圆的方程与专题复习(直线与圆、圆与圆的位置关系、轨迹问题)

圆的方程与专题复习(直线与圆、圆与圆的位置关系、轨迹问题)
圆的方程与专题复习(直线与圆、圆与圆的位置关系、轨迹问题)

圆的方程与专题复习(直线与圆、圆与圆的位置关系、轨迹问题)

知识梳理

浙江省诸暨市学勉中学(311811)郭天平

圆的标准方程、一般方程与参数方程的推导与运用是这节内容的重点;涉及直线与圆、圆与圆的位置关系的讨论及有关性质的研究是这节的难点。

一、有关圆的基础知识要点归纳

1. 圆的定义:平面内与定点距离等于定长的点的集合(轨迹)是圆.定点即为圆心,定长为半径.

2. 圆的标准方程

① 圆的标准方程:由圆的定义及求轨迹的方法,得()()()022

2

>=-+-r r b y a x ,

其中圆心坐标为()b a ,,半径为r ;当0,0==b a 时,即圆心在原点时圆的标准方程为

2

2

2

r y

x =+;

② 圆的标准方程的特点:是能够直接由方程看出圆心与半径,即突出了它的几何意义。

3. 圆的一般方程

①圆的一般方程:展开圆的标准方程,整理得,

02

2

=++++F Ey Dx y x (

)

042

2>-+F E

D ;

② 圆的一般方程的特点:(1)22,y x 项系数相等且不为0;(2)没有xy 这样的二次项

③ 二元二次方程02

2=+++++F Ey Dx Cy

Bxy Ax 表示圆的必要条件是

0≠=C A 且0=B ;

二元二次方程02

2=+++++F Ey Dx Cy

Bxy Ax 表示圆的充要条件是0

≠=C A 且0=B 且0422>-+AF E D 4. 圆的参数方程

圆的参数方程是由中间变量θ将变量y x ,联系起来的一个方程.

① 圆心在原点,半径为r 的圆的参数方程是:θθ

θ(sin cos ??

?==r y r x 为参数);

② 圆心在()b a ,,半径为r 的圆的参数方程是:θθθ

(sin cos ?

??+=+=r b y r a x 为参数);

5. 确定圆方程的条件

圆的标准方程、圆的一般方程及参数方程都有三个参数,因此要确定圆方程需要三个独立的条件,而确定圆的方程我们常用待定系数法,根据题目不同的已知条件,我们可适当地选择不同的圆方程形式,使问题简单化。如已知条件中涉及圆心与半径有关等条件,一般设圆的标准方程,即列出r b a ,,的方程组,求出r b a ,,的值,也可根据圆的特点直接求出圆心()b a ,,半径r 。当圆心位置不能确定时,往往选择圆的一般方程形式,由已知条件列出F E D ,,的三个方程,显然前者解的是三元二次方程组,后者解的是三元一次方程组,在运算上显然设一般式比标准式要简单。

6. 点与圆的位置关系

设圆()()2

2

2

:r b y a x C =-+-,点()00,y x M 到圆心的距离为d ,则有:

(1)r d >?点M 在圆外; (2)r d = ?点M 在圆上; (3)r d < ?点M 在圆内.

7. 直线与圆的位置关系

设圆()()22

2

:r b y a x C =-+-,直线l 的方程为0=++C By Ax (B A ,不全为0),

圆心()b a ,,判别式为△,则有:

(1) 几何特征(数形结合):由圆心到直线的距离d 与半径r 的大小来判断 ① r d < ?直线与圆相交; ② r d = ?直线与圆相切; ③ r d >?直线与圆相离;

(2) 代数特征:由直线方程与圆方程联立方程组,研究其解的个数来判断位置关系 ① △>0?有两组不同的实数解? 直线与圆相交; ② △=0?有两组相同的实数解? 直线与圆相切; ③ △<0?无实数解? 直线与圆相离.

(3) 直线与圆相交的弦长问题

①直线与圆相切时,要考虑过切点与切线垂直的半径;

②求弦长时,要用半径、弦心距、半弦长构成的直角三角形,即设弦长为l ,弦心距为d ,半径为r ,则有222

2r d l =+??

?

??.

③弦长公式:设直线交圆于()()2211,,,y x B y x A ,则B A AB

x x k AB -?+=2

1

或B A y y k

AB -?+

=

2

1

1.

