光电化学分解法制氢的方法

光电化学分解法制氢的方法

光电化学分解法制氢的方法

链接:https://www.360docs.net/doc/015233859.html,/baike/238.html

光电化学分解法制氢的方法

典型的光电化学分解太阳池由光阳极和阴极构成。光阳极通常为光半导体材料,受光激发可以产生电子空穴对,光阳极和对极(阴极)组成光电化学池,在电解质存在下光阳极吸光后在半导体带上产生的电子通过外电路流向阴极,水中的氢离子从阴极上接受电子产生氢气。 半导体光阳极是影响制氢效率最关键的因素。应该使半导体光吸收限尽可能地移向可见光部分,减少光生载流子之间的复合,以及提高载流子的寿命。光阳极材料研究得最多的是TiO2。TiO 2作为光阳极,耐光腐蚀,化学稳定性好。而它禁带宽度大,只能吸收波长小于387nm的光子。目前主要的解决途径就是掺杂与表面修饰。掺杂有非金属离子掺杂、金属离子掺杂、稀土元素掺杂等。要使分解水的反应发生,最少需要1.23V的能量,现在最常用的电极材料是TiO2,其禁带宽度为3eV,把它用作太阳能光电化学制氢系统的阳极,能够产生0.7~0.9V的电压,因此要使水裂解必须施加一定的偏压。

由于太阳能制氢中常用的施加偏压方法有:利用太阳电池施加外部偏压和利用太阳电池在内部施加偏压,所以太阳能光电化学分解水制氢可分为一步法和两步法。一步法就是不将电能引出太阳电池,而是在太阳电池的两个电极板上制备催化电极,通过太阳电池产生的电压降直接将水分解成氢气与氧气。该方法是近年来在多结叠层太阳电池(如三结叠层非晶硅太阳电池)研究方面取得进展的情况下逐渐被重视起来的。由于叠层太阳电池的开路电压可以超过电解水所需要的电压,而电解液又可以是透光的,所以将这种高开路电压的太阳电池置人电解液中,电解水的反应就会在光照下自发进行。这种方法的优点是免去了外电路,降低了能量损耗,但是光电极的光化学腐蚀问题比较突出,故研究的重点是电池之间的能隙匹配、电池表面防腐层的选择和制备器件结构的设计,对催化电极的要求是有较低的过电势、有好的脱附作用、对可见光透明、防腐、廉价。

两步法光伏电解水是将太阳能光电转换和电化学转换在两个独立的过程中进行

这样可以通过将几个太阳电池串连起来,以满足电解水所需要的电压条件。

两步法制氢有以下优点:在系统中可以分别选用转化效率高的太阳电池和较好的电化学电极材料以提高光电化学转换效率;可以有效避免因使用半导体电极而带来的光化学腐蚀问题。但两步法要将电流引出电池,这要损耗很大的电能,因为电解水只需要低电压,如若得到大功率的电能就需要很大的电流,使得导线耗材和功率损耗都很大,而且在电流密度很大时也加大了电极的过电势。

原文地址:https://www.360docs.net/doc/015233859.html,/baike/238.html

页面 1 / 1

光电化学分解法制氢的方法

光电化学分解法制氢的方法 链接:https://www.360docs.net/doc/015233859.html,/baike/238.html 光电化学分解法制氢的方法 典型的光电化学分解太阳池由光阳极和阴极构成。光阳极通常为光半导体材料,受光激发可以产生电子空穴对,光阳极和对极(阴极)组成光电化学池,在电解质存在下光阳极吸光后在半导体带上产生的电子通过外电路流向阴极,水中的氢离子从阴极上接受电子产生氢气。 半导体光阳极是影响制氢效率最关键的因素。应该使半导体光吸收限尽可能地移向可见光部分,减少光生载流子之间的复合,以及提高载流子的寿命。光阳极材料研究得最多的是TiO2。TiO 2作为光阳极,耐光腐蚀,化学稳定性好。而它禁带宽度大,只能吸收波长小于387nm的光子。目前主要的解决途径就是掺杂与表面修饰。掺杂有非金属离子掺杂、金属离子掺杂、稀土元素掺杂等。要使分解水的反应发生,最少需要1.23V的能量,现在最常用的电极材料是TiO2,其禁带宽度为3eV,把它用作太阳能光电化学制氢系统的阳极,能够产生0.7~0.9V的电压,因此要使水裂解必须施加一定的偏压。 由于太阳能制氢中常用的施加偏压方法有:利用太阳电池施加外部偏压和利用太阳电池在内部施加偏压,所以太阳能光电化学分解水制氢可分为一步法和两步法。一步法就是不将电能引出太阳电池,而是在太阳电池的两个电极板上制备催化电极,通过太阳电池产生的电压降直接将水分解成氢气与氧气。该方法是近年来在多结叠层太阳电池(如三结叠层非晶硅太阳电池)研究方面取得进展的情况下逐渐被重视起来的。由于叠层太阳电池的开路电压可以超过电解水所需要的电压,而电解液又可以是透光的,所以将这种高开路电压的太阳电池置人电解液中,电解水的反应就会在光照下自发进行。这种方法的优点是免去了外电路,降低了能量损耗,但是光电极的光化学腐蚀问题比较突出,故研究的重点是电池之间的能隙匹配、电池表面防腐层的选择和制备器件结构的设计,对催化电极的要求是有较低的过电势、有好的脱附作用、对可见光透明、防腐、廉价。 两步法光伏电解水是将太阳能光电转换和电化学转换在两个独立的过程中进行 这样可以通过将几个太阳电池串连起来,以满足电解水所需要的电压条件。 两步法制氢有以下优点:在系统中可以分别选用转化效率高的太阳电池和较好的电化学电极材料以提高光电化学转换效率;可以有效避免因使用半导体电极而带来的光化学腐蚀问题。但两步法要将电流引出电池,这要损耗很大的电能,因为电解水只需要低电压,如若得到大功率的电能就需要很大的电流,使得导线耗材和功率损耗都很大,而且在电流密度很大时也加大了电极的过电势。 原文地址:https://www.360docs.net/doc/015233859.html,/baike/238.html 页面 1 / 1

