M-312型便携式气相色谱

M-312型便携式气相色谱
M-312型便携式气相色谱

色谱仪教案备课日期: 2012年 1 月24日

授课教师:薛威

便携式气相色谱_质谱的特点及与实验室仪器的比较(精)

收稿日期:2007-09-07 作者简介:季蕴佳(1981-,女,上海人,助理工程师,学士,从事环境监测工作。 便携式气相色谱、质谱的特点及与实验室仪器的比较 季蕴佳,吴诗剑,周婷,周亚康,沈燕军(上海市环境监测中心,上海200030 摘要:着重介绍了便携式气相色谱和移动式色质联用仪的特点及应用,对几种不同型号的便携式气相色谱和移动式色质联用仪进行了比较,并把便携式气相色谱与台式机进行了比较。 关键词:便携式;气相色谱;质谱;比较中图分类号:X83文献标识码:A 文章编号:1673-9655(200802-0094-03应急监测现场使用的多为便携式仪器,可快速得到污染物的定性和初步定量结果,但其不是标准的分析方法。对于一些特大的污染事故,污染物质成分复杂,污染范围大,影响时间长,有时需进行全面的检测分析,以全面了解和掌握事故发生后对空气环境、地表水、地下水、饮用水、生物、食品、土壤等的污染情况(污染物质的种类、浓度和污染范围,以及可能产生的影响。这时就需要实验室的台式机发挥作用。 1便携式气相色谱仪特点和应用范围 便携式气相色谱仪有自动进样装置,由内置的 抽气泵完成气体样品的现场自动采集,通过阀件和定量管实现样品的定量和自动进样,也配有普通的进样口,接受手动的注射器进样。因此利用顶空装置还可以分析水样。便携式气相色谱仪常用载气有“超纯空气”(用于P I D ,其中的碳氢化合物必须 低于10-7 级、氩气(用于A I D 、氮气和氦气等,可以使用的色谱柱有填充柱或毛细柱,且可并联多根不同性能的色谱柱,分别用于分离重、较重和较轻的组分。与台式色谱

仪一样,便携式气相色谱仪也有多种检测器可供选择,不同检测器的特点和应用范围见表1,不同型号便携式气相色谱仪的性能比较见表2。 便携式气相色谱仪应用方面的灵活性还体现在可以满足用户对监测要求的改变,有些型号的便携式气相色谱仪为数通道的微型气相色谱仪,各通道均由带有进样口、预柱、分析柱、检测器的独立模 块组成,每个通道根据色谱柱的不同用于分析特定 的组分,能很容易地将仪器配置成总烃分析仪 (用F I D 检测器,浓度范围在10-9~10-6 级之间。通过选择不同检测器,便携式气相色谱仪可测定总卤素(用XS D 、总硫(用FP D 或同时测定总芳香族和总卤素化合物(用P I D /XS D 。图1显示了用P I D /XS D 检测器联用同时检测不同挥发性有机物的图谱。 表1便携式气相色谱仪常用检测器的特点和应用范围 检测器种类简称特点 主要检测对象 火焰离子化检测器F I D 通用性 烃类化合物电子捕获检测器ECD 灵敏、选择性电负性化合物 光离子化检测器P I D 灵敏、选择性芳香族及其它不饱和化合物火焰光度检测器FP D 灵敏、选择性含硫或含磷化合物 脉冲式火焰光度检测器 PFPD 比FP D 更灵敏、更精确含氮、含磷、含硫有机物,及某些金属

仪器分析气相色谱分析习题答案修订稿

仪器分析气相色谱分析 习题答案 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

气相色谱习题 一.选择题 ( ) 1.色谱图上一个色谱峰的正确描述是( ) A.仅代表一种组分; B.代表所有未分离组分; C.可能代表一种或一种以上组分; D.仅代表检测信号变化( )2.下列保留参数中完全体现色谱柱固定相对组分滞留作用的是( ) A.死时间; B.保留时间 ; C.调整保留时间; D.相对保留时间 ( )3.气-液色谱系统中,待分离组分的 k 值越大,则其保留值: A.越大; B.越小; C.不受影响; D.与载气流量成反比 ( )4.关于范第姆特方程式,正确的说法是: A.最佳线速这一点,塔板高度最大; B.最佳线速这一点,塔板高度最小; C.塔板高度最小时,线速最小; D.塔板高度最小时,线速最大 ( )5.根据范第姆特方程式 H=A+B/u+Cu,下列说法正确的是: A.H 越大,则柱效越高,色谱峰越窄,对分离有利; B.固定相颗粒填充越均匀,则柱效越高; C.载气线速越高,柱效越高; D.载气线速越低,柱效越高 ( )6.在范第姆特方程式中,涡流扩散项主要受下列哪个因素影响 A. 载体填充的均匀程度; B. 载气的流速大小; C. 载气的摩尔质量; D. 固定液的液膜厚度

( )7.用气相色谱法定量分析试样组分时,要求分离达 98%,分离度至少为: ( )8.在气相色谱中,当两组分未能完全分离时,我们说: A.柱效太低; B.柱的选择性差; C.柱的分离度低; D.柱的容量因子大 ( )9.分离非极性组分和极性组分混合物时,一般选用极性固定液,这是利用极性固定液的: A.氢键作用; B.诱导效应; C.色散作用; D.共轭效应 ( )10.苯和环已烷的沸点分别是 80.10°C 和 80.81°C,都是非极性分子。气相色谱分析中,若采用极性固定 液,则保留时间关系是: A.苯比环已烷长; B.环已烷比苯长; C.二者相同; D.无法确定 ( )11.已知苯的沸点为 80.10°C,环已烷的沸点为 80.81°C。当用邻苯二甲酸二壬酯作固定液分析这二种组 分时,环已烷比苯先出峰,其原因是固定液与被测组分间的: A.静电力; B.诱导力; C.色散力; D.氢键力 ( )12.使用热导池检测器时,一般选用 H 2 或 He 作载气,这是因为它们: A.扩散系数大; B.热导系数大; C.电阻小; D.流量大 ( )13.氢火焰离子化检测器优于热导检测器的主要原因是: A.装置简单; B.更灵敏; C.可以检出许多有机化合物; D.较短的柱能够完成同样的分离

