时间序列和白噪声

时间序列和白噪声
时间序列和白噪声

时间序列和白噪声 1.什么是白噪声答:白噪声是指功率谱密度在整个频域内均匀分布的噪声。白噪声或白杂讯是一种功率频谱密度为常数的随机信号或随机过程。换句话说此信号在各个频段上的功率是一样的由于白光是由各种频率颜色的单色光混合而成因而此信号的这种具有平坦功率谱的性质被称作是白色的此信号也因此被称作白噪声。相对的其他不具有这一性质的噪声信号被称为有色噪声。理想的白噪声具有无限带宽因而其能量是无限大这在现实世界是不可能存在的。实际上我们常常将有限带宽的平整讯号视为白噪音因为这让我们在数学分析上更加方便。然而白噪声在数学处理上比较方便因此它是系统分析的有力工具。一般只要一个噪声过程所具有的频谱宽度远远大于它所作用系统的带宽并且在该带宽中其频谱密度基本上可以作为常数来考虑就可以把它作为白噪声来处理。例如热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度通常可以认为它们是白噪声。高斯白噪声的概念--.白指功率谱恒定高斯指幅度取各种值时的概率px是高斯函数高斯噪声--n维分布都服从高斯分布的噪声高斯分布--也称正态分布又称常态分布。对于随机变量X记为Nμσ2分别为高斯分布的期望和方差。当有确定值时p x也就确定了特别当μ0σ21时X的分布为标准正态分布。2.matlab中白噪声和有色噪声怎么表示答:假设V和W是2个n维噪声序列其中V表示白噪声W表示有色噪声在MA TLAB中表示方法为: Vrandnmn Wfilterb1V b为滤波器系数。3.什么叫单边功率谱和双边功率谱他们如何计算答:单边功率谱密度N0主要用在复数信号中双边功率谱密度N0/2主要用在实信号中。单边功率谱适于基带分析在基带中是0中频。如果信号通过了调制将原中频搬移到了高频段原来的负频部分就成了正频利用双边功率谱进行分析。4.Matlab常用工具箱有哪些答:MATLAB包括拥有数百个内部函数的主包和三十几种工具包。工具包又可以分为功能性工具包和学科工具包。功能工具包用来扩充MATLAB的符号计算可视化建模仿真文字处理及实时控制等功能。学科工具包是专业性比较强的工具包控制工具包信号处理工具包通信工具包等都属于此类。开放性使MA TLAB广受用户欢迎。除内部函数外所有MA TLAB主包文件和各种工具包都是可读可修改的文件用户通过对源程序的修改或加入自己编写程序构造新的专用工具包。MatlabMainToolbox--matlab主工具箱ControlSystemToolbox--控制系统工具箱CommunicationToolbox--通讯工具箱FinancialToolbox--财政金融工具箱SystemIdentificationToolbox--系统辨识工具箱FuzzyLogicToolbox--模糊逻辑工具箱Higher-OrderSpectralAnalysisToolbox--高阶谱分析工具箱ImageProcessingToolbox--图象处理工具箱LMIControlToolbox--线性矩阵不等式工具箱ModelpredictiveControlToolbox--模型预测控制工具箱μ-AnalysisandSynthesisToolbox--μ分析工具箱NeuralNetworkToolbox--神经网络工具箱OptimizationToolbox--优化工具箱PartialDifferentialToolbox--偏微分方程工具箱RobustControlToolbox--鲁棒控制工具箱SignalProcessingToolbox--信号处理工具箱SplineToolbox--样条工具箱StatisticsToolbox--统计工具箱SymbolicMathToolbox--符号数学工具箱SimulinkToolbox--动态仿真工具箱WaveleToolbox--小波工具箱5什么是加性噪声答:加性噪声一般指热噪声、散弹噪声等它们与信号的关系是相加不管有没有信号噪声都存在。而乘性噪声一般由信道不理想引起它们与信号的关系是相乘信号在它在信号不在他也就不在。一般通信中把加性随机性看成是系统的背景噪声而乘性随机性看成系统的时变性如衰落或者多普勒或者非线性所造成的。信道中加性噪声的来源一般可以分为三方面:1人为噪声:人为噪声来源于无关的其它信号源例如:外台信号、开关接触噪声、工业的点火辐射等2自然噪声:自然噪声是指自然界存在的各种电磁波源例如:闪电、雷击、大气中的电暴和各种宇宙噪声等3内部噪声:内部噪声是系统设备本身产生的各种噪声例如:电阻中自由电子的热运动和半导体中载流子的起伏变化等。某些类型的噪声是确知的。虽然消除这些噪声不一定很容易但至少在原理上可消除或基本消除。另一些噪声则往往不能准确预测其波形。这种不能预测的噪声统称为随机噪声。我们关心的只是随机噪声。随机噪声的分类常见的随机噪声可