制氢的全部方法

制氢的全部方法 一、电解水制氢 多采用铁为阴极面,镍为阳极面的串联电解槽(外形似压滤机)来电解苛性钾或苛性钠的水溶液。阳极出氧气,阴极出氢气。该方法成本较高,但产品纯度大,可直接生产99.7%以上纯度的氢气。这种纯度的氢气常供:①电子、仪器、仪表工业中用的还原剂、保护气和对坡莫合金的热处理等,②粉末冶金工业中制钨、钼、硬质合金等用的还原剂,③制取多晶硅、锗等半导体原材料,④油脂氢化,⑤双氢内冷发电机中的冷却气等。像北京电子管厂和科学院气体厂就用水电解法制氢。 二、水煤气法制氢 用无烟煤或焦炭为原料与水蒸气在高温时反应而得水煤气(C+H2O→CO+H2—热)。净化后再使它与水蒸气一起通过触媒令其中的CO转化成CO2(CO+H2O→CO2+H2)可得含氢量在80%以上的气体,再压入水中以溶去CO2,再通过含氨蚁酸亚铜(或含氨乙酸亚铜)溶液中除去残存的CO 而得较纯氢气,这种方法制氢成本较低产量很大,设备较多,在合成氨厂多用此法。有的还把CO与H2合成甲醇,还有少数地方用80%氢的不太纯的气体供人造液体燃料用。像北京化工实验厂和许多地方的小氮肥厂多用此法。 三、由石油热裂的合成气和天然气制氢 石油热裂副产的氢气产量很大,常用于汽油加氢,石油化工和化肥厂所需的氢气,这种制氢方法在世界上很多国家都采用,在我国的石油化工基地如在庆化肥厂,渤海油田的石油化工基地等都用这方法制氢气 也在有些地方采用(如美国的Bay、way和Batan Rougo加氢工厂等)。 四、焦炉煤气冷冻制氢 把经初步提净的焦炉气冷冻加压,使其他气体液化而剩下氢气。此法在少数地方采用(如前苏联的Ke Mepobo工厂)。 五、电解食盐水的副产氢 在氯碱工业中副产多量较纯氢气,除供合成盐酸外还有剩余,也可经提纯生产普氢或纯氢。像化工二厂用的氢气就是电解盐水的副产。 六、酿造工业副产 用玉米发酵丙酮、丁醇时,发酵罐的废气中有1/3以上的氢气,经多次提纯后可生产普氢(97%以上),把普氢通过用液氮冷却到—100℃以下的硅胶列管中则进一步除去杂质(如少量N2)可制取纯氢(99.99%以上),像北京酿酒厂就生产这种副产氢,用来烧制石英制品和供外单位用。 七、铁与水蒸气反应制氢 但品质较差,此系较陈旧的方法现已基本淘汰。 八、金属与酸反应制氢气, 当然,金属必须是活动性排在氢前的(钾,钙,钠不行),可以用镁铝锌铁锡铅。酸不能用硝酸和浓硫酸。 工厂生产方法有: 1、电解水制氢. 水电解制氢是目前应用较广且比较成熟的方法之一。水为原料制氢过程是氢与氧燃烧生成水的逆过程,因此只要提供一定形式一定能量,则可使水分解。提供电能使水分解制得氢气的效率一般在75-85%,其工艺过程简单,无污染,但消耗电量大,因此其应用受到一定的限制。利用电网峰谷差电解水制氢,作为一种贮能手段也具有特点。我国水力资源丰富,利用水电发电,电解水制氢有其发展前景。太阳能取之不尽,其中利用光电制氢的方法即称为太阳能氢能系统,国外已进行实验性研究。随着太阳电池转换能量效率的提高,成本的降低及

电解水制氢

南京理工大学 《新能源技术》课程报 告 姓名李伟杰学号:0910190131 学院(系):自动化学院 专业: 电气工程及其自动化 题目: 太阳能裂解水制氢 组别 3 任课教师戚志东 2012年4月16号

太阳能裂解水制氢 ——李伟杰 摘要:用太阳能制氢因其具有能够有效解决能源危机、形成可持续的能源体系以及清洁无污染等优点而得到了广泛的关注。本文介绍了基于传统概念上太阳能制氢技术的新方法、新工艺及新材料,提出两种制氢主要途径,分析了目前的技术难点,最后论述了发展太阳能制氢技术的前景并指出了今后的研究方向。 关键字:太阳能光电解水光催化 hydrogen production using solar energy ——Li weijie Abstract:hydrogen production using solar is arousing more and more concentration because of its advantages .First,it can be the key to solve the energy crisis .Second ,it can form sustainable energy system.Third,it is clean and tidy.no pollution is produced. The passage shows some new ways, new materials and new industrial processes to manufacture hydrogen. Two main ways are put forward and the Technical difficulties are analyzed. Finally the passage discusses the prospect of hydro producing using solar energy . Keywords: solar energyphotocatalyticPhotoelectric 1.引言 太阳能是取之不尽,用之不竭的清洁能源,氢能被认为是二次能源中一种最为理想的无污染的绿色能源。利用太阳能分解水制氢,从能源总量和利用方式角度看,都可以满足人类日益增长的能源需求,而且不会对环境带来任何污染,因而被认为是解决能源问题的最佳方案之一.,成为研究的热点。自从1972年Fuiishi和Honda报道了在n型半导体Ti02电极上发现水的电解,就开始了研究太阳能制氢的新纪元。但在技术层次,特别是在光催化剂的合成及筛选、电极材料的制备、提高制氢效率诸多方面要实现制氢的产业化,仍存在一定困难。本文介绍了基于传统概念上太阳能制氢技术的新方法和工艺,并就一些技术难点做了分析,最后论述了发展太阳能制氢技术的优势和前景。