(4) 圆的切线方程:

①已知圆2

2

2

1:r y x O =+;()()22

2

2:r b y a x O =-+-;

0:2

2

3=++++F Ey Dx y x O ,则以()00,y x M 为切点的圆1O 切线方程为:

2

00r y y x x =+;圆2O 切线方程为:()()()()2

00r b y b y a x a x =--+--;圆3O 切线方

程为:()

()

02

20000=+++

++

+F y y E x x D yy xx .

②若()00,y x M 在圆1O 外,到圆1O 有两条切线,则切点弦方程:2

00r y y x x =+.

9.圆与圆的位置关系

设圆()()22

2

1:r b y a x C =-+-,()()2

2

2

2:R n y m x C =-+-且设两圆圆心距

为d .

(1) 几何特征(数形结合):由圆心距与半径r 、R 的大小来判断 ① r R d +=?两圆外切;

② r R d -= ?两圆内切且两圆的连心线过切点;

③ r R d +>?两圆外离; ④ r R d -

(2) 代数特征:由两圆方程联立方程组,研究其解的个数来判断位置关系 ① △>0?有两组不同的实数解? 两圆相交; ② △=0?有两组相同的实数解? 两圆相切; ③ △<0?无实数解? 两圆相离. 10.圆系方程

① 设两相交圆0:111221=++++F y E x D y x C

0:2222

2

1=++++F y E x D y x C

+

++++1112

23:F y E x D y x C 0)(1112

2

=++++F y E x D y x ()1-≠λ表示过

两圆交点的圆(不包括2C );

当1-=λ时()()0212121=-+-+-F F y E E x D D 表示两圆的公共弦所在的直线方程.

②()022=+++++++c by ax F Ey Dx y x λ表示过圆022=++++F Ey Dx y x 与直线0=++c by ax 交点的圆.

③ ()()22

2

k b y a x =-+-k (为变数)表示以()b a ,为圆心的同心圆系。 二、有关圆问题的注意事项

1.在用待定系数法求圆方程时,一定要注意分析已知条件中圆的特点及规律,并能运用数形结合的思想,即利用平面知识充分挖掘其几何特征,联立待定系数的方程组,使问题简单化。

2.在讨论直线与圆,圆与圆的位置问题时,一般不用0,0,0?,而用圆心

到直线距离d 与半径r ,和圆心距与半径的大小关系,分别确定相交,相切,相离的位置关系。

3.求圆的切线方程一般有三种方法:设切点公式法;设切线斜率用判别式法;设切线斜率用圆心到切线距离等于圆的半径法

直线与圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2=---+y x y x 相切,且和直线0=y 相切的圆的方程.

直线和圆的方程测试题(含答案解析)

直线与圆的方程测试题 (本试卷满分150分,考试时间120分钟) 一、单项选择题(本大题共18小题,每小题4分,共72分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分. 1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( ) A.-9 B.-1 C.-9或-1 D. 12 2. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( ) A.5 B. -5 C. 1 D. -1 3. 直线的倾斜角是3 2π,则斜率是( ) A.3-3 B.3 3 C.3- D.3 4. 以下说法正确的是( ) A.任意一条直线都有倾斜角 B. 任意一条直线都有斜率 C.直线倾斜角的范围是(0,2 π) D. 直线倾斜角的范围是(0,π) 5. 经过点(4, -3),斜率为-2的直线方程是( ) A. 2x+y+2=0 B.2x-y-5=0 C. 2x+y+5=0 D. 2x+y-5=0 6. 过点(2,0)且与y 轴平行的直线方程是( ) A.x=0 B.y=0 C.x=2 D.y=2 7. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是( ) A.x+2=0 B.x-2=0 C.y+2=0 D.y-2=0 8. “B ≠0”是方程“Ax+By+C=0表示直线”的( ) A.充分非必要条件 B.必要非充分条件 C.充分且必要条件 D.非充分非必要条件 9. 直线3x-y+2 1=0与直线6x-2y+1=0之间的位置关系是( ) A.平行 B.重合 C.相交不垂直 D.相交且垂直 10.下列命题错误.. 的是( ) A. 斜率互为负倒数的两条直线一定互相垂直 B. 互相垂直的两条直线的斜率一定互为负倒数 C. 两条平行直线的倾斜角相等 D. 倾斜角相等的两条直线平行或重合 11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( ) A. 2x+y+2=0 B. 2x-y-2=0 C. 2x-y+2=0 D.2x+y-2=0 12. 直线ax+y-3=0与直线y=2 1x-1垂直,则a=( ) A.2 B.-2 C. 21 D. 2 1- 13. 直线x=2与直线x-y+2=0的夹角是( )