气相色谱仪原理及应用实验指导书

气相色谱仪原理及应用实验指导书 贵州大学精细化工研究开发中心(绿色农药与生物工程重点实验室) 1. 实验类型:设计型实验(研究性实验) 2.课时安排:6课时。并运用其数据资料的能力以及归纳总结的能力等。 3.实验目的和意义 通过学习气相色谱仪的构成和使用方法,及其在定性、定量分析中的应用,培养学生严谨的科学态度、细致的工作作风、实事求是的数据报告和良好的实验习惯(准备充分、操作规范,记录简明,台面整洁、实验有序,良好的环保和公德意识)。培养培养学生的动手能力、理论联系实际的能力、统筹思维能力、创新能力、独立分析解决实际问题的能力、查阅手册资料并运用其数据资料的能力以及归纳总结的能力等。 4. 实验原理 气相色谱分离是利用试样中各组分在色谱柱中的气相和固定相间的分配系数不同,当汽化后的试样被载气带入色谱柱中运行时,组分就在其中的两相间进行反复多次(103-106)的分配(吸附-脱附-放出)由于固定相对各种组分的吸附能力不同(即保存作用不同),因此各组份在色谱柱中的运行速度就不同,经过一定的柱长后,便彼此分离,顺序离开色谱柱进入检测器,产生的离子流信号经放大后,在记录器上描绘出各组分的色谱峰。 5.实验设备 气相色谱仪、色谱柱、容量瓶、分析实验室常用玻璃仪器、氮气、农药标准品。 6.实验内容 了解并初步掌握气相色谱仪的基本原理与构造;了解气相色谱仪常用的几种检测器工作原理和使用范围;学习气相色谱法分离化合物和检测化合物的含量的方法;通过测定对样品的定性、定量测定,初步掌握获得气相色谱谱图和数据的一般操作程序与技术;学习样品制备的方法;了解影响分析测定的重要因素,学会优化分析条件;学习谱图和数据的处理方法;结合实验室项目,完成一个分析检测项目。 1)样品制备

仪器分析之气相色谱法试题及答案

气相色谱法练习 一:选择题 1.在气相色谱分析中,用于定性分析的参数是 ( A ) A保留值 B峰面积 C分离度 D半峰宽 2.在气相色谱分析中,用于定量分析的参数是 ( D ) A保留时间 B保留体积 C半峰宽 D峰面积 3.良好的气-液色谱固定液为 ( D ) A蒸气压低、稳定性好 B化学性质稳定C溶解度大,对相邻两组分有一定的分离能力 D A、B和C 6.色谱体系的最小检测量是指恰能产生与噪声相鉴别的信号时 ( B ) A进入单独一个检测器的最小物质量 B进入色谱柱的最小物质量 C组分在气相中的最小物质量 D组分在液相中的最小物质量 7.在气-液色谱分析中,良好的载体为 ( D ) A粒度适宜、均匀,表面积大 B表面没有吸附中心和催化中心 C化学惰性、热稳定性好,有一定的机械强度 D A、B和C 8.热导池检测器是一种 ( A ) A浓度型检测器 B质量型检测器 C只对含碳、氢的有机化合物有响应的检测器 D只对含硫、磷化合物有响应的检测器10.下列因素中,对色谱分离效率最有影响的是 ( A ) A柱温 B载气的种类 C柱压 D固定液膜厚度 三:计算题 1. 热导池检测器的灵敏度测定:进纯苯1mL,苯的色谱峰高为4 mV,半峰宽为1 min,柱出口载气流速为20mL/min,求该检测器的灵敏度(苯的比重为 0.88g/mL)。若仪器噪声为0.02 mV,计算其检测限。 解:mV·mL·mg-1 mg·mL-1 2.一根 2 m长的填充柱的操作条件及流出曲线的数据如下: 流量 20 mL/min( 50℃)柱温 50℃ 柱前压力:133.32 kpa 柱后压力101.32kPa