太阳能光催化制氢技术原理

太阳能光催化制氢技术原理 在新能源领域中,氢能已普遍被认为是一种最理想的新世纪无污染的绿色能源,这是因为氢燃烧,水是它的唯一产物。氢是自然界中最丰富的元素,它广泛地存在于水、矿物燃料和各类碳水化合物中。 然而,传统的制氢方法,需要消耗巨大的常规能源,使氢能身价太高,大大限制了氢能的推广应用。于是科学家们很快想到利用取之不尽、廉价的太阳能作为氢能形成过程中的一次能源,使氢能开发展现出更加广阔的前景。科学家们发现了以光催化材料为“媒介”,能利用太阳能把水裂解为燃料电池所必需的氧和氢,科学家称这种仅用阳光和水生产出氢和氧的技术为“人类的理想技术之一”。 太阳能光催化制氢技术的原理 我们知道,在标准状态下把1mol水(18克)分解成氢气和氧气需要约285kJ的能量,太阳能辐射的波长范围是200~2600nm,对应的光子能量范围是400~45kJ/mol。但是水对于可见光至紫外线是透明的,并不能直接吸收太阳光能。因此,想用光裂解水就必须使用光催化材料,科学家们往水中加入一些半导体光催化材料,通过这些物质吸收太阳光能并有效地传给水分子,使水发生光解。以二氧化碳钛半导体光催化材料为例,当太阳光照射二氧化化钛时,其价带上的电子(e-)就会受激发跃迁至导带,同时在价带上产生相应的空穴(h+),形成了电子空穴对。产生的电子(e-)、空穴(h+)在内部电场作用下分离并迁移到粒子表面。水在这种电子-空穴对的作用下发生电离生成氢气和氧气。 太阳能光催化制氢技术的研究现状 技术研究的关键主要集成电路中在光催化材料的研究方面,光催化材料要满足以下几个条件:(1)光催化材料裂解水效率较高;(3)光催化材料最好要可能利用太阳所有波段中的能量。光裂解水制氢以半导体为催化材料,一般为金属氧化物和金属硫化物,然而,目前研究者一般均选用二氧化钛作为光催化氧化的稳定性好,但是由于二氧化钛无臭、无毒,化学稳定性好,但是由于二氧化钛的禁带宽度较宽,只能利用太阳光中的紫外光部分,而紫外光只占太阳光总能量的4%,如何减低光催化材料的禁带宽度,使之能利用太阳光中可见光部分(占太阳能总能量的43%),是太阳能裂解水制氢技术的关键。 国内研究现状 国内研究太阳能裂解水不是很多,但是近几年来有明显增加趋势。最近,这项研究又有了新的大突破。 大连物理化学研究所李灿研究组在2003年7月《化学通讯》上报道,发现了一种新的光催化材料,它由铟锌的硫化物组成,能在太阳可见光照射下裂解水,连续产生氢气和氧气,并且效率保持稳定。 2003年9月南京大学环境材料与再生能源研究中心主任邹志刚通过与日本产业技术综合研究所的合作研究,向社会公布了"可见光响应型水全分解光催化剂"这一重大科研成果,研制出一种新型的光催化材料,它由铟钽氧化物组成,表面有一层镍氧化物。这种催化材料在可见光波段起作用,它的催化效率和使用寿

最新光催化分解水材料研究总结全解

光催化分解水材料研究总结 班级:xxxxx 学号:xxxxx 姓名:xxx 一·研究小组简介 彭绍琴:1985年毕业于南昌大学(原江西大学)无机化学专业,获理学学士学位。 1993,2-1994,6北京大学访问学者;1999年7月研究生毕业于南昌大学物理化学专业,获理学硕士学位;2005年7月研究生毕业于南昌大学材料物理与化学专业,获工学博士学位。目前是江西省高校骨干教师,南昌大学无机化学和应用化学,长期从事无机化学、材料化学的教学和科研工作。在无机功能材料、纳米材料、光催化领域有较长时间的工作积累,在国内外重要学术刊物上发表论文30余篇。参与完成国家自然科学基金和“973”项目2项,主持和完成江西省自然科学基金各1项。主持和完成江西省教育厅项目各1项。 上官文峰:日本国立长崎大学工学博士,原日本国工业技术院科学技术特别研究员, 曾先后任北京大学、东京大学高级访问学者。现任上海交通大学教授、博士生导师,机械与动力学院燃烧与环境技术研究中心副主任。主要从事环境催化与材料、光催化、太阳能制氢、燃烧排放及柴油机尾气催化净化、纳米材料制备及其功能开发等领域的研究。主要负责承担了国家863计划、国家973计划、国家自然科学基金、上海市重点发展基金、海外合作等项目。在Chem Commun, J Phys Chem B, Appl Catal A & B,《科学通报》等国际国内权威期刊上发表了一系列学术论文,取得日本国发明专利 4 项,并获日本政府“注目发明”奖 1 项。获国家发明专利10 余项,获省部级科学技术进步奖 2 项。教育部“跨世纪优秀人才”培养计划入选者,中国化学会催化专业委员会委员,中国太阳能学会氢能专业委员会委员,中国仪表材料学会理事,973计划“太阳能规模制氢的基础研究”项目专家组成员,《环境污染与防治》杂志编委,亚太纳米科技论坛ISNEPP2006、2007学术委员会委员。 李越湘:男,博士,教授,博士生导师,南昌大学科技处副处长。南昌大学材料物 理与化学重点学科光催化方向学术带头人,江西省高校中青年学科带头人,2004年获江西省科学技术协会“江西青年科学家提名”称号。现为中国太阳学会氢能专业委员会委员,《功能材料》通讯编委。1984年大学本科毕业于江西大学化学系,获学士学位;1996,10-1997,12国家公派到德国科隆大学((Universitaet zu Koeln))做访问学者,期间得到德国学术交流中心(DAAD)短期奖学金资助;2002年研究生毕业于中国科学院研究生院(兰州化学物理所),获理学博士学位;2006年6月-11月国家公派到德国汉诺威大学(Leibniz Universitaet Hannover)做高级研究学者。长期从事光催化、无机材料、环境化学等方向的研究,已在国内外重要学术刊物上发表了学术论文50余篇,其中18篇为SCI论文,4篇为EI。作为主要承担者完成省科技厅攻关项目一项和多项横向项目,主持和参与(排名第二)完成江西省自然科学基金各一项。目前承担973计划(国家重点规划基础研究项目)二级子项目和省自然科学基金项目各一项。 尚世通(1985一):男,山东省成武县人,东北电力大学硕士研究生,主要从事水质科学与技术研究工作。 宋华(1963-):女,工学博士,教授、博导,现系大庆石油学院化学化工学院副院长,从