分为三类:1单频噪声:单频噪声是一种连续波的干扰如外台信号它可视为一个已调正弦波但其幅度、频率或相位是事先不能预知的。这种噪声的主要特点是占有极窄的频带但在频率轴上的位置可以实测。因此单频噪声并不是在所有通信系统中都存在。2脉冲噪声:脉冲噪声是突发出现的幅度高而持续时间短的离散脉冲。这种噪声的主要特点是其突发的脉冲幅度大但持续时间短且相邻突发脉冲之间往往有较长的安静时段。从频谱上看脉冲噪声通常有较宽的频谱从甚低频到高频但频率越高其频谱强度就越小。脉冲噪声主要来自机电交换机和各种电气干扰雷电干扰、电火花干扰、电力线感应等。数据传输对脉冲噪声的容限取决于比特速率、调制解调方式以及对差错率的要求。3起伏噪声:起伏噪声是以热噪声、散弹噪声及宇宙噪声为代表的噪声。这些噪声的特点是无论在时域内还是在频域内他们总是普遍存在和不可避免的。由以上分析可见单频噪声不是所有的通信系统中都有的而且也比较容易防止脉冲噪声由于具有较长的安静期故对模拟话音信号的影响不大起伏噪声既不能避免且始终存在因此一般来说它是影响通信质量的主要因素之一。因此今后在研究噪声对通信系统的影响时应以起伏噪声为重点。应当指出脉冲噪声虽然对模拟话音信号的影响不大但是在数字通信中它的影响是不容忽视的。一旦出现突发脉冲由于它的幅度大将会导致一连串的误码对通信造成严重的危害。CCITT关于租用电话线路的脉冲噪声指标是15分钟内在门限以上的脉冲数不得超过18个。在数字通信中通常可以通过纠错编码技术来减轻这种危害。6什么是高阶累积量/谱为什么使用高阶累积量而不使用高阶矩来源:书名:《通信信号处理》作者:张贤达等著答:在实际中我们使用高阶累积量即三阶和四阶而不是高阶矩作为非高斯信号处理的数学工具其主要原因如下:1理论上高阶累积量可以完全抑制任何高斯噪声因为任一高斯随机过程的高阶累积量恒等于零而其四阶矩则不为零。2白噪声的自相关函数为冲激函数其谱为常数。独立同分布随机过程的高阶累积量为多维冲激函数并且多谱是多维平坦的即若en服从独立同分布。高阶矩、高阶累积量、高阶矩谱和高阶累积量谱是主要的四种高阶统计量。在一般情况下多使用高阶累积量和高阶累积量谱而高阶矩和高阶矩谱则很少使用。鉴于此常将高阶累积量谱简称高阶谱虽然高阶谱是高阶矩谱和高阶累积量谱二者的合称。高阶谱也叫多谱意即多个频率的谱。特别地三阶谱S3u1u2称为双谱bispectrum而四阶谱S4xw1w2w3常称为三谱trispectrum因为它们分别是两个和三个频率的能量谱。习惯上我们使用Bxw1w2表示双谱用Txw1w2w3表示三谱。7什么是线性系统的输出与冲激响应之间的关系BBR公式来源:张贤达《现代信号处理》答: 8什么是高阶统计量答:数学期望是一阶统计量方差是二阶的还可以依次得到高阶统计量。至于应用上的作用就仁者见仁智者见智了。可以参考张贤达的书《时间序列分析--高阶统计量方法》

高斯白噪声与高斯噪声的相关概念

高斯噪声是一种随机噪声,在任选瞬时中任取n个,其值按n个变数的高斯概率定律分布。注: 1,高斯噪声完全由其时变平均值和两瞬时的协方差函数来确定,若噪声为平稳的,则平均值与时间无关,而协方差函数则变成仅和所考虑的两瞬时之差有关的相关函数,它在意义上等效于功率谱密度。 2,高斯噪声可以是大量独立的脉冲所产生的,从而在任何有限时间间隔内,这些脉冲中的每一个脉冲值与所有脉冲值的总和相比都可忽略不计。 3,实际上热噪声、散弹噪声及量子噪声都是高斯噪声。 白噪声是一种功率频谱密度为常数的随机信号或随机过程。换句话说,此信号在各个频段上的功率是一样的,由于白光是由各种频率(颜色)的单色光混合而成,因而此信号的这种具有平坦功率谱的性质被称作是“白色的”,此信号也因此被称作白噪声。相对的,其他不具有这一性质的噪声信号被称为有色噪声(功率谱密度随频率变化)。 理想的白噪声具有无限带宽,因而其能量是无限大,这在现实世界是不可能存在的。实际上,我们常常将有限带宽的平整讯号视为白噪音,因为这让我们在数学分析上更加方便。然而,白噪声在数学处理上比较方便,因此它是系统分析的有力工具。一般,只要一个噪声过程所具有的频谱宽度远远大于它所作用系统的带宽,并且在该带宽中其频谱密度基本上可以作为常数来考虑,就可以把它作为白噪声来处理。例如,热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度,通常可以认为它们是白噪声。 白噪声的功率谱密度是一个常数。这是因为:白噪声的时域信号中任意两个不同时刻是不相关的,因此,白噪声的自相关函数为冲击函数,因此,白噪声的功率谱密度为常数。(自相关函数和功率谱密度是傅立叶变换对)。 当随机的从高斯分布中获取采样值时,采样点所组成的随机过程就是“高斯白噪声”;同理,当随机的从均匀分布中获取采样值时,采样点所组成的随机过程就是“均匀白噪声”。 “非白的高斯”噪声——高斯色噪声。这种噪声其分布是高斯的,但是它的频谱不是一个常数,或者说,对高斯信号采样的时候不是随机采样的,而是按照某种规律来采样的。 仿真时经常采用高斯白噪声是因为实际系统(包括雷达和通信系统等大多数电子系统)中的主要噪声来源是热噪声,而热噪声是典型的高斯白噪声,高斯噪声下的理想系统都是线性系统。 高斯白噪声:如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。 热噪声和散粒噪声是高斯白噪声。 所谓高斯白噪声中的高斯是指概率分布是正态函数,而白噪声是指它的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。这是考查一个信号的两个不同方面的问题。