气相色谱法基本原理及其应用

安徽建筑大学 现代水分析技术论文 专业:xx级市政工程 学生姓名:xxx 学号:xxx 课题:气相色谱法基本原理及其应用指导教师:xxx xx年xx月xx日

气相色谱法基本原理及其应用 xx (安徽建筑工业学院环境与能源工程学院,合肥,230601) 摘要:气相色谱法是分离混合物中各组分的一种有效的手段,其中气相色谱仪是20世纪50年代末在多数科学家的共同努力下诞生的。本文针对气相色谱法的起源与发展历程、工作原理与特点、在环境水污染物分析领域的应用进行了详细的概述,并列举了饮用水中挥发性有机物的气相色谱检测方法,同时提出了该方法新的发展前景。它的发展已在环境监测、水污染控制领中得到了广泛的应用。 关键词:气相色谱法;发展历程;工作原理;水污染物分析 1.气相色谱法的起源与发展历程 (1)气相色谱法的起源 色谱的发现首先认识到这种分离现象和分离方法大有可为的是俄国的植物学家Tswett。Tswett于1903年在波兰华沙大学研究植物叶子的组成时,将叶绿素的石油醚抽提液倒入装有碳酸钙吸附剂的玻璃管上端,然后用石油醚进行淋洗,结果不同色素按吸附顺序在管内形成一条不同颜色的环带,就像光谱一样。1906年,Tswett在德国植物学杂志上发表的一篇论文中首次把这些彩色环带命名为“色谱图”,玻璃管称为“色谱柱”,碳酸钙称为“固定相”,石油醚称为“流动相”。Tswett开创的方法叫做“液-固色谱法”[1-2],这就是色谱法的起源。 1941年,英国科学家Martin和Synge在研究液-液分配色谱时,预言可以使用气体作流动相,即气-夜色谱法。他们在1941年发表的论文中写到“流动相不一定是液体,也可以是蒸气,如以永久性气体带动挥发性混合物,在色谱柱中通过装有浸透不挥发性溶剂的固体时,可以得到很好的分离”[3]。1950年,Martin和James使用硅藻土助滤剂做载体,硅油为固定相,用气体流动相对脂肪酸进行精细分离,这就是气^液分配色谱的起源。后来,他们在1952年的Biochemical Journal上又连续发表了3篇论文[4-6],叙述了用气相色谱分离低碳数脂肪酸、挥发性胺和吡啶类同系物的方法,这标志着气相色谱法正式进入历史舞台。当时在石油化工的分析中,正当传统的分析方法无能为力时,气相色谱法就像及时雨一样,成为化学分析的得力助手。从此,科学家对气相色谱法的研究逐步展开。 (2)气相色谱法的发展 在历史上,气相色谱法的发展总是和气相色谱仪器的发展密不可分。每一种气相色谱新技术的出现,往往都伴随着气相色谱仪器的改进。因此,了解气相色谱法的发展历史可以从气相色谱仪的发展入手。历史上最早的气相色谱仪1947年由捷克色谱学家Jaroslav Janak发明的。该仪器以C为流动相、杜马测氮管为检测器测定分离开的气体体积。在样品和CA 进入测氮管之前,通过KOH溶液吸收掉CA,按时间记录气体体积的增量。这台仪器虽然简陋,但对当时的气相色谱研究起到了巨大的推动作用。Jaroslav Janak发明的气相色谱仪也有一些明显的不足:它只能测室温下为气体的样品, 样品中的CA不能被测定,而且没有实现自动化。20世纪50年代末,它逐渐被更先进的气相色谱仪所取代。W55年,第一台商品化气相色谱仪诞生,标志着气相色谱仪的发展进入了崭新的时代。 现代气相色谱仪主要由5个系统组成,即气路系统、进样系统、分离系统、温度控制系统与检测记录系统。气路系统与温控系统自气相色谱诞生以来很少有突破性的进展。气路系统主要朝自动化方向发展,20世纪90年代出现了采用电子压力传感器和电子流量控制器,通过计算机实现压力和流量自动控制的电子程序压力流量控制系统,这是气路系统的一大进步[7]。温控系统则基本朝着精细、快速、自动化方向发展。相比之下,进样系统、分离系统与检测记录系统是气相色谱仪的核心组成系统,它们的每一次变革和进步都推动着气相色谱的

气相色谱仪原理和使用

实验七气相色谱仪原理和使用 一、目的要求 1、掌握气相色谱仪结构、工作原理和内标法应用。 2、熟悉气相色谱仪的操作 3、了解气相色谱法在中药分析中的应用。 二、基本原理 仪器工作原理图 样品测定原理 牛黄解毒片由牛黄、雄黄、石膏、大黄、黄芩、桔梗、冰片、甘草组成。其中冰片为龙脑和异龙脑的混合物,具挥发性。因此本实验采用GC法,对牛黄解毒片中所含冰片进行测定,并用内标法计算含量。 三、仪器与试药 1、气相色谱仪GC9800F(上海科创色谱仪器有限公司)、微量进样器。 2、水杨酸甲酯、乙醚、醋酸乙酯(AR)。 3、冰片对照品(中国药品生物制品检定所)。 4、牛黄解毒片(市售品)。 四、操作步骤 1、讲述仪器结构:N2钢瓶、空气钢瓶、氢气发生器,气体净化器;进样器、橡

胶垫片、衬管;柱温箱、毛细管柱、分流管、尾吹管;FID检测器 2、讲述仪器操作(详见附录): (1)顺时针打开氮气和空气钢瓶、接通氢气发生器电源。 (2)接通仪器电源。 (3)设置气化、柱箱、检测器温度,并运行。 (4)确定各气体流量。 (5)打开FID电源,设置灵敏度和衰减。 (6)打开电脑,打开N2000在线,选择通道1,设置方法、信息等。 (7)查看基线。 (8)点火。 (9)待基线稳定后进样。 (10)进入N2000离线,查看色谱图和数据。 (11)记录所需色谱峰保留时间、峰面积、分离度、塔板数、对称因子等。(12)利用内标法进行样品溶液浓度的计算。 (13)柱的老化。 (14)关机 3、样品分析 色谱条件以二甲基聚硅氧烷(SE-30)为固定相;柱温为130℃,气化室为200℃,; 载气为N 2;柱前压0.06MPa;H 2 0.03MPa(20ml/min);空气0.03MPa;尾吹0.03MPa; FID检测器,控制温度200℃。 校正因子测定 内标溶液配制取水杨酸甲酯0.5g,精密称定,置250ml量瓶中,加乙酸乙酯至刻度,摇匀,作为内标溶液(2mg/ml)。(已备) 对照品溶液配制取冰片对照品20mg,精密称定,置10ml量瓶中,加内标溶液至刻度,摇匀,作为对照品溶液(2mg/ml)。(已备) 测定校正因子取冰片对照品溶液1μl注入气相色谱仪,测定3次,计算校正因子。 测定法取本品6片,去薄膜衣,研细,取0.5g,精密称定,置15ml带塞试管中,加入乙醚10ml,密塞,冰水浴超声提取10min。提取液分两次转移至8ml 离心管中,离心(3000rpm,10min),倾出上清液,沉淀用5ml乙醚洗涤1次,离心,合并上清液,挥干,残渣用内标溶液溶解,移置10ml量瓶中,并稀释至刻度,摇匀,用微孔滤膜(0.45μm)滤过,取续滤液,即得。精密吸取1μl,注入气相色谱仪,测定,按内标法计算含量。(已备)