β-SiC纳米线光电催化分解水制氢性能及机理研究

目录 摘要....................................................................................................................................................................... I Abstract .............................................................................................................................................................. III 第一章绪论.. (1) 1.1 引言 (1) 1.2 SiC纳米材料的结构和光催化机制 (1) 1.2.1 SiC的晶体结构 (1) 1.2.2 SiC的光催化机制 (2) 1.3 SiC光催化剂的表面修饰 (3) 1.3.1 贵金属负载 (3) 1.3.2 复合半导体 (5) 1.3.3 离子掺杂 (5) 1.4 光催化分解水制氢及其研究进展 (6) 1.4.1 光催化分解水制氢的机理研究 (6) 1.4.2 光催化分解水制氢的研究进展 (7) 1.4.3 SiC光催化分解水制氢的研究进展 (8) 1.5 课题研究意义、目的与内容 (9) 1.5.1 课题研究的意义与目的 (9) 1.5.2 课题研究内容 (9) 第二章实验及测试方法 (15) 2.1 实验原料及试剂 (15) 2.2 实验设备 (15) 2.3 实验方法 (16) 2.3.1 SiC纳米线的制备 (16) 2.3.2 SiO2/SiC纳米线的制备 (16) 2.3.3 Pt/SiC纳米线的制备 (16) 2.3.4 SnO2/SiC纳米线的制备 (17) 2.3.5 光催化制氢性能测试 (17) 2.3.6 光电化学性能测试 (17) 2.4测试与表征 (18) 2.4.1 X射线衍射分析(XRD) (18) 2.4.2 透射电子显微镜(TEM) (18) 2.4.3 X射线能谱(EDS) (19) 2.4.4 X射线光电子能谱(XPS) (19) 2.4.5 傅里叶变换红外光谱(FI-IR) (19) 2.4.6 光致发光光谱(PL) (19) 第三章SiO2/SiC皮芯结构纳米线的制备及光电催化分解水性能研究 (20) 3.1 引言 (20) 3.2 实验部分 (20) 3.3 结果与讨论 (21) 3.3.1 SiO2/SiC纳米线的XRD分析 (21) 3.3.2 SiO2/SiC纳米线的TEM分析 (21) 3.3.3 SiO2/SiC纳米线的XPS分析 (22) 3.3.4 SiO2/SiC纳米线的光催化制氢性能研究 (23)

太阳能光伏电解水制氢的资料整理

太阳能光伏电解水制氢的定义:光伏电解水制氢是以太阳能为一次能源,以水为媒介生产二次能源-氢气的过程。 太阳能光伏电解水制氢的原理:典型的光电化学分解太阳池由光阳极和阴极构成。光阳极通常为光半导体材料,受光激发可以产生电子空穴对,光阳极和对极(阴极)组成光电化学池,在电解质存在下光阳极吸光后在半导体带上产生的电子通过外电路流向阴极,水中的氢离子从阴极上接受电子产生氢气。 太阳能光伏电解水制氢的方法: (1)一步法:一步法就是不将电能引出太阳电池,而是在太阳电池的两个电极板上制备催化电极,通过太阳电池产生的电压降直接将水分解成氢气与氧气。 优点:免去了外电路,降低了能量损耗。 缺点:光电极的光化学腐蚀问题比较突出。 (2)两步法:将太阳能光电转换和电化学转换在两个独立的过程中进行这样可以通过将几个太阳电池串连起来,以满足电解水所需要的电压条件。 优点:在系统中可以分别选用转化效率高的太阳电池和较好的电化学电极材料以提高光电化学转换效率;可以有效避免因使用半导体电极而带来的光化学腐蚀问题。 缺点:两步法要将电流引出电池,这要损耗很大的电能,因为电解水只需要低电压,如若得到大功率的电能就需要很大的电流,使得导线耗材和功率损耗都很大,而且在电流密度很大时也加大了电极的过电势。 提高效率的关键:电化学反应的场所是电极,其结构和材料的选择,对降低电极成本和减少电解能耗起着非常重要的作用,同时又影响其大规模工业化的实用性。 电解水制氧电极的选择: (1)阴极:电极表面对氢的吸附能力对阴极的析氢过电位有直接影响,除此之外,氢气的形成还与电极性能、类型、电解液浓度和温度有关,最早的具有良好催化效果的析氢电极是Pt和其催化活性高,析氢过电位低,但是价格比较昂贵,无法推广,因此廉价的、具有高析氢活件的金属合金成为研究热点。Engel-brewer价键理论认为,过渡金属合金能够提高析氢反应的电催化活性,其中Ni基合金电极因为具有良好的电化学稳定性、成本低、制备简单等优点成为研宄和应用最广泛的合金。 (2)阳极:降低析氧过电位是阳极材料选择的原则。在电解水制氧阳极极化条件下,金属Ni在碱性电解液中的耐腐蚀性能优异,析氧效率也比较高,并且价格相对便宜,因此,金属Ni作为碱性电解水制氧装置中的阳极材料受到了广泛的关注。 太阳能光伏电解水制氢在光伏发电系统中的应用: 背景:我国现有的太阳能光伏发电系统基本上是独立方式运行,系统供电受季节与气象条件的影响是其固有的弊端。目前,通过蓄电池储能来调整光伏发电系统的发电与供电之间的时间差,是减少自然条件影响的主要手段。根据独立运行的光伏发电系统设计原则,用户对供电质量、供电保证率提出的要求愈高,系统对蓄电池的需要量也愈大。长期以来,对蓄电池#主要是铅酸电池$的依赖性是影响独立运行的光伏发电系统大量推广应用的重要原因。蓄电池储能的缺点是:初投资高,使用寿命短,折旧费高,从而增加了系统发电成本;对于铅酸蓄电池还有运行维护工作量大,污染环境的问题。此外,蓄电池的充电、放电环节的技术与可靠性问题,也是光伏发电系统设计者与用户经常关注的事情。鉴于我国边远山区多、海岛