MATLAB中产生高斯白噪声

MATLAB中产生高斯白噪声,涉及到awgn和wgn函数 MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。 1. WGN:产生高斯白噪声 y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。 y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。 y = wgn(m,n,p,imp,state) 重置RANDN的状态。 在数值变量后还可附加一些标志性参数: y = wgn(…,POWERTYPE) 指定p的单位。POWERTYPE可以是'dBW', 'dBm'或 'linear'。线性强度(linear power)以瓦特(Watt)为单位。 y = wgn(…,OUTPUTTYPE) 指定输出类型。OUTPUTTYPE可以是'real'或 'complex'。 2. AWGN:在某一信号中加入高斯白噪声 y = awgn(x,SNR) 在信号x中加入高斯白噪声。信噪比SNR以dB为单位。x的强度假定为0dBW。如果x是复数,就加入复噪声。 y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。 y = awgn(…,POWERTYPE)指定SNR和SIGPOWER的单位。POWERTYPE可以是'dB'或'linear'。如果POWERTYPE是'dB',那么SNR以dB为单位,而SIGPOWER以dBW为单位。如果POWERTYPE是'linear',那么SNR作为比值来度量,而SIGPOWER 以瓦特为单位。 注释 1. 分贝(decibel,dB):分贝(dB)是表示相对功率或幅度电平的标准单位,换句话说,就是我们用来表示两个能量之间的差别的一种表示单位,它不是一个绝对单位。例如,电子系统中将电压、电流、功率等物理量的强弱通称为电平,电平的单位通常就以分贝表示,即事先取一个电压或电流作为参考值(0dB),用待表示的量与参考值之比取对数,再乘以20作为电平的分贝数(功率的电平值改乘10)。 2. 分贝瓦(dBW, dB Watt):指以1W的输出功率为基准时,用分贝来测量的功率放大器的功率值。 3. dBm (dB-milliWatt):即与1milliWatt(毫瓦)作比较得出的数字。 0 dBm = 1 mW 10 dBm = 10 mW 20 dBm = 100 mW 也可直接用randn函数产生高斯分布序列,例如: 程序代码 y=randn(1,2500); y=y/std(y);

时间序列和白噪声

时间序列和白噪声 1.什么是白噪声答:白噪声是指功率谱密度在整个频域内均匀分布的噪声。白噪声或白杂讯是一种功率频谱密度为常数的随机信号或随机过程。换句话说此信号在各个频段上的功率是一样的由于白光是由各种频率颜色的单色光混合而成因而此信号的这种具有平坦功率谱的性质被称作是白色的此信号也因此被称作白噪声。相对的其他不具有这一性质的噪声信号被称为有色噪声。理想的白噪声具有无限带宽因而其能量是无限大这在现实世界是不可能存在的。实际上我们常常将有限带宽的平整讯号视为白噪音因为这让我们在数学分析上更加方便。然而白噪声在数学处理上比较方便因此它是系统分析的有力工具。一般只要一个噪声过程所具有的频谱宽度远远大于它所作用系统的带宽并且在该带宽中其频谱密度基本上可以作为常数来考虑就可以把它作为白噪声来处理。例如热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度通常可以认为它们是白噪声。高斯白噪声的概念--.白指功率谱恒定高斯指幅度取各种值时的概率px是高斯函数高斯噪声--n维分布都服从高斯分布的噪声高斯分布--也称正态分布又称常态分布。对于随机变量X记为Nμσ2分别为高斯分布的期望和方差。当有确定值时p x也就确定了特别当μ0σ21时X的分布为标准正态分布。2.matlab中白噪声和有色噪声怎么表示答:假设V和W是2个n维噪声序列其中V表示白噪声W表示有色噪声在MA TLAB中表示方法为: Vrandnmn Wfilterb1V b为滤波器系数。3.什么叫单边功率谱和双边功率谱他们如何计算答:单边功率谱密度N0主要用在复数信号中双边功率谱密度N0/2主要用在实信号中。单边功率谱适于基带分析在基带中是0中频。如果信号通过了调制将原中频搬移到了高频段原来的负频部分就成了正频利用双边功率谱进行分析。4.Matlab常用工具箱有哪些答:MATLAB包括拥有数百个内部函数的主包和三十几种工具包。工具包又可以分为功能性工具包和学科工具包。功能工具包用来扩充MATLAB的符号计算可视化建模仿真文字处理及实时控制等功能。学科工具包是专业性比较强的工具包控制工具包信号处理工具包通信工具包等都属于此类。开放性使MA TLAB广受用户欢迎。除内部函数外所有MA TLAB主包文件和各种工具包都是可读可修改的文件用户通过对源程序的修改或加入自己编写程序构造新的专用工具包。MatlabMainToolbox--matlab主工具箱ControlSystemToolbox--控制系统工具箱CommunicationToolbox--通讯工具箱FinancialToolbox--财政金融工具箱SystemIdentificationToolbox--系统辨识工具箱FuzzyLogicToolbox--模糊逻辑工具箱Higher-OrderSpectralAnalysisToolbox--高阶谱分析工具箱ImageProcessingToolbox--图象处理工具箱LMIControlToolbox--线性矩阵不等式工具箱ModelpredictiveControlToolbox--模型预测控制工具箱μ-AnalysisandSynthesisToolbox--μ分析工具箱NeuralNetworkToolbox--神经网络工具箱OptimizationToolbox--优化工具箱PartialDifferentialToolbox--偏微分方程工具箱RobustControlToolbox--鲁棒控制工具箱SignalProcessingToolbox--信号处理工具箱SplineToolbox--样条工具箱StatisticsToolbox--统计工具箱SymbolicMathToolbox--符号数学工具箱SimulinkToolbox--动态仿真工具箱WaveleToolbox--小波工具箱5什么是加性噪声答:加性噪声一般指热噪声、散弹噪声等它们与信号的关系是相加不管有没有信号噪声都存在。而乘性噪声一般由信道不理想引起它们与信号的关系是相乘信号在它在信号不在他也就不在。一般通信中把加性随机性看成是系统的背景噪声而乘性随机性看成系统的时变性如衰落或者多普勒或者非线性所造成的。信道中加性噪声的来源一般可以分为三方面:1人为噪声:人为噪声来源于无关的其它信号源例如:外台信号、开关接触噪声、工业的点火辐射等2自然噪声:自然噪声是指自然界存在的各种电磁波源例如:闪电、雷击、大气中的电暴和各种宇宙噪声等3内部噪声:内部噪声是系统设备本身产生的各种噪声例如:电阻中自由电子的热运动和半导体中载流子的起伏变化等。某些类型的噪声是确知的。虽然消除这些噪声不一定很容易但至少在原理上可消除或基本消除。另一些噪声则往往不能准确预测其波形。这种不能预测的噪声统称为随机噪声。我们关心的只是随机噪声。随机噪声的分类常见的随机噪声可

matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数

现代通信原理作业一 姓名:张英伟学号:8036 班级:13级理工部3班 利用matlab完成: ●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦 波信号上,绘出波形。 ●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波 形。 一、白噪声区别及产生方法 1、定义: 均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。 高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。 2、matlab仿真函数: rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式: z2=a+(b-(a))*rand(m,n)............(公式1) randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。利用公式: z1=a+b*randn(1,n).................(公式2) 可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。 二、自相关函数与功率谱密度之间的关系 1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。 2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。 3、维纳-辛钦定理: 由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)

matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数

现代通信原理作业一 姓名:张英伟学号:133320085208036 班级:13级理工部3班 利用matlab完成: ●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦 波信号上,绘出波形。 ●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波 形。 一、白噪声区别及产生方法 1、定义: 均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。 高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。 2、matlab仿真函数: rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式: z2=a+(b-(a))*rand(m,n)............(公式1) randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。利用公式: z1=a+b*randn(1,n).................(公式2) 可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。 二、自相关函数与功率谱密度之间的关系 1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。 2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。 3、维纳-辛钦定理: 由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)

MATLAB环境下的正弦信号及高斯白噪声仿真程序说明

姓名:朱奇峰 专业:电子与通信工程 方向:数字广播电视技术 学号:103320430109033 MATLAB 环境下的正弦信号及高斯白噪声仿真程序说明 一、信号的产生及时域观察 1、设定正选信号的频率为10HZ ,抽样频率为100HZ ; 2、设定N(0,0.25)高斯白噪声,及噪声功率为0.25W ; 3、最后将噪声叠加到正弦信号上,观察其三者时域波形。 二、信号频谱及白噪声功率谱的求解与观察 1、对原正弦信号直接进行FFT ,得出其频谱; 2、求白噪声的自相关函数,随机序列自相关函数的无偏估计公式为: 1 ^ 01()()()N m xx n r m x n x n m N m --==+-∑ 01m N ≤≤- ^^ ()()xx xx r m r m =- 01m N <<- 对所求自相关函数进行FFT 变换,求的白噪声的功率谱函数。 三、仿真结果:

附源程序代码: fs=100; fc=10; x=(0:1/fs:2); n=201; y1=sin(2*pi*fc*x); %原正弦信号,频率为10 a=0;b=0.5; %均值为a,方差为b^2 subplot(3,2,1); plot(x,y1,'r'); title('y=sin(20pi*x)'); ylabel('y'); xlabel('x/20pi'); grid; y2=a+b*randn(1,n); %高斯白噪声 subplot(3,2,2); plot(x,y2,'r'); title('N(0,0.25)的高斯白噪声'); ylabel('y'); xlabel('x/20pi'); grid; y=y1+y2; %加入噪声之后的信号 subplot(3,2,3); plot(x,y,'r'); title('叠加了高斯白噪声的sinx'); ylabel('y'); xlabel('x/20pi'); grid; FY=fft(y); %傅里叶变换得出频谱函数 FY1=fftshift(FY); %频谱校正 f=(0:200)*fs/n-fs/2; subplot(3,2,4); plot(f,abs(FY1),'r'); title('函数频谱图'); ylabel('F(jw)'); xlabel('w'); grid; %求高斯白噪声的自相关函数 m=50; i=-0.49:1/fs:0.49;