仪器分析--气相色谱分析习题+答案

气相色谱习题 一.选择题 ( ) 1.色谱图上一个色谱峰的正确描述是( ) A.仅代表一种组分; B.代表所有未分离组分; C.可能代表一种或一种以上组分; D.仅代表检测信号变化( )2.下列保留参数中完全体现色谱柱固定相对组分滞留作用的是( ) A.死时间; B.保留时间 ; C.调整保留时间; D.相对保留时间 ( )3.气-液色谱系统中,待分离组分的 k 值越大,则其保留值: A.越大; B.越小; C.不受影响; D.与载气流量成反比 ( )4.关于范第姆特方程式,正确的说法是: A.最佳线速这一点,塔板高度最大; B.最佳线速这一点,塔板高度最小; C.塔板高度最小时,线速最小; D.塔板高度最小时,线速最大 ( )5.根据范第姆特方程式 H=A+B/u+Cu,下列说法正确的是: A.H 越大,则柱效越高,色谱峰越窄,对分离有利; B.固定相颗粒填充越均匀,则柱效越高; C.载气线速越高,柱效越高; D.载气线速越低,柱效越高 ( )6.在范第姆特方程式中,涡流扩散项主要受下列哪个因素影响? A. 载体填充的均匀程度; B. 载气的流速大小; C. 载气的摩尔质量; D. 固定液的液膜厚度 ( )7.用气相色谱法定量分析试样组分时,要求分离达 98%,分离度至少为: A.0.5; B.0.75; C.1.0; D.1.5 ( )8.在气相色谱中,当两组分未能完全分离时,我们说: A.柱效太低; B.柱的选择性差; C.柱的分离度低; D.柱的容量因子大 ( )9.分离非极性组分和极性组分混合物时,一般选用极性固定液,这是利用极性固定液的: A.氢键作用; B.诱导效应; C.色散作用; D.共轭效应 ( )10.苯和环已烷的沸点分别是 80.10°C 和 80.81°C,都是非极性分子。气相色谱分析中,若采用极性固定

食品仪器分析-气相色谱法参考答案

气相色谱习题 一、填空题 1.在气一固色谱柱内,各组分的分离是基于组分在吸附剂上的吸附、脱附能力的不同,而在气液色谱中,分离是基于各组分在固定液中溶解、挥发的能力的不同。 2.色谱柱是气相色谱的核心部分,色谱柱分为填充柱型和毛细管柱型两类,通常根据色谱柱内充填的固体物质状态的不同,可把气相色谱法分为气固色谱和气液色谱两种。 3.色谱柱的分离效能,主要由柱中填充物所决定的。 4.色谱分析选择固定液时根据“相似性原则”,若被分离的组分为非极性物质,则应选用非极性固定液,对能形成氢键的物质,一般选择极性或氢键型固定液。 5.色谱分析中,组分流出色谱柱的先后顺序,一般符合沸点规律,即低沸点组分先流出,高沸点组分后流出。 6.色谱分析从进样开始至每个组分流出曲线达最大值时所需时间称为保留时间,其可以作为气相色谱定性分析的依据。 7.一个组分的色谱峰其保留值可用于定性分析。峰高或峰面积可用于定量分析。峰宽可用于衡量柱效率,色谱峰形愈窄,说明柱效率愈高。 8.无论采用峰高或峰面积进行定量,其物质浓度和相应峰高或峰面积之间必须呈 关系,符合数学式mi=fA 这是色谱定量分析的重要依据。 9.色谱定量分析中的定量校正因子可分为绝对和相对校正因子。 10.色谱检测器的作用是把被色谱柱分离的组分根据其物理或物理化学特性,转变成电信号,经放大后由色谱工作站记录成色谱图。 11.在色谱分析中常用的检测器有热导、氢火焰、火焰光度、电子捕获等。 12.热导池检测器是由池体、池槽、热丝三部分组成。热导池所以能做为检测器,是由于不同的物质具有不同的热导系数。 13.热导池检测器在进样量等条件不变的前提下,其峰面积随载气流速的增大而减小,而氢火焰检测器则随载气流速的增大而增大。 14.氢火焰离子化检测器是一种高灵敏度的检测器,适用于微量有机化合物分析,其主要部件是离子室。

便携式气相色谱仪(美国)(精)

便携式气相色谱仪(美国) 型号:8610-0071-2 美国SRI公司是便携式气相色谱仪的领航者,生产了世界第一台便携式气相色谱仪,为化工、石油、实验室、矿山等领域的气体分析做出了卓越贡献。 启动快速,从开机到稳定小于3分钟 分析快捷、可在160秒之内完成,适合应急救援场合 一次进样就可得到所需的全部气体浓度参数 最低检测限可达1ppm 标气和载气用量是普通台式的十分之一 适合于野外操作 优点: 美国便携式气相色谱仪一次进样能够分析多种气体:H2、O2、N2、CO、CO2、NOx、CH4、乙烷、乙烯、乙炔、丙烷、丁烷、戊烷以及C6-C8。 一次进样可以检测多种气体 与其它多种气体分析系统相比SRI8610-007操作更加简便, TCD检测器检测限在200-500ppm范围,可检测H2、O2、N2、CH4以及浓度至少在200-500ppm之间的其它化合物。

FID检测器可检测C1-C6的所有碳氢化合物以及CO 和CO2,通过甲烷转化装置可将CO 和CO2转化成甲烷,再用FID进行检测。甲烷转化装置,对于CO, CO2,和所有的碳氢化合物它的检测限可达1ppm。 SRI8610-007装有一个单独得10口的气体电子取样阀和两根填充柱:一根2米的13X分子筛柱和一根2米的硅胶柱。 温度控制:整机装有柱箱温度调节阀、温度控制箱;柱箱温度为室温到 400℃的可调 整个色谱系统气路采用电子压力控制(EPC),载气压力可调 所有的可控区域、阀、温度LED数字显示、压力和电压等 尺寸: 19" 长 x 14.5" 宽x 13.5" 高 使用场合: 对启动和分析速度有较高要求的场合,如矿难时,对矿井气体的迅速分析 野外,传统台式色谱无法工作的场合