半导体光催化制氢的进展.

《能源材料》课程论文 题目:半导体光催化水解制氢的进展 指导教师:毛景 学生姓名:朱永坤学号:20130800830 专业:建筑结构及功能材料 院(系):材料科学与工程 2016年6月8 日

关键词:半导体;光催化;太阳能;电解水;制氢;改性。 引言: 在上课过程中老师讲到的新能源汽车当中的氢燃料池汽车让我对氢能的开发利用产生了浓厚的兴趣,就想着写一篇关于氢能方面的文章。结合老师上课过程提到的太阳能制氢,就定位在了半导体光催化制氢这个主题了。 目前,氢气在氢燃料电池汽车当中得到了广泛的应用,氢燃料电池通过液态氢与空气中的氧结合而发电,根据此原理而制成的氢燃料电池可以发电用来推动汽车。 氢燃料电池汽车是终极环保汽车。氢燃料电池汽车零排放,且一次加氢续驶里程长,加氢时间短,相当于汽油车,一直以来被作为新能源汽车技术路线之一。 但是,到目前为止,氢燃料电池汽车,并没有得到大范围的普及,因为一些技术条件的短板暂时限制了它的应用。其中最大的问题就是氢气来源问题,世界上很多国家的氢燃料的生产并不是以水为原料,而是以天然气作为生产原料,先前讲到了,如果要电解水取得氢气,那需要很大的能量消耗,而且要生产出能量值与普通汽油燃料相当的氢燃料,我们就需要大量的水资源,水同样也是我们这个星球稀缺的资源。同时,氢气的储存和运输过程又要耗费很大的能量,所以到目前为止,要驱动一辆氢燃料电池汽车,所需能耗太大,还不能达到节能环保的目的。麻省理工学院的一些能源专家则提出,氢燃料电池车真正要“跑起来”,至少还需要15年的时间。 那么,如何低能耗,效率高地制备氢气成为了氢燃料汽车的一个瓶颈,目前制备氢气有也有很多方法,包括热化学法制氢,光电化学分解法制氢,光催化法制氢,人工光合作用制氢,生物制氢等,在这里重点介绍一下光催化制氢的一