白噪声及有色噪声序列的产生

%白噪声及有色噪声序列的产生 设ξ(k) 为均值为0,方差为1的高斯白噪声序列,e(k)为有色噪声序 列: 1 1 1 12 123 () ()()()() () 10.50.2 () 1 1.50.70.1 C z e k G z k k D z z z k z z z ξξ ξ - - - -- --- == ++ = -++ 高斯白噪声序列ξ(k)在Matlab中由rand()函数产生,程序如下:clear all; close all; L=500; %仿真长度 d=[1 -1.5 0.7 0.1]; c=[1 0.5 0.2]; % 分子分母多项式系数 nd=length(d)-1 ;nc=length(c)-1; %阶次 xik=zeros(nc,1); %白噪声初值 ek=zeros(nd,1); xi=randn(L,1); %产生均值为0,方差为1的高斯白噪声序列 for k=1:L e(k)=-d(2:nd+1)*ek+c*[xi(k);xik]; %产生有色噪声 %数据更新 for i=nd:-1:2 ek(i)=ek(i-1); end

ek(1)=e(k); for i=nc:-1:2 xik(i)=xik(i-1); end xik(1)=xi(k); end subplot(2,1,1); plot(xi); xlabel('k');ylabel('噪声幅值');title('白噪声序列'); subplot(2,1,2); plot(e); xlabel('k');ylabel('噪声幅值');title('有色噪声序列');

MATLAB环境下的正弦信号及高斯白噪声仿真程序说明

姓名:朱奇峰 专业:电子与通信工程 方向:数字广播电视技术 学号:103320430109033 MATLAB 环境下的正弦信号及高斯白噪声仿真程序说明 一、信号的产生及时域观察 1、设定正选信号的频率为10HZ ,抽样频率为100HZ ; 2、设定N(0,0.25)高斯白噪声,及噪声功率为0.25W ; 3、最后将噪声叠加到正弦信号上,观察其三者时域波形。 二、信号频谱及白噪声功率谱的求解与观察 1、对原正弦信号直接进行FFT ,得出其频谱; 2、求白噪声的自相关函数,随机序列自相关函数的无偏估计公式为: 1 ^ 01()()()N m xx n r m x n x n m N m --==+-∑ 01m N ≤≤- ^^ ()()xx xx r m r m =- 01m N <<- 对所求自相关函数进行FFT 变换,求的白噪声的功率谱函数。 三、仿真结果:

附源程序代码: fs=100; fc=10; x=(0:1/fs:2); n=201; y1=sin(2*pi*fc*x); %原正弦信号,频率为10 a=0;b=0.5; %均值为a,方差为b^2 subplot(3,2,1); plot(x,y1,'r'); title('y=sin(20pi*x)'); ylabel('y'); xlabel('x/20pi'); grid; y2=a+b*rand(1,n); %均匀白噪声 subplot(3,2,2); plot(x,y2,'r'); title('N(0,0.25)的均匀白噪声'); ylabel('y'); xlabel('x/20pi'); grid; y=y1+y2; %加入噪声之后的信号 subplot(3,2,3); plot(x,y,'r'); title('叠加了均匀白噪声的sinx'); ylabel('y'); xlabel('x/20pi'); grid; FY=fft(y); %傅里叶变换得出频谱函数 FY1=fftshift(FY); %频谱校正 f=(0:200)*fs/n-fs/2; subplot(3,2,4); plot(f,abs(FY1),'r'); title('函数频谱图'); ylabel('F(jw)'); xlabel('w'); grid; %求均匀白噪声的自相关函数 m=50; i=-0.49:1/fs:0.49;

用FPGA产生高斯白噪声序列的一种快速方法

Vol.10No.11 Nov.2009 第10卷第11期 2008年11月 https://www.360docs.net/doc/0210783476.html, 2008.11用FPGA 产生高斯白噪声序列的 一种快速方法* 管宇,徐雷,徐建中 (南京航空航天大学信息科学与技术学院,南京 210016)摘要:介绍了用FPGA 快速产生高斯白噪声序列的方法、原理和实现步骤。根据均匀分布和高斯分布之间的映射关系,提出了适合在FPGA 中实现的折线逼近方法(以折线逼近映射关系曲线),从而实现了高斯白噪声序列的快速实时生成。 关键字:均匀分布;高斯白噪声;折线逼近法;FPGA 设计参考55

Electronic Component & Device Applications 姨×exp (-y 2 /2)其中:-∞<y <+∞。对f (y )在[-4,4]间进行每隔0.02的等间隔采样,共可采401个值z i (i =1:401),其中z i =f (y i ),sum (z )=z 1+z 2+…+z 401。要建立服从均匀分布的随机变量X 和服从高斯分布的随机变量Y 之间的映射关系,可以z i (i =1:401)及sum (z )为中间量关联X 和Y 。其映射计算式为: X [p i :(p i +q i -1)]=y i ,i =1,2,3, (401) (3) 其中:p i =p i-1+q i-1,i =2,3,…401,p 1=1; X [p i :(p i +q i -1)]=y i 表示X 的取值在p i 到p i +q i -1范围内都映射为y i ;round 表示四舍五入;q i 表示X 所有取值中映射为y i 的个数。根据映射计算式得到均匀分布和高斯分布之间的映射关系图如图2所示。 2.2折线逼近法 如果直接应用上述映射关系进行均匀分布向高斯分布的转换,则需开辟(218-1)个物理空间来建立查找表,这几乎不可能实现。但由图2可见,其关系曲线在很大区间上表现出线性关系,所以,可以以斜率不同的直线段分段逼近关系曲线。在一定精度要求下,该方法简单易行,占用硬件资源少,适合在FPGA 中实现,从而实现由服从均匀分布向服从高斯分布的快速转换。图3是关系曲线(实线)和15段折线逼近法(虚线)的拟合图,由图可见,其实线和虚线拟合得很好,从而证明了折线逼近法能较好的反映映射关系。 利用m 序列的周期特性可降低高斯白噪声任意两个不同时刻的采样信号的相关性。在线性反馈移位寄存器中每隔r 个同步时钟(其中r =2i ,i 为整数)输出一个状态值作为均匀分布的随机数输入可实现均匀分布向高斯分布的转化 。为了选择 图118级线性反馈移位寄存器