气相色谱仪期间核查规程

气相色谱仪期间核查作业指导书 1 编制目的 在气相色谱仪两次检定/ 校准之间,进行期间核查,验证该设备是否保持检定/ 校准时的状态,确保其检验结果的准确性和有效性。 2 适用范围 适用于本实验室所使用的GC2014C气相色谱仪(FID)的期间核查。 3 核查内容 一般检查、基线噪声、检测限、定量重复性。 4 标准物质 异辛烷—正十六烷标准溶液,浓度:100ng/ μL 5 核查依据 5.1 JJG 700-1999 《气相色谱仪检定规程》; 5.2 气相色谱使用说明书。 6 核查条件 表 1 检测器 FID 检定条件 柱箱温度(℃)160 汽化室温度(℃)230 检测器温度(℃)230 所用标准物质异辛烷—正十六烷 7 核查方法 7.1 一般检查 7.1.1 仪器应有下列标志:仪器名称、型号、制造厂名、出厂日期和出厂编号,国 内制造的仪器应标注制造计量器具许可证标志。 7.1.2 在正常操作条件下,用肥皂液检查气源至仪器所有气体管路的接头,应无泄 漏。 7.1.3 仪器的各调节旋钮、按键、开关、指示灯工作正常。

7.2 基线噪声和基线漂移 按 表 1 设 置色 谱 核查条件,待基线稳定后,调 节输示图,待 基线稳定后,记录基线半小时。测量并计算基线噪音和基线漂移。 7.3 定量重复性 按 表 1 设置色谱核查条件,待基线稳定后,用入 异辛烷 —正十六 烷 标准溶样1μ样6 次,以溶质峰面积测量的相对差 RSD 表 示。按下 面公式计算相对差RSD : n RSD= ( ) /( 1) 1 100 2 x x n i x i 1 7.4 FID 检测器检测限 将 7.3 中得到的色谱图积分处理,记录标准物质峰面积。按下面公式计算检测 限。 式中: D ——检测限(g /s ); D FID 2NW A N 基线A ); W ——标准物 (g) ; A ——标准物质峰面积; F C ——校正后的载(mL/min) 。 8 评定 气相 色谱仪期 间核查的 合表 2 中的要求,视为期间核以 正常使用。 表 2 气相色谱期间核查主要标 检测器 FID 技术指标 基线噪音 ≤ 1.0 ×10 -12 A 基线漂移(30min ) ≤ 1.0 ×10 -11 A 检测限 ≤ 5.0 ×10 -10g/s 定量重复性 ≤ 3% 9 核查周期 在 仪 器 设 备 两 次 检 定 之 间12 个月核查一次。

气相色谱的进样系统-气相色谱仪

气相色谱的进样系统 气相色谱的进样系统的作用是将样品直接或经过特殊处理后引入气相色谱仪的气化室或色谱柱进行分析,根据不同功能可划分为如下几种: 1、手动进样系统微量注射器:使用微量注射器抽取一定量的气体或液体样品注入气相色谱仪进行分析的手动进样。广泛适用于热稳定的气体和沸点一般在500℃以下的液体样品的分析。用于气相色谱的微量注射器种类繁多,可根据样品性质选用不同的注射器。 固相微萃取(SPME)进样器:固相微萃取是九十年代发明的一种样品预处理技术,可用于萃取液体或气体基质中的有机物,萃取的样品可手动注入气相色谱仪的气化室进行热解析气化,然后进色谱柱分析。这一技术特别适用于水中有机物的分析。 2、液体自动进样器 液体自动进样器用于液体样品的进样,可以实现自动化操作,降低人为的进样误差,减少人工操作成本。适用于批量样品的分析。 3、阀进样系统、气体进样阀 气体样品采用阀进样不仅定量重复性好,而且可以与环境空气隔离,避免空气对样品的污染。而采用注射器的手动进样很难做到上面这两点。采用阀进样的系统可以进行多柱多阀的组合进行一些特殊分析。气体进样阀的样品定量管体积一般在0.25毫升以上。 液体进样阀 液体进样阀一般用于装置中液体样品的在线取样分析,其样品定量环一般是阀芯处体积约0.1-1.0微升的刻槽。 4、吹扫捕集系统 用于固体、半固体、液体样品基质中挥发性有机化合物的富集和直接进气相色谱仪进行分析。 5、热解吸系统 用于气体样品中挥发性有机化合物的捕集,然后热解吸进气相色谱仪进行分析。 6、顶空进样系统 顶空进样器主要用于固体、半固体、液体样品基质中挥发性有机化合物的分析,如水中VOCs、茶叶中香气成分、合成高分子材料中残留单体的分析等。 7、热裂解器进样系统 配备热裂解器的气相色谱称为热解气相色谱(pyrolysis gas chromatography PGC),理论上可适用于由于挥发性差依靠气相色谱还不能分离分析的任何有机物(在无氧条件下热分解,其热解产物或碎片一般与母体化合物的结构有关,通常比母体化合物的分子小,适于气相色谱分析),但目前主要应用于聚合物的分析。 通常在气相色谱仪的载气(氦气或氮气)中,无氧条件下,将聚合物试样加热,由于施加到聚合物试样上的热能超过了分子的键能,结果引起化合物分子裂解。分子的碎裂包括以下过程:失去中性小分子,打开聚合物链产生单体单元或裂解成无规的链碎片。聚合物热裂解的机理取决于聚合物的种类,但热解产物的性质和相对产率还与热裂解器的设计和热裂解条件有关。影响特征热裂解碎片产率重现性的关键因素有:终点热解温度、升温时间或升温速率和进样量。 用于固体和高沸点液体的热解器分为两类:脉冲型和连续型。目前常用的居里点热解器和热丝热解器属于第一类,炉式热解器属于第二类。此外还有一些特殊的热解器。 PGC应用于聚合物分析包括合成聚合物和生物聚合物。在合成聚合物领域的主要应用包括指纹鉴定、共聚物或共混物组成的定量分析和结构测定如无规、序列和支化。在生物聚合物领域的应用包括研究细菌、真菌、碳水化合物和蛋白质等。此外PGC在其他很多方面也有应用。

