答,本题属于基础题型.19.小明一家人春节期间参与了“支付宝集五福”活动,小明和姐姐都缺一个“敬业福”,恰巧爸爸有一个可以送给其中一个,两个人各设计了一个游戏,获胜者得到“敬业福”,请用适当的方法说明这两个游戏对小明和姐姐是否公平.在一个不透明盒子里放入标号分别为1,2,3,4,5,6的六个小球,这些小球除了标号数字外都相同,将小球摇匀.游戏1的规则是:从盒子中随机摸出一个小球,摸到标号数字为奇数小球,则判小明获胜,否则,判姐姐获胜.游戏2的规则是:小明从盒子中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,姐姐再从盒中随机摸出一个小球,并记下标号数字,若两次摸到小球的标号数字同为奇数或同为偶数,则判小明获胜,若两次摸到小球的标号数字为一奇一偶,则判姐姐获胜.【考点】X7:游戏公平性;X6:列表法与树状图法.【分析】画出树状图根据概率公式分别计算两个游戏中小明和姐姐获胜的概率,即可判断.【解答】解:游戏1:∵共有6种等可能结果,一次摸到小球的标号数字为奇数或为偶数的各有3种,∴小明获胜的概率为=,姐姐获胜的概率为=,∴游戏1对小明和姐姐是公平的;画树状图如下:共有36种可能情况,其中两次摸到小球的标号数字同为奇数或同为偶数的有18种,两次摸到小球的标号数字为一奇一偶的结果也有18种,∴小明获胜的概率为=,姐姐获胜的概率为=,∴游戏2对小明和姐姐是公平的.【点评】本题主要考查列表或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.20.如图,已知PA 为⊙O 的切线,A 为切点,B 为⊙O 上一点,∠AOB=120°,过点B 作BC ⊥PA 于点C ,BC 交⊙O 于点D ,连接AB 、AD .(1)求证:OD 平分∠AOB ;(2)若OA=2cm ,求阴影部分的面积.【考点】MC :切线的性质;KF :角平分线的性质;MO :扇形面积的计算.【分析】(1)由于PA 是⊙O 的切线,且BC ⊥PA ,所以OA ∥BC ,由∠AOB=120°即可求出∠OBC=60°,从而可知∠AOD=∠BOD=60°(2)由于点O 和点A 到BD 的距离相等,△ABD 的面积与△OBD 的面积相同,从而可知阴影部分面积为扇形OBD 的面积【解答】解:(1)∵PA为⊙O的切线,∴OA⊥PA,∵BC⊥PA,∴∠OAP=∠BCA=90°,∴OA∥BC,∴∠AOB+∠OBC=180°,∵∠AOB=120°,∴∠OBC=60°,∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∴∠AOD=∠BOD=60°∴OD平分∠AOB,(2)∵OA∥BC,∴点O和点A到BD的距离相等,∴S△ABD=S△OBD,∴S阴影=S扇形OBD,∴S阴影==π(cm2)【点评】本题考查圆的综合问题,涉及平行线的性质与判定,等边三角形的性质,切线的性质等知识,综合程度较高.21.2016年太原市地铁2号线一期工程建设如火如荼.预计2020年底投入运营.从此省城将进入立体大交通新时代.甲、乙两个工程队计划参与其中的一项工程建设,甲队单独施工40天完成该项工程的,这时乙队加入,两队还需同时施工8天才能完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若甲队参与该项工程施工的时间不超过45天,则乙队至少施工多少天才能完成该项工程?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)直接利用队单独施工40天完成该项工程的,这时乙队加入,两队还需同时施工8天,进而利用总工作量为1得出等式求出答案;(2)直接利用甲队参与该项工程施工的时间不超过45天,得出不等式求出答案.【解答】解:(1)设乙队单独施工,需要x天才能完成该项工程,∵甲队单独施工40天完成该项工程的,∴甲队单独施工60天完成该项工程,根据题意可得: +8×(+)=1,解得:x=40,检验得:x=40是原方程的根,答:乙队单独施工,需要40天才能完成该项工程;(2)设乙队参与施工y天才能完成该项工程,根据题意可得:×45+y≥1,解得:y≥10,答:乙队至少施工10天才能完成该项工程.【点评】此题主要考查了分式方程的应用以及一元一次不等式的应用,正确得出等量关系是解题关键.22.(13分)(2017•山西模拟)如图,已知抛物线y=x﹣5与x轴交于A、B两点(点B在点A的右侧),与y轴交于点C,有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线AC于点M和点N,交x轴于点E和点F.(1)求点A、B、C的坐标;(2)当点M和点N都在线段AC上时,连接EN,如果点E的坐标为(﹣4,0),求sin∠ANE 的值;(3)在矩形平移过程中,当以点P、Q、N、M为顶点的四边形是平行四边形时,求点N的坐标.。