光催化分解水制氢体系助催化剂研究进展

一基金项目: 国家自然科学基金(21406054);河北省教育厅青年拔尖人才项目(BJ2016022)一李旭力:女,1991年生, 硕士研究生,主要从事光催化分解水材料的研究一王晓静:通信作者,女,副教授,主要从事光催化材料的研究一EGmail :p ro py l@163. com 光催化分解水制氢体系助催化剂研究进展 李旭力,王晓静,赵一君,李玉佩,李发堂,陈学敏 (河北科技大学理学院,石家庄050031) 摘要一一煤二石油二天然气等不可再生能源的消耗导致环境污染日益严重,开发和使用清洁的可再生能源迫在眉睫.利用太阳 能光催化分解水制氢被认为是解决化石能源紧缺和环境污染问题的有效途径之一.光催化分解水制氢体系非常复杂,助催化剂是影响催化剂光催化效率的一个关键因素,它的引入可以有效提高催化剂的光催化活性和氢气产生速率,因此,开发廉价高效的助催化剂已逐渐成为本领域的研究热点.本文结合光催化分解水制氢原理,简要介绍了助催化剂的作用,对近年来光催化分解水产氢助催化剂的种类和研究内容进行了总结,分析和讨论了几类重要助催化剂的特点及作用机理,并对助催化剂的发展进行了展望,以期为新型高效光催化制氢材料的设计提供参考. 关键词一一光催化一水分解一产氢一助催化剂一太阳能 中图分类号:O614.41;O643.36一一文献标识码:A一一DOI :10 1896/j . issn 005G023X 018 7 02Pro g ress of CoGcatal y sts in the S y stems of Photocatal y tic H y dro g en Evolution LI Xuli ,WANG Xiao j in g ,ZHAO Jun ,LI Yu p ei ,LI Fatan g ,CHEN Xuemin (Colle g e of Science ,Hebei Universit y of Science and Technolo gy ,Shi j iazhuan g 050031) Abstract 一一The consum p tion of nonGrenewable ener gy resources such as coal ,oil and natural g as leads to more and more seGrious environment p ollution p roblems ,which makes the utilization of clean and renewable ener gy deserve immediate and intense atG tention.Photocatal y tic h y dro g en evolution has been considered to be one of the effective a pp roaches to solve fossil ener gy shorta g e and environmental p ollution p roblems.However ,the p hotocatal y tic h y dro g en evolution reaction s y stem is com p licated ,in which the coGcatal y st have a crucial effect to the p hotocatal y st s efficienc y and can effectivel y p romote the h y dro g en evolution rate durin g the p hotocatal y tic p rocess ,hence the develo p ment of chea p and efficient coGcatal y st has become one of the research focus. This p a p er briefl y introduces the reaction mechanism of p hotocatal y tic h y dro g en evolution and the roles of coGcatal y sts in the p hotocatal y tic s y sGtems ,summarizes the variet y of coGcatal y sts and relevant research ,and anal y zes the characteristics and mechanism of several p rinciGp al t yp es coGcatal y sts includin g metals ,transition metal sulfides ,transition metal oxides ,transition metal h y droxides ,p hos p hides ,and com p osites.The p a p er ends with a p ros p ective p resentation of the future research directions ,and is ex p ected to p rovide reference for the innovation and develo p ment of hi g hl y efficient p hotocatal y sts a pp l y in g to h y dro g en evolution s y stems. Ke y words 一一p hotocatal y sis ,water s p littin g ,h y dro g en evolution ,coGcatal y st ,solar ener gy 0一引言 在能源危机和环境问题的双重压力下,氢能因具有无污染二热值高等优点而成为最有希望替代化石能源的清洁能源之一.自从1972年日本学者Fu j ishima 和Honda 在TiO 2单晶电极上实现光催化产氢以来,光催化分解水制氢技术一直都是科学家关注的热点[1].与传统的电解水制氢和裂解化石能源制氢相比,光催化分解水制氢技术可利用丰富的太阳能和水制取氢气,有效地避免了传统技术所带来的能耗高二污染大等缺点,因此被认为是最理想的氢能开发途 径[ 2G5] .自20世纪70年代以来,研究表明可用于光解水制氢反 应(H y dro g en evolution reaction ,HER ) 的材料种类很多,几乎包括了元素周期表里s 二p 二d 区以及镧系中所有的元素[6].但是目前大量研究表明,单纯光催化剂体系在光催化产氢过 程中的活性仍相对较低.半导体光催化过程通常分为三个 主要阶段[7G10] :(1) 半导体吸收能量大于带隙的光子,产生电子G空穴对;(2)光生电子G空穴对发生分离并迁移至材料表面;(3)迁移至材料表面的光生空穴和电子分别与吸附物种发生氧化还原反应.可见,除了半导体本身的结构和特性之外,影响半导体光催化产氢活性的一个重要因素是光生电子和空穴从体相移动到表面过程中的分离效率[11G13].光生电子和空穴的复合通常意味着将所吸收光能浪费在无用的荧光和散热上,导致光催化量子效率下降和光催化活性降低.在催化剂表面负载助催化剂可以有效捕获光生电子或空穴,从而降低光生载流子的复合.同时,在光催化产氢催化剂表面复合助催化剂有时还可以作为催化反应活性位起到降低反应活化能或产氢过电势的作用[14G16].本文将以光催化分解水制氢领域中助催化剂的作用原理和种类这两方面为重点,对助催化剂修饰的光催化制氢材料的研究现状进行综 7501光催化分解水制氢体系助催化剂研究进展/李旭力等 万方数据

光解水制氢半导体光催化材料的研究进展

光解水制氢半导体光催化材料的研究进展 田蒙奎1 ,2 ,上官文峰2 ,欧阳自远1 ,王世杰1 (1. 中国科学院地球化学研究所,贵州贵阳550002 ; 2. 上海交通大学机械与动力学院燃烧与环境技术研究中心,上海200030) 摘要: 自从Fujishima2Honda 效应发现以来,科学研究者一直努力试图利用半导体光催化剂光分解水来获得既可储存而又清洁的学能———氢能。近一二十年来,光催化材料的研究经历了从简单氧化物、复合氧化物、层状化合物到能响应可见光的光催化材料。本文重点描述了这些光催化材料的结构和光催化特性,阐述了该课题的意和今后的研究方向。关键词: 光解水;氢能;半导体光催化剂中图分号: X13 文献标识码:A文章编号:100129731 (2005) 1021489204 1 引言 在能源危机和环境问题的双重压力下,氢能因其燃烧值高、储量丰富、无污染而成为最有希望替代现有化石能源的清洁能源,因而氢能的开发成了能源领域的研究热点。自从Fujishima 和Honda 于1972 年发现了TiO2 光电化学能分解水产生H2 和O2 以来[1 ] ,科学研究者实现太阳能光解水制氢一直在作不懈的努力。普遍接受的光解水制氢原理是:半导体光催化剂在能量等于或大于其禁带宽度的光辐射时,电子从最高电子占据分子轨道( HOMO ,即价带) 受激跃迁至最低电子占据分子轨道(LUMO ,即导带) ,从而在价带留下了光生空穴( h + ) , 导带中引入了光生电子(e - ) 。光生空穴和光生电子分别具有氧化和还

原能力。要实现太阳能光解水制氢和氧,光生电子的还原能力必须能还原H2O 产生H2 ,而光生空穴的氧化能力必须能氧化H2O 产生O2 ,即半导体光催化剂的导带底要在H2O/ H2 电位( E0 = 0V ,p H = 0) 的上面(导带位置越高,电位越负,还原能力越强) ;而价带顶在O2 / H2O 电位( ENHE = + 1. 23V ,p H = 0) 的下面(价带位置越低,电位越正,氧化能力越强) 。近一二十年来, TiO2 以外的光催化剂的相继发现,特别是能响应可见光的光催化材料的出现,使得光解水制氢研究进入了非常活跃时期。本文就近期太阳能光解水制氢研究进展中的半导体光催化材料作一综述。 2 简单半导体氧化物,硫化物系光催化剂目前广泛研究的简单化合物半导体材料的能带结构如图1 所示: 图1 部分半导体材料的能带结构示意图 Fig 1 Schematic diagram of band st ructure for some semiconductor s TiO2 光催化剂由于光照不发生光腐蚀、耐酸碱性好、化学性质稳定、对生物无毒性、来源丰富等优点而被广为利用。具有代表性的