气相色谱仪的及如何应用

气相色谱仪的简介及如何应用 气相色谱仪 气相色谱法适用于分析具有一定蒸气压且热稳定性好的组分,对气体试样和受热易挥发的有机物可直接进行分析,而对500℃以下不易挥发或受热易分解的物质部分可采用衍生化法或裂解法。 一、仪器的组成 气相色谱仪由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成。进样部分、色谱柱和检测器的温度均在控制状态。 二、对仪器的基本要求 1.对仪器的一般要求 (1)载气源气体氦、氮和氢可用作气相色谱法的流动相,可根据供试品的性质和检测器种类选择载气,除另有规定外,常用载气为氮气。 (2)进样部分进样方式一般可采用溶液直接进样或顶空进样。采用溶液直接进样时,进样口温度应高于柱温30~50℃。顶空进样适用于固体和液体供试品中挥发性组分的分离和测定。 (3)色谱柱根据需要选择。新填充柱和毛细管柱在使用前需老化以除去残留溶剂及低分子量的聚合物,色谱柱如长期未用,使用前应老化处理,使基线稳定。 (4)柱温箱柱温箱温度的波动会影响色谱分析结果的重现性,因此柱温箱控温精度应在±1℃,且温度波动小于每小时0.1℃。 (5)检测器适合气相色谱法的检测器有火焰离子化检测器(FID)、热导检测器(TCD)、氮磷检测器(NPD)、火焰光度检测器(FPD)、电子捕获检测器(ECD)、质谱检测器(MS)等。火焰离子化检测器对碳氢化合物响应良好,适合检测大多数的药物;氮磷检测器对含氮、磷元素的化合物灵敏度高;火焰光度检测器对含磷、硫元素的化合物灵敏度高;电子捕获检测器适于含卤素的化合物;质谱检测器还能给出供试品某个成分相应的结构信息,可用于结构确证。除另有规定外,火焰离子化检测器一般用氢气作为燃气,空气作为助燃气。在使用火焰离子化检测器时,检测器温度一般应高于柱温,并不得低于150℃,以免水汽凝结,通常为250~350℃。 (6)数据处理系统目前多用计算机工作站。 药典规定,各品种项下规定的色谱条件,除载气、检测器、固定液品种及特殊指定的色谱柱材料不得改变外,其余如色谱柱内径、长度、载体牌号、粒度、固定液涂布浓度、载气流速、柱温、进样量、检测器的灵敏度等,均可适当改变,以适应具体品种并符合系统适用性试验

PGA-1020便携式气相色谱仪

PGA-1020便携式气相色谱仪 一、产品介绍 PGA-1020是一款超灵敏、低功耗和快速检测挥发性有机物(VOCs) 的便携式气相色谱仪,使用华瑞公司专利的PID传感器,检测灵敏度低至几个ppb,是氢火焰检测器(FID) 和热导检测器(TCD) 的100倍以上,尤其适用于检测挥发性有机物如苯,甲苯,乙苯,邻、间、对二甲苯等苯系物(BTEX) ,独特的双色谱气路设计,可以在30s 内检测苯和在3分钟内检测BTEX。 PGA-1020仪器专为在野外使用设计,外形尺寸小巧紧凑便于携带。可充电锂电池充满电可使仪器连续工作时间8小时以上。内置小型钢瓶纯氮气或经过滤的空气作为气相色谱载气,极大地方便了在室外的使用,大大缩短了原先需要很长时间才能完成的从实地采样到实验室的分析工作。高灵敏度的PID检测器省去了对低浓度样品的预浓缩步骤,减少了在预浓缩过程中引入的误差。 可根据客户应用需求选配不同的色谱柱,既可完成对不同极性样品的分析,又可对相同样品在不同色谱柱上进行定性定量确认。 二、产品特点 1、体积小、重量轻 2、超高灵敏度的光离子化检测器 3、内置采样泵自动进样或注射器手工进样方式 4、内置便携式可充气载气小钢瓶,可选经过滤的空气作为载气 5、外接12V直流电源或内置可充电锂电池供电,运行时间长 6、全程计算机操作,数据实时传输 7、双模块可同时或独立工作 8、方便拆卸的双色谱模块,更换色谱模块无需拆卸任何气路 9、内置苯系物色谱数据库,用户可自行扩充 10、中英文界面操作软件,涵盖采样、分析及仪器维护全过程操作 三、应用领域 室内空气质量、工业环境安全监测(工业卫生)、应急事故、货物运输(卡车, 港口, 铁路管路运输)、废水处理过程的VOC、石化和天然气工业、造纸和涂料工业、储罐泄漏监测、废气排放。 四、技术参数 检测器类型10.6eV PID 毛细色谱柱Equity1701 15m+Supelcowax 15m或自选 柱温+40℃~+120℃ 检测限2ppb(苯) 线性度>105 进样方式采样泵自动/注射器手工 温度-10℃~+50℃

气相色谱仪一台技术要求

气相色谱仪:一台技术要求 气相色谱 仪1气相色谱仪主机1 2惰性流路分流/不分流毛细管进样口(ISSI)2 3氢火焰检测器,带EPC1 4热导检测器2 5六通气体进样阀2 6阀箱1 7安装工具包1 8工作站软件1 9HP-530m,0.32mm,0.25u,HP-5分析柱1 10HP-PLOT U30m,0.32mm,10u极性分析柱2 11安装工具包1 12低流失进样隔垫100 13分流/不分流衬管5 14色谱0.32um石墨垫20 15色谱柱接头4 16衬管密封圈10 170.25mL定量环2 18测试标样1 19脱烃/水分捕集阱3 20主流品牌商用电脑1 1.工作条件 1.1电源:220V,50Hz; 1.2温度:操作环境15?C~35?C; 1.3湿度:操作状态25~50%,非操作状态5~95%。 2.性能指标 2.1主机