高考数学复习圆的方程专题练习(附答案)

高考数学复习圆的方程专题练习(附答案)圆的标准方程(x-a)+(y-b)=r中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。以下是圆的方程专题练习,请考生查缺补漏。 一、填空题 1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0 和x轴都相切,则该圆的标准方程是________. [解析] 设圆心C(a,b)(a0,b0),由题意得b=1. 又圆心C到直线4x-3y=0的距离d==1, 解得a=2或a=-(舍). 所以该圆的标准方程为(x-2)2+(y-1)2=1. [答案] (x-2)2+(y-1)2=1 2.(2019南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________. [解析] 因为点P关于直线x+y-1=0的对称点也在圆上, 该直线过圆心,即圆心满足方程x+y-1=0, 因此-+1-1=0,解得a=0,所以圆心坐标为(0,1). [答案] (0,1) 3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________. [解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x

联立可求得圆心为(1,-4). 半径r=2,所求圆的方程为(x-1)2+(y+4)2=8. [答案] (x-1)2+(y+4)2=8 4.(2019江苏常州模拟)已知实数x,y满足 x2+y2-4x+6y+12=0,则|2x-y|的最小值为________. [解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令 x=2+cos , y=-3+sin ,则|2x-y|=|4+2cos +3-sin | =|7-sin (-7-(tan =2). [答案] 7- 5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a0,b0)对称,则+的最小值是________. [解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),所以a+b=2.所以+=+=++52+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b=时取等号. [答案] 9 6.(2019南京市、盐城市高三模拟)在平面直角坐标系xOy中,若圆x2+(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________. [解析] 由题意得圆心与P点连线垂直于AB,所以kOP==1,kAB=-1, 而直线AB过P点,所以直线AB的方程为y-2=-(x-1),即

高中数学圆的方程专题复习

高二数学辅导资料(三) 内容:圆与方程 本章考试要求 考试内容 要求层次A B C 圆与方程 圆的标准方程与一般方程√ 直线与圆的位置关系 √ 两圆的位置关系√ 用直线和圆的方程解决简单的问 题 √空间直角坐标系 空间直角坐标系√ 空间两点间的距离公式√ 一、圆的方程 【知识要点】 圆心为,半径为的圆的标准方程为: 时,圆心在原点的圆的方程为:. 圆的一般方程,圆心为点,半径,其中. 圆系方程:过圆:与圆: 交点的圆系方程是 (不含圆), 当时圆系方程变为两圆公共弦所在直线方程. 【互动探究】 考点一求圆的方程 问题1.求满足下列各条件圆的方程: 以两点,为直径端点的圆的方程是 求经过,两点,圆心在直线上的圆的方程;

过点的圆与直线相切于点,则圆的方程是? 考点二圆的标准方程与一般方程 问题2.方程表示圆,则的取值范围是 考点三轨迹问题 问题3.点与圆上任一点连线的中点轨迹方程是 问题4.设两点,,动点到点的距离与到点的距离的比为,求点的轨迹. 二、直线和圆、圆与圆的位置关系 【知识要点】 直线与圆的位置关系 位置关系相切相交相离 几何特征 代数特征 将直线方程代入圆的方程得到一元二次方程,设它的判别式 为,圆的半径为,圆心到直线的距离为,则直线与 圆的位置关系满足以下关系: 直线截圆所得弦长的计算方法: 利用垂径定理和勾股定理:(其中为圆的半径,直线到圆心的距离). 圆与圆的位置关系:①设两圆的半径分别为和,圆心距为,则两圆的位置关系满足关系: 位置关系外离外切相交内切内含 几何特征 代数特征无实数解一组实数解两组实数解一组实数解无实数解 ②设两圆,,若两圆相交,则两圆的公共弦所在的直线方程 是 相切问题的解法:

高中数学必修二测试题七(直线与圆)