电解水制氢

水电解制氢是一种较为方便的制取氢气的方法。在充满电解液的电解槽中通入直流电,水分子在电极上发生电化学反应,分解成氢气和氧气。 中文名水电解制氢 运用试剂碱性电解液或纯水 定????律法拉第定律 其化学反应式如下 ①、碱性条件: 阴极:4HO+4e=2H f +40H 阳极:4OH-4e=2HO+Of 总反应式:2HO=2Hf + O z f ②、酸性条件: 阳极:2HO-4e=O f +4H+ 阴极:4H++4e=2H f 反应遵循法拉第定律,气体产量与电流和通电时间成正比。 固体聚合物电解质,SPE电解水,最初用于向宇宙飞船或潜水艇供氧, 或在实验室作为氢气发生器(可用于气体色谱)。核电大规模发展以后,人们利用SPE技术在用电低谷电解水产生氢,在供电高峰以SPE氢-氧燃料电池向外供电,使之成为能量贮存转换装置 通过直接电解纯水产生高纯氢气(不加碱),电解池只电解纯水即可产氢。通电后,电解池阴极产氢气,阳极产氧气,氢气进入氢/水分离器。氧 气排入大气。氢/水分离器将氢气和水分离。氢气进入干燥器除湿后,经稳压阀、调节阀调整到额定压力(?可调)由出口输出。电解池的产氢压力由传感器控制在左右,当压力达到设定值时,电解池电源供应切断;压力下降, 低于设定值时电源恢复供电。

在氯碱工业中副产多量较纯氢气,除供合成盐酸外还有剩余,也可经提 纯生产普氢或纯氢。像化工二厂用的氢气就是电解盐水的副产 电解水 水(H20)被直流电电解生成氢气和氧气的过程被称为电解水。电流通过水 (H20)时,在阴极通过还原水形成氢气(H2),在阳极则通过氧化水形成氧气(O2)。氢气生成量大约是氧气的两倍。电解水是取代蒸汽重整制氢的下一代制备氢燃料方法。 中文名 电解水 外文名 electrolysis of water 含????义 水(H2O)被电解生成氢气和氧气 方程式 2H2O(通电)2H2f +O2f、 历史 最早于1789年,杨-鲁道夫-德曼和阿德里安-派斯-范-特鲁斯维克通过静 电装置发电利用金电极把莱顿瓶中的水电解成气体。1800年,亚历山德罗-伏特发明了伏打电池,并于数周后,被威廉-尼克森和安东尼-卡莱尔用于电解水。1869年格拉姆发明直流发电机后,电解水逐渐引人关注,并成为一

光催化原理及应用

光催化原理及应用 起源 光触媒,是一个外来词,起源于日本,由于日本文字写成“光触媒”,所以中国人就直接把她命名为“光触媒”。其实日文“光触媒”翻译成中文应该叫“光催化剂”翻译成英文叫“photo catalyst ”。光触 媒于1967年被当时还是东京大学研究生的藤岛昭教授发现。在一次试验中对放入水中的氧化钛 单结晶进行了光线照射,结果发现水被分解成了氧和氢。这一效果作为“本多?藤岛效果” (Honda-Fujishima Effect )而闻名于世,该名称组合了藤岛教授和当时他的指导教师一东京 工艺大学校长本多健一的名字。 这种现象相当于将光能转变为化学能,以当时正值石油危机的背景,世人对寻找新能源的期 待甚为殷切,因此这一技术作为从水中提取氢的划时代方法受到了瞩目,但由于很难在短时间 内提取大量的氢气,所以利用于新能源的开发终究无法实现,因此在轰动一时后迅速降温。 1992年第一次二氧化钛光触媒国际研讨会在加拿大举行,日本的研究机构发表许多关于光触 媒的新观念,并提出应用于氮氧化物净化的研究成果。因此二氧化钛相关的专利数目亦最多, 其它触媒关连技术则涵盖触媒调配的制程、触媒构造、触媒担体、触媒固定法、触媒性能测试等。以此为契机,光触媒应用于抗菌、防污、空气净化等领域的相关研究急剧增加,从1971年 至2000年6月总共有10,717件光触媒的相关专利提出申请。二氧化钛TiO 2 光触媒的广泛应 用,将为人们带来清洁的环境、健康的身体。 催化剂是加速化学反应的化学物质,其本身并不参加反应。典型的天然光催化剂就是我们常见的叶绿素,在植物的光合作用中促进空气中的二氧化碳和水合成为氧气和碳水化合物。 光触媒是一种纳米级的金属氧化物材料,它涂布于基材表面,在光线的作用下,产生强烈催化降解功能:能有效地降解空气中有毒有害气体;能有效杀灭多种细菌,并能将细菌或真菌释放岀的毒素分解及无害化处理;同时还具备除臭、抗污等功能。光催化是在光的辐照下使催化剂周围的氧气和水转化成极具活性的氧自由基,氧化力极强,几乎可以分解所有对人体或环境有害的有机物质总的来说纳米光触媒技术是一种纳米仿生技术,用于环境净化,自清洁材料,先进新能源,癌症医疗,高效率抗菌等多个前沿领域。 早在1839年,Becquere就发现了光电现象,然而未能对其进行理论解释。直到1955年,Brattain 和Gareet 才对光电现象进行了合理的解释,标志着光电化学的诞生。1972年,日本东京大学Fu jishmi a和H onda研究发现[3],利用二氧化钛单晶进行光催化反应可使水分解成氢和氧。这一开创性的工作标志着光电现象应用于光催化分解水制氢研究的全面启动。在过去30年里,人们在光催化材料开发与应用方面的研 究取得了丰硕的成果。 以二氧化钛为例,揭示了其晶体结构、表面羟基自由基以及氧缺陷对量子效率的影响机制;采用元素 掺杂、复合半导体以及光敏化等手段拓展其光催化活性至可见光响应范围;通过在其表面沉积贵金属纳米 颗粒可以提高电子-空穴对的分离效率,提高其光催化活性。尽管人们对光催化现象的认知与应用取得了长足的进步,然而受认知手段与认知水平的限制,目前对光催化作用机理的研究成果仍不足以指导光催化技术的大规模工业化应用,亟待大力开展光催化基本原理研究工作以促进这一领域的发展。另一方面,现有光催化材料的光响应范围窄,量子转换效率低,太阳能利用率低,依然是制约光催化材料应用的瓶颈。寻找和制备高量子效率光催化材料是实现光能转换的先决条件,也是光催化材料研究者所需要解决的首要 任务之一。 光催化机理: 半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解,这一过程称为光催化。当光能等于或超过半导体材料的带隙能量时,电子从价带(VB)激发到导带(CB)形成光生载流子(电子-空穴对)。在缺乏合适的电子或空穴捕获剂时,吸收的光能因为载流子复合而以热的形式耗散。价带空穴是强氧化剂,而导带电子是强还原剂。大多数有机光降解是直接或间接利用了空穴的强氧化能力。