2.1.1电子流量控制(EPC):所有流量、压力均可以电子控制,以提高重现性,配有13路电子流量控制; 2.1.2压力调节:0.001psi; 2.1.3大气压力传感器补偿高度或环境变化; 2.1.4程序升压/升流:3阶; 2.1.5具有4种EPC操作模式:恒温,恒压,程序升压,程序升流; 2.1.6保留时间重现性:<0.0008min; 2.1.7峰面积重现性<1%RSD; 2.1.8程序升压/升流:最大三阶。 2.2柱温箱 2.2.1操作温度:室温以上4?C-450?C; 2.2.2温度分辨:1?C温度设定,0.1?C程序设定; 2.2.3最大升温速率:120?C/分钟; 2.2.4最大运行时间:999.99分钟; 2.2.520梯度/21平台程序升温; 2.2.6温度稳定性:<0.01?C每1?C环境变化; 2.2.7降温速率:从450?C降至50?C时间<250秒; 2.2.8可同时安装三个检测器(质谱检测器除外)。 2.3毛细柱分流/无分流进样口(带电子气路控制,简称EPC) 2.3.1最高使用温度:400?C; 2.3.2电子参数设定压力,流速和分流比; 2.3.3压力设定范围:0-100Psi,精度0.001Psi; 2.3.4流量范围:0-200mL/分钟N2,0-1000mL/minH2or He; 2.3.5载气节省模式可以减少气体消耗而不影响仪器的性能; 2.3.6隔垫吹扫流量电子控制可消除鬼峰; 2.3.7标配扳转式顶部密封系统,有利于快速、简便地更换进样口衬管; 2.3.8进样口为全惰性化处理,并提供文献或应用文章或彩页证明。 2.4氢火焰离子化检测器(FID) 2.4.1温度范围:1℃步进可达450℃; 2.4.2具有火焰熄灭监测功能和自动重新点火功能,自动调节点火气流; 2.4.3最低检测限:<1.4pg C/sec;

便携式气相色谱质谱联用仪

便携式气相色谱质谱联用仪 1、用途:对液体、固体、气体等各类基质样品中的挥发性及半挥发性有机物的现场快速测定。 2、工作条件 2.1电源:LiSO 电池供电和外接交流电源供电 2 2.2 电池:可充电电池充电一次可连续使用不低于2.5个小时; 3、技术参数要求 3.1运输便捷性:便携式GC-MS联用仪结构紧凑、体积小、重量轻,便于携带、整体性能稳定的设备。全部设备从应急监测车上拿出来接通电池电源和载气,到准备开机运行不超过5min,电池能持续提供20个样品检测。 3.2 现场调试和运行的快捷性:在应急监测车抵达现场10min内,应完成仪器的调试(包括色谱柱温、质谱仪真空度等达到测试样品的要求;完成质谱仪调谐)。★3.3真空系统稳定性:具有内置微型涡轮分子泵和内置微型机械隔膜泵(无使用寿命限制)。 3.4 系统参数 3.4.1 载气:≧99.9﹪高纯氦气; 3.4.2 氦气瓶:98ml不锈钢瓶(2500psi);高达300次以上分析/每气瓶,可持续使用约20个小时/瓶; ★3.4.3 重量:小于14.5kg(含电池和标配载气瓶); ★3.4.4 开机及稳定时间:5min之内; 3.4.5 样品分析时间:大约3min/样品; 3.4.6 进样方式:SPME、液体或Needle trap进样,可用于气态,液体和固态样品富集。 3.5 气相色谱 3.5.1 基本操作功能:仪器操作简便,要求配备能够监测VOC、sVOC的色谱柱,同时柱温箱能进行程序升温; 3.5.2 低热质毛细管色谱柱:MXT-5, 5m×0.1mm×0.4μm df ; 3.5.3 低热质进样口:专门为SPME设计的分流、不分流进样口,低体积,减少展宽; 3.5.4 程序升温:40℃~300℃; 3.5.5 升温速率:最高2.5℃/s; 3.5.6 EPC电子压力控制载气流量; 3.5.7 具有内置热解析模块。 3.6 质谱仪检测器

气相色谱法的应用

气相色谱法的应用 气相色谱法在石油工业中的应用 ⑴石油气的分析石油气(C1~C4)的成分分析,目前都采用气相色谱法。以25%丁酮酸乙酯为固定液,6201担体,柱长12.15m,内径4mm,柱温12℃,氢为载气,流速25ml/nin,热导池电桥电流120~150mA, C1~C4各组分得较好的分离见图10。图10 石油在丁酮酸乙酯柱上的分离1-空气;2-乙烷;3-乙烯;4-二氧化碳;5-丙烷;6-丙烯;7-异丁烷8-乙炔;9-正丁烷;10-正丁烯;11-异丁烯12- 反丁烯-2,3;13- 顺丁烯-2,4;14-丁二烯北京化工研究院近期研究出用多孔氧化铝微球色谱固定相,对C1~C4烃分离很好,柱长2m,内径2mm,内填充0.3%阿皮松L,改性?-Al2O3,微球120~130目;柱温85℃,氮为载气,流速15ml/min,氢火焰离子化检测器。分离谱见图11. 此外吉林化学工业公司研究院还研制了石墨化炭黑和改性石墨化炭黑色谱固定相分离C1~C4烃。⑵石油馏的的分析气相色谱法分析石油馏分的效能与分析速度是精密分馏等化学方法所不能比拟的。如一根60m长、内径0.17mm的弹性石英毛细管柱,内涂OV-101,在程序升温条件下(柱温40~90℃)进样0.6?1,分流比150:1,分析了65~165℃大港直馏气油。用一根30m长、内径0.25mm 毛细管柱,涂PEG1500,柱温80℃,汽化100℃,氮为载气,分流比100:1,汽油中微量芳香烃得到很好的分离(见图12)。图11 低级烃类的气相色谱分离图1-CH4;2-C2H6;3-C2 H4;4-C3 H8;5-C2 H2;6-C8 H6;7-iC4 H10;8-nC4 H10;9-丙二烯;10-丁烯-1;11-iC5 H12 12--i C4 H6;13- 反丁烯-2;14- 顺丁烯-2;15-丁二烯16-丙炔图12汽微量芳烃的油中色谱分离1-苯;2-甲苯;3-乙苯;4-对二甲苯;5-一间二甲苯; 6-邻二甲苯 气相色谱法在环境科学中的应用 我国在环境科学研究、监督检测中,广泛使用气相色谱法测定大气和水中痕量胡害物质。 ⑴大气中微量-氧化碳的分析 汽车尾气中含有一氧化碳,工业锅炉和家用煤炉燃烧不完全放出一氧化碳,都污染环境。大气中痕量一氧化碳常用转化法没定。国产SP-2307色谱仪具有转化装置,使CO转化为CH4。CO+3H2Ni催化/380℃→CH4+H2O 色谱柱固定相可用5A筛分子,GDX-104,Porpak Q等,以分子筛为例,13X或5A分子筛60~80目(先经500~550℃活化2小时)以氢气载气, 57ml/nin;氢焰检测器;空气400ml/min;尾吹氮气80ml/min。柱长2m,内径2mm,柱温36℃,检测室130℃,转化炉380v;进样量1mm。可测大气中ppm级一氧化碳。