有关白噪声序列的研究进展

白噪声的研究进展 摘要:本文首先介绍各种噪声(背景噪声、白噪声、白噪声序列以及高斯白噪声)的基本概念及它们之间的相互关系;其次是概括叙述各种噪声在各个学科及其各领域中的应用;最后介绍它们的具体应用。 关键字:白噪声;白噪声序列;高斯白噪声;加性高斯白噪声 1.基本知识 1.1 背景噪声 人对声音的感知是通过听觉系统对声音的频率、强度、空间、时间等信息进行分析来实现的。自然声环境中,几乎所有的声音都随着时间而变化,尤其是传递信息的声音(如语言和音乐等),其多数信息都包含在岁时间变化的部分,而不是固定不变的部分。听觉系统对声音时间信息的精细处理包括对声音时间的分辨和对声音时间的整合能力,这对理解语言和其他复杂声刺激是至关重要的。对声音时间信息处理能力的降低可能会引起语言能力和阅读能力的降低。对声音时间信息的分辨能力是指听觉系统能够探测随时间而变化的声刺激的能力;对时间的整合是指听觉系统能够整合随时间变化的声信息以促进对声刺激的探测和感知。已有的研究表明,间隔探测是分析听觉系统对时间间隔分辨能力的重要手段,通过测定对两个声音间的时间间隔的分辨阈值来衡量听觉系统的时间分辨率。已有的关于对时间间隔探测的研究主要集中在单耳或双耳封闭声场条件下进行,其中关于在双耳条件下对时间分辨的研究很少,在自由声场下研究持续噪声背景对时间间隔的探测能力的影响未见报道。在日常生活中,人们基本在自由声场中感知声音,而背景噪声常伴随于人们要分辨的声音信号中,并对人感知声音信号产生一定影响。我们认为:背景噪声影响人对声音信号判断或感知的原因之一可能是噪声影响了人对声音时间信息的分辨。为检验该推测,需要研究在自由声场下测定人对声音时间间隔探测的阈值,以及研究在不同强度的背景噪声对人分辨纯音间隔和噪声间隔的影响。 1.2 白噪声 白噪声是指功率谱密度在整个频域内均匀分布的噪声。所有频率具有相同能量的随机噪声称为白噪声。从我们耳朵的频率响应听起来它是非常明亮的“咝”声(每高一个八度,频率就升高一倍,因此高频率的能量也显著增强)。 白噪声过程(一系列不相关的随机变量组成的理想化随机过程) 相关函数:2()()W R τσδτ= 谱密度:2()W S ωσ=,ω-∞<<+∞ 近似白噪声过程 谱密度:200,||()0,||W S σωωωωω?≤=?>? (0ω为给定的远大于过程的截止频)

DSP 高斯白噪声

一、高斯白噪声生成原理 高斯白噪声通常定义为一个均值为零,功率谱密度为非零常数的平稳随机过程,且其噪声取值的概率分布服从高斯分布。产生高斯噪声的过程可分为生成均匀分布随机信号和对均匀分布随机信号高斯化,如图1所示 图1.1 高斯白噪声生成算法原理图 图1.1中可见,高斯白噪声生成的第一步为均匀噪声生成部分。采用m 序列随机产生算法,生成均匀分布伪随机序列。第二部对均匀分布的信号进行高斯化,采用查找表的方法,应用第一步的输出值生成映射表地址,将查表后得到的结果输出,最后得到的就为高斯白噪声序列。 二、均匀随机分布序列的产生 在计算机上产生具有良好独立同分布性能的U(0,1)随机序列已有较长研究历史,主要有4种方法:线性同余法、m序列产生法、logist方程法、进位加方法。由于采用均匀分布的随机序列进行高斯化处理,所以均匀随机分布序列的性能直接影响到输出高斯噪声的性能。 三、高斯白噪声的产生 3.1均匀分布随机序列高斯化算法 将均匀分布的随机序列转换为高斯分布的随机序列的方法主要有:函数变换法、中心极限法、查表法3种。函数变换法和中心极限法都需要硬件的实时计算,FFT运算等,占用大量的硬件资源,影响宽带短波信道模拟器的其他部分的实现。选择查表法对均匀分布随机序列进行高斯化,可以大大减少计算量,提高噪声生成的实时性。 通过均匀分布于高斯分布的关系进行映射,映射关系可以以函数y=f(x)表示,其中x服从[1,232-1]均匀分布,而y服从均值为0,方差为1的高斯分布。考虑到高斯分布的实际情况,y仅在[-4,4]之间取值就可以了。f函数曲线如图3.1所示。 对y对应的高斯分布值进行量化处理,将自变量y在[-4,4]上分成均匀分布的M=2000个的小区间,从而计算出对应的数值,分配2000个物理空间,简历对应x值的y的映射表。在查找时,产生在[1,232-1]区间均匀分布的随机变量,将随机变量也对应到2000个小区间中,计算随机变量的值在映射表中的偏移地址,该地址单元的对应值就是对应的高斯分布随机变量,据此生成高斯白噪声。