光电化学电池(PEC)催化全裂解水制氢技术研究进展东莞理工

光电化学电池(PEC)催化全裂解水制氢技术研究进展摘要:主要介绍太阳能光电学电池(PEC)分解水制氢技术的基本原理以及发展历史和研究现状, 和光阳级、光阴极的选材要求及发展,并在此基础上分析影响该技术发展的一些因素催化电极的制备以及太阳能光化学电池的结构等一系列问题。 Abstract: This paper mainly introduces the solar energy photoelectricity cell (PEC) split water the basic principle of hydrogen production technology and the development history and research status, and light Yang, material requirements and development of the photocathode, based on the analysis of the factors affecting the development of the technology of catalytic electrode preparation, and the structure of solar photochemical batteries a series of problems. 关键词:PEC 制氢制备电池的结构 前言 在新能源领域中,氢能已普遍被认为是一种最理想的绿色能源,这是它的独特的优点所决定的.在所有元素中, 氢重量最轻,它能够以气、液、固 3 种形式存在, 能适应贮运及各种应用环境的不同要求 ; 所有气体中, 氢是自然界存在最普遍的元素; 除核燃料外,氢的发热值是所有化石燃料、化工燃料和生物燃料中最高的 ; 氮燃烧性能好 ; 氢气本身无毒,与其他燃料相比氢燃烧时最清洁,水是其唯一产物, 不会对环境产生污染,也不会带来温室效应 ; 氢能利用形式多, 既可作为家用燃料, 又可用于航夭等.制氢的方法有许多种, 但如果能利用可再生能源来制氢, 那将是取之不尽、用之不竭的能源休系.太阳能在所有可再生能源中当为首选.太阳能可以通过分解水或其它许多途径转换成氢能, 即太阳能制氢.这包括许多方法,如太阳能光电化学电池分解水制氢、光化学催化制氢、太阳能生物制氢等, 其中太阳能光电化学(photo-electrochemical,PEC ) 电池分解水制氢技术是很具前景的技术.这是因为PEC 技术是基于太阳能和水, 而这两种物质都是可再生的 ,没有副产品, 不会给环境带来污染;技术相对比较简单;既可小规模应用, 又可大规模开发等等优点.因此,大力发展制氢技术, 特别PEC技术将是未来发展的方向。 1.P EC技术制氢的基本原理 1.1 PEC技术制氢的基本原理

光强对光电化学法分解水制氢的影响

光强对光电化学法分解水制氢的影响 摘要:氢气被认为是最理想的清洁能源,因其对环境无污染。利用免费而且无限量的太阳能通过光电催化分解水的方法制取氢被认为是最具有前景的制氢方法。光电化学分解水制氢气是太阳能制氢研究的一个重要组成部分,近年来通过对光电化学中光阳极材料的进一步深化,光电化学制氢的研究取得了巨大的进展。本文以纳米二氧化钛作为光阳极,利用其耐光腐蚀和化学稳定性好的优点来测试不同的光强辐射对我们光电系统制氢效率的影响。 关键词:太阳能;光电化学分解;纳米二氧化钛

Effects of light intensity on the photoelectrochemical decomposition of water to hydrogen Abstract:As we all know,hydrogen is considered as an ideal clean energy, because of its no pollution to the environment. With using the method of free and limitless solar energy through the photoelectric catalytic decomposition of water to produce hydroge n is considered to be the most promising method for hydrogen production. The photoelectrochemical water splitting into hydrogen is an important part of solar hydro gen production, in recent years through the further deepening of the photoelectrochemical light anode materials, has made great progress in photoelectrochemical hydrogen prod uction.In this paper, the nanotitanium dioxide was used as anode, using its corrosion r esistance and good chemical stability to test the different light radiation impact on our law system of the photoelectric efficiency of hydrogen production Key word:Solar energy;The photoelectrochemical decomposition; Nanotitanium dioxide 1引言 氢气因其对环境无污染被认为是最理想的清洁能源。在传统的制取氢气的方法当中,化石燃料的制取约占全球制氢数量的90%,这种方法主要是利用变压吸附以及蒸汽转化相结合的方法制取高纯度的氢。利用电能制取氢也占有一定的比例。但上述两种方式,制取高纯度的氢时能耗大,污染大。在近些年来的研究中,利用免费而且无限量的太阳能通过光电催化分解水的方法制取氢被认为是最具有前景的制氢方法。 光电化学分解水制氢是太阳能制氢研究的一个重要组成之一,由光阳极和对

相关文档
最新文档