高中数学必修二测试题七 班级 姓名 座号 一、选择题(每小题5分,共50分. 以下给出的四个备选答案中,只有一个正确) 1. 1.直线20x y --=的倾斜角为( ) A .30? ; B .45? ; C. 60? ; D. 90?; 2.将直线3y x =绕原点逆时针旋转90?,再向右平移1个单位,所得到的直线为( ) A.1133y x =-+ ; B. 113 y x =-+ ; C.33y x =- ; D.31y x =+; 30y m -+=与圆2 2 220x y x +--=相切,则实数m 等于( ) A .-; B .- C D .4.过点(0,1)的直线与圆22 4x y +=相交于A ,B 两点,则AB 的最小值为( ) A .2 ; B .; C .3 ; D .5.若圆C 的半径为1,圆心在第一象限,且与直线034=-y x 和x 轴都相切,则该圆的标准 方程是( ) A. 1)3 7()3(22=-+-y x ; B. 1)1()2(2 2=-+-y x ; C. 1)3()1(2 2=-+-y x ; D. 1)1()2 3(22=-+-y x ; 6.已知圆1C :2 (1)x ++2 (1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,则圆2C 的方 程为( ) A.2 (2)x ++2 (2)y -=1 ; B.2 (2)x -+2 (2)y +=1; C.2 (2)x ++2 (2)y +=1; D.2 (2)x -+2 (2)y -=1 7.已知圆C 与直线0=-y x 及04=--y x 都相切,圆心在直线0=+y x 上,则圆C 的 方程为( ) A.2 2 (1)(1)2x y ++-= ; B. 2 2 (1)(1)2x y -++= C. 2 2 (1)(1)2x y -+-= ; D. 2 2 (1)(1)2x y +++= 8.设A 在x 轴上,它到点P 的距离等于到点(0,1,1)Q -的距离的两倍,那么A 点的坐标是( ) A.(1,0,0)和( -1,0,0) ; B.(2,0,0)和(-2,0,0); C.(12,0,0)和(1 2 -,0,0) ; D.(,0,00,0)

必修二圆的方程

圆的方程 ()() 2 2 2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r ①待定系数:往往已知圆上三点坐标,例如教材119P 例2 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件 方程形式 圆心在原点 ()222 0x y r r +=≠ 过原点 ()()()2 2 2 2 2 20x a y b a b a b -+-=++≠ 圆心在x 轴上 ()()2 2 2 0x a y r r -+=≠ 圆心在y 轴上 ()()2 2 2 0x y b r r +-=≠ 圆心在x 轴上且过原点 ()()2 2 2 0x a y a a -+=≠ 圆心在y 轴上且过原点 ()()2 2 2 0x y b b b +-=≠ 与x 轴相切 ()()()2 2 2 0x a y b b b -+-=≠ 与y 轴相切 ()()()2 2 2 0x a y b a a -+-=≠ 与两坐标轴都相切 ()()()2 2 2 0x a y b a a b -+-==≠ 二、一般方程 ()2222040x y Dx Ey F D E F ++++=+-> 1.求圆的一般方程一般可采用待定系数法:如教材122P 例r 4 2.2 2 40D E F +->常可用来求相关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值