MATLAB中产生高斯白噪声的两个函数

MATLAB中产生高斯白噪声的两个函数 MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。 1. WGN:产生高斯白噪声 y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。 y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。 y = wgn(m,n,p,imp,state) 重置RANDN的状态。 在数值变量后还可附加一些标志性参数: y = wgn(…,POWERTYPE) 指定p的单位。POWERTYPE可以是'dBW', 'dBm'或'linear'。线性强度(linear power)以瓦特(Watt)为单位。 y = wgn(…,OUTPUTTYPE) 指定输出类型。OUTPUTTYPE可以是'real'或'complex'。 2. AWGN:在某一信号中加入高斯白噪声 y = awgn(x,SNR) 在信号x中加入高斯白噪声。信噪比SNR以dB为单位。x的强度假定为0dBW。如果x是复数,就加入复噪声。 y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。 y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。 y = awgn(…,POWERTYPE) 指定SNR和SIGPOWER的单位。POWERTYPE可以是'dB'或'linear'。如果POWERTYPE是'dB',那么SNR以dB为单位,而SIGPOWER以dBW为单位。如果POWERTYPE是'linear',那么SNR作为比值来度量,而SIGPOWER以瓦特为单位。 注释 1. 分贝(decibel, dB):分贝(dB)是表示相对功率或幅度电平的标准单位,换句话说,就是我们用来表示两个能量之间的差别的一种表示单位,它不是一个绝对

白噪声_高斯噪声_高斯白噪声的区别

这几个概念的区别和联系:(转自:研学论坛) 白噪声,就是说功率谱为一常数;也就是说,其协方差函数在delay=0时不为0,在delay不等于0时值为零;换句话说,样本点互不相关。(条件: 零均值。) 所以,“白”与“不白”是和分布没有关系的。 当随机的从高斯分布中获取采样值时,采样点所组成的随机过程就是“高斯白噪声”; 同理,当随机的从均匀分布中获取采样值时,采样点所组成的随机过程就是“均匀白噪声”。 那么,是否有“非白的高斯”噪声呢?答案是肯定的,这就是”高斯色噪声“。这 种噪声其分布是高斯的,但是它的频谱不是一个常数,或者说,对高斯信号采样的时候不是随机采样的,而是按照某种规律来采样的。 仿真时经常采用高斯白噪声是因为实际系统(包括雷达和通信系统等大多数电子系统)中的主要噪声来源是热噪声,而热噪声是典型的高斯白噪声,高斯噪声下的理想系统都是线性系统。 相关讨论:

1、白噪声是指功率谱在整个频域内为常数的噪声,其付氏反变换是单位冲击函数的n倍(n取决于功率谱的大小),说明噪声自相关函数在t=0时不为零,其他时刻都为0,自相关性最强。高斯噪声是一种随机噪声,其幅度的统计规律服从高斯分布。高斯白噪声是幅度统计规律服从高斯分布而功率谱为常数的噪声如果在系统通带内功率谱为常数,成为带限白噪声“高斯”与“白”没有直接关系,有时人们还会提出高斯型噪声,这指的是噪声功率谱呈高斯分布函数的形状而已。 2、有一个问题我想提出来: 连续白噪声和离散白噪声序列的关系是什么?它们之间不应该是简单的采样 关系。因为连续白噪声的功率谱在整个频率轴上为常数,按照随机信号采样定理,对这样的信号采样,采样后的序列的功率谱必然发生混叠,而且混叠过后的功率谱是什么?应该是在整个频率轴上都为无穷大。这显然不满足离散白噪声序列的定义。 那离散白噪声序列跟连续白噪声有何关系?我觉得是对带限的连续白噪声进行采样后得到的,这个带限的连续白噪声信号的带宽刚好满足Nyquist抽样定理。这样采样过后的信号的功率谱就能满足定义了。 答:连续白噪声是离散白噪声在采样间隔趋近于零的极限。对带限的连续白噪声按照Nyquist采样定理进行采样就得到信息不损失的白噪声序列,当连续 白噪声的带宽趋近于无穷大时,采样率也趋近于无穷大(采样间隔趋近于零),此时不会发生频谱混叠。用极限的概念理解二者的关系就很清楚了。需要说明的是,任何实际系统都是工作于一定频带范围内的,带宽为无穷大的信号仅仅存 在于理论分析中,在实际系统中找不到。 3、对随机信号而言也有采样定理,这个采样定理是针对功率谱而言的。具 体的证明可以参看陆大金老师的随机过程教材。(清华的博士入学考试指定的参考教材) 4、对于不限带的白噪声,已经分析的比较清楚了。 而对于限带白噪声,我认为既然考虑采样定理,那么连续的限带白噪声可以 利用采样函数作为正交基的系数来表示,这些系数就是对应的噪声采样值,这个过程就是连续噪声的离散化过程,以上分析也是分析连续信道容量使用的方法。