CMS100便携式气相色谱仪多点校准曲线建立方法.

CMS多点校准曲线建立方法 1.开启软件的多点校准曲线功能. 1.1 在CMS软件主界面中,选择菜单栏Tools(工具下的Supervisor Options(管理员选项,如下图1-1 。 图1-1 1.2 在出现的对话框,见图1-2中输入omer,点击OK。 图1-2

1.3在弹出的对话框中选中Multi Point Calibration(多点校准曲线,如图1-3,再点击OK。 如图1-3 2.设置校准曲线点数设置校准曲线点数和标准物质信息和标准物质信息和标准物质信息((名称名称、、保留时间保留时间、、浓度浓度单位单位单位、、浓度浓度。 2.1 在CMS 软件主界面中选择Operation Method(操作方法,进入如图2-1中对话框,选择Operation Options (操作选项, 将Multiple Calibrations(多点校准曲线选中,并且在Number of Calibrations (校准曲线点数里填入要做Calibrations 的点数。

图2-1 2.2 在CMS 软件主界面中选择Calibration ,进入Calibration Parameters 对话框,见图2-2 图2-2

2.3 在图2-2中可以Add(增加、Modify(修改、Remove (删除标准物质成份,同单点校准功能一样。如修改第一项,点击Modify 见图2-3,选中Multi Point Calibration (多点校准曲线,开启此功能,在下面Calibration Concentration(校准 浓度中输入你依次要做的浓度值。见下图2-3,Benzene 共有3个点,做的浓度依次为15.45ppb 、30.90ppb 、77.25ppb 。可以利用Add(增加、Modify(修改、Remove (删除标准物质信息,至到你需要的标准物质信息建好为止。 图2-3 3.Calibrate 分析分析相应浓度的标准样品相应浓度的标准样品相应浓度的标准样品,,建立多点校准曲线建立多点校准曲线。。 3.1 在CMS 软件主界面中选择Calibrate(校准曲线,进入如图3-1中对话框,对话框的意思是“是否需要自动更新最后的多点校准曲线”,如果你第一次做或想重做,则

仪器分析笔记《气相色谱分析》.

第一章气相色谱分析 §1.1 气相色谱法概述(掌握) 1.1.1 色谱法概述 1、色谱法的定义及基本概念 定义:根据混合物中各组分在互不相溶的两相(固定相与流动相)中的吸附能力或分配系数或其他亲和作用性能的差异作为分离依据的分析方法。 色谱法能解决那些在物理常数相近、化学性质类似的同系物、异构物及多组分混合物的分离分析。 色谱柱:进行色谱分离用的细长管;色谱柱分为填充柱和毛细管柱。 固定相:管内保持固定、起分离作用的填充物; 固定液:固定相中的液体,常为高沸点有机物。 流动相:流经固定相的空隙或表面的冲洗剂。 2、色谱法的分类 A、按流动相和固定相的状态分类 ①气相色谱(GC):流动相为气体 气-固色谱 气-液色谱 ②液相色谱(LC):流动相为液体 液-固色谱(LSC) 液-液色谱(LLC) 现代液相色谱多使用高压输液装置,常称:高效液相色谱(HPLC) B、按固定相形状分类 ①柱色谱:柱色谱又可分为填充柱(固定相填入不锈钢柱中)和毛细管柱(固定液涂渍在毛细 管柱内壁) ②纸色谱:以多孔滤纸为载体,吸附在滤纸上的水为固定相,各组分在滤纸上分开。 ③薄层色谱(平板色谱):以涂渍在玻璃版上的吸附剂薄层为固定相。 C、按分离的原理分类 ①吸附色谱:利用组分在固定相上的吸附能力强弱不同分离。 ②分配色谱:利用组分在固定液中溶解度不同分离。 ③凝胶(排阻)色谱:利用大小不同的分子在多孔固定相中的选择渗透分离 ④离子交换色谱法:利用组分在离子交换剂上的亲和力大小不同分离 3、气相色谱仪组成 Ⅰ载气系统:气源、气体净化器、供气控制阀门和仪表; ※提供纯净的一定压力和流速的载气,由气源输出的载气通过装有催化剂或分子筛的净化器,以除去水、氧等有害物质。 Ⅱ进样系统:进样器、汽化室; ※把样品快速而定量地加到色谱柱上端,以便进行分离。 Ⅲ分离系统:色谱柱、控温柱箱; ※试样各组分分离过程在色谱柱内进行。 Ⅳ检测系统:检测器、检测室; ※将组分的浓度或质量大小转变成电信号。 Ⅴ记录系统:放大器、记录仪、色谱工作站。

相关文档
最新文档