高斯白噪声

MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。 1. WGN:产生高斯白噪声 y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。 y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。 y = wgn(m,n,p,imp,state) 重置RANDN的状态。 在数值变量后还可附加一些标志性参数: y = wgn(…,POWERTYPE) 指定p的单位。POWERTYPE可以是'dBW', 'dBm'或'linear'。线性强度(linearpower)以瓦特(Watt)为单位。 y = wgn(…,OUTPUTTYPE) 指定输出类型。OUTPUTTYPE可以是'real'或'complex'。 2. AWGN:在某一信号中加入高斯白噪声 y = awgn(x,SNR) 在信号x中加入高斯白噪声。信噪比SNR以dB为单位。x的强度假定为0dBW。如果x是复数,就加入复噪声。 y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。 y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。 y = awgn(…,POWERTYPE) 指定SNR和SIGPOWER的单位。POWERTYPE可以是'dB'或'linear'。如果POWERTYPE是'dB',那么SNR以dB为单位,而SIGPOWER以dBW为单位。如果POWERTYPE是'linear',那么SNR作为比值来度量,而SIGPOWER以瓦特为单位。 注释 1. 分贝(decibel, dB):分贝(dB)是表示相对功率或幅度电平的标准单位,换句话说,就是我们用来表示两个能量之间的差别的一种表示单位,它不是一个绝对单位。例如,电子系统中将电压、电流、功率等物理量的强弱通称为电平,电平的单位通常就以分贝表示,即事先取一个电压或电流作为参考值(0dB),用待表示的量与参考值之比取对数,再乘以20作为电平的分贝数(功率的电平值改乘10)。

matlab产生高斯白噪声

产生一个长度为L、均值为零、功率为N的复数高斯白噪声 用这种方法: 1,X = sqrt(N/2) * ( randn(1,L) + j * randn(1,L) ); 根据随机过程理论,功率包含直流功率和交流功率,方差就是交流功率,这里均值为零,也就是总功率等于方差 所以保证X的方差为N就行了。 2,X = wgn( L,1,N,'linear','complex'); 产生长为L的复高斯白噪声,均值为0,功率为N(线性) MATLAB中产生高斯白噪声的两个函数 MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。WGN用于产生高斯白噪声, AWGN则用于在某一信号中加入高斯白噪声。 1. WGN:产生高斯白噪声 y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。 y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。 y = wgn(m,n,p,imp,state) 重置RANDN的状态。 在数值变量后还可附加一些标志性参数: y = wgn(…,POWERTYPE) 指定p的单位。POWERTYPE可以是'dBW', 'dBm'或'linear'。线性强度(linear power)以瓦特(Watt)为单位。 y = wgn(…,OUTPUTTYPE) 指定输出类型。OUTPUTTYPE可以是'real'或'complex'。 2. AWGN:在某一信号中加入高斯白噪声 y = awgn(x,SNR) 在信号x中加入高斯白噪声。信噪比SNR以dB为单位。x的强度假定为0dBW。如果x是复数,就加入复噪声。 y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入 噪声之前测定信号强度。 y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。 y = awgn(…,POWERTYPE) 指定SNR和SIGPOWER的单位。POWERTYPE可以是'dB'或'linear'。如果POWERTYPE是'dB',那么SNR以dB为单位, 而SIGPOWER以dBW为单位。如果POWERTYPE是'linear',那么SNR作为比值来度量,而SIGPOWER以瓦特为单位。 注释 1. 分贝(decibel, dB):分贝(dB)是表示相对功率或幅度电平的标准单位,换句话说,就是我们用来表示两个能量之间的差别的一种 表示单位,它不是一个绝对单位。例如,电子系统中将电压、电流、功率等物理量的强弱通称为电平,电平的单位通常就以分贝表示, 即事先取一个电压或电流作为参考值(0dB),用待表示的量与参考值之比取对数,再乘以20作为电平的分贝数(功率的电平值改乘10)。 2. 分贝瓦(dBW, dB Watt):指以1W的输出功率为基准时,用分贝来测量的功率放大器的功率值。 3. dBm (dB-milliWatt):即与1milliWatt(毫瓦)作比较得出的数字。 0 dBm = 1 mW

高斯白噪声的产生及误差分析

高斯白噪声的产生方案 一 高斯白噪声的简介 高斯白噪声通常定义为一个均值为零,功率谱密度为非零常数的平稳随机过程,且其噪声取值的概率分布服从高斯分布。产生高斯噪声的过程可分为生成均匀分布随机信号和对均匀分布随机信号高斯化。高斯噪声生成的原理图如下: 高斯白噪声产生原理 如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。而高斯白噪声中的高斯是指概率分布是正态分布。热噪声和散粒噪声都是高斯白噪声。 而高斯白噪声序列在科学研究和工程领域有着非常广泛的应用。例如,在电气工程领域中,有关信号定理算法的研究均涉及到高斯白噪声序列的应用;而在通用的计算机系统中均配置了用以产生均匀分布于高斯分布序列的软件,例如在BASIC ,FORTRAN ,C ,VB 以及VC++等程序设计语言软件包、以及功能强大的MATLAB 软件包中均配置了用以产生均匀分布与高斯分布随即序列的内建函数。事实上,应用这些软件产生的随机数序列,其随机性和分布特性与所调用的函数名的含义相差甚远。 在下文将对高斯白噪声产生的两种典型方法进行介绍。 二 基于算法Marsaglia-Bray 白噪声的生成 传统的广泛配置与计算机产生有限长高斯随机序列的方法,不能保证所得序列的N (0,1)分布序列的方法。 在随机序列产生方法与软件实现的研究中,独立同分布的均匀分布U (0,1)随机数的产生及其软件实现是最基本的研究内容。因为高斯分布与其连续分布的随机序列一般可由U (0,1)随机序列经相应的变换而获得。 欲在计算机上获得具有良好独立同分布的U (0,1)标准随机序列并非一件易事,U (0,1)随机数序列产生的书序方法及其软件的研究已有较长的历史,至产生均匀分 布随机信号 均匀分布随机信号的高斯化 均匀随机高斯白噪声输出

相关主题
相关文档
最新文档