直线与圆的方程试卷

2011—2012学年度第二学期 2010级数学期中试卷 姓名班级成绩 一、单项选择:(10*4) 1、已知直线L的方向向量为(1、2),则直线的斜率K=() A、1 B、2 C、3 D、4 2、已知直线L的倾斜角为45゜,则直线的斜率K=() A、1 B、2 C、3 D、4 3、已知直线L上的两个点A(1、2)、B( 4、14),则直线的斜率 K=() A、1 B、2 C、3 D、4 4、判断下列关系错误的是()。 A、与一条直线平行的非零向量叫做这条直线的方向向量 B、与一条直线垂直的非零向量叫做这条直线的法向量 C、一条直线 L向上的方向与X轴正方向所成的最小正角a, 叫做直线L的倾斜角 D、斜截式方程:y=kx+b中,k是它的斜率,而b称为 直线 L在X轴上的截距 5、判断下列关系错误的是()。 A、方程式:Ax+By+C=0 (A,B不全为零)称为直线的一般式方程, 而向量(A、B)为直线Ax+By+C=0的一个法向量 B、方程式:Ax+By+C=0 (A,B不全为零)称为直线的一般式方程, 而向量(B、-A)或(-B、A)为直线Ax+By+C=0的一个方向向量 C、如果已知直线的斜率为K,则(1、K)是该直线的一个方向向量 D、方程式:x2+y2+Dx+Ey+F=0所表示的曲线一定是圆 6、圆:(x-1) 2+(y-3)2=5中,圆心坐标为()。 A、(1、3) B、(-1、3 ) C、(3、-1) D、(-1、-3) 7、圆:(x-1) 2+(y-3)2=25中,则该圆的半径为()。 A、1 B、3 C、5 D、25 8、直线:3x-4y-1=0的一个法向量为() A、(3、4) B、(3、-4 ) C、(4、3) D、(4、-3) 9、已知直线a:2x-4y+7=0和直线b: x-2y +5=0,则两直线的 位置关系为()。 A、平行 B、相交 C、重合 D、无法判断 10、判断下列关系错误的是()。 A、与直线Ax+By+C=0 (A,B不全为零)平行的直线都可以表示成 Ax+By+D=0 (D≠C) B、与直线Ax+By+C=0 (A,B不全为零)垂直的直线都可以表示成 Bx-Ay+D=0 (D≠C) C、圆的方程式:(x-a) 2+(y-b)2=r2称为圆的标准方程式 D、圆的方程式:x2+y2+Dx+Ey+F=0称为圆的标准方程式 二、填空题:(6*4) 11、过点P(1、2),且一个法向量为(3、4)的直线方程为 12、过点P(1、-2),且一个方向向量为(-1、3)的直线方程 为。 13、已知直线L过点P(1、2),且斜率为-2,则直线L的方程式 为。 14、圆心坐标为(-2、1),半径为2的圆的标准方程式为 15、圆的一般方程式为:x2+y2+4x-6y-12=0,则圆心坐标为 该圆的半径为

圆的方程练习题

1 圆的方程练习题 1.圆x 2+y 2 -4x=1的圆心及半径分别是 ( ) A .(2,0),5 B . C . D .(2,2),5 2 .方程x 2+y 2 +2x-4y-6 =0表示的图形是 ( ) A .以(1,- 2)为圆心 B .以(1,2)为圆心 为半径的圆 C .以(-1, -2)为圆心 D .以( -1,2)为圆心 3.过点A (6,0),B (1,5),且圆心在直线2x-7y+8=0上的圆的方程为( ) A .(x+3)2+(y+2)2=13 B .(x+3)2+(y-2)2 =13 C .(x-3)2+(y-2)2=13 D .(x-3)2+(y+2)2 =13 4.方程(x-a )2+(y-b )2 =0的图形是 ( ) A .一个圆 B .两条直线 C .两条射线 D .一个点 5.已知点A (2,4),B (8,-2),以AB 为直径的圆的方程 ( ) A .(x-5)2+(y-1)2=18 B .(x-5)2+(y-1)2 =72 C .(x+5)2+(y+1)2=18 D .(x+5)2+(y+1)2 =72 6.与圆x 2+y 2 -2x+4y+3=0的圆心相同,半径是5的圆的方程是( ) A .(x-1)2+(y+2)2=25 B .(x-1)2+(y+2)2 =5 C .(x+1)2+(y-2)2=25 D .(x+1)2+(y-2)2 =5 7.已知圆x 2+y 2 +2x-4y-a=0的半径为3,则 ( ) A .a=8 B .a=4 C .a=2 D .a=14 8.圆心在C (-1,2),半径为 ( ) 11A. B.2213cos 1C. D.23sin 2x x y y x x y y θθ θθ θθ θθ ? ?=+=-+????=-=?????=-+=-+????=+?=+??

求圆的切线方程的几种方法

1 求圆的切线方程的几种方法 在直线与圆的位置关系中,相切是一个重要的位置关系.众所周知,在圆上的点可以作一条直线与该圆相切,过圆外一点可以作二条直线与该圆相切.本文就如何求圆的切线方程的方法展开讨论,供同学们参考. 1.利用几何性质来求切线方程 当直线与圆相切时,圆心到直线的距离等于半径.因此,利用点到直线的距离公式即可以求出切线方程. 例1 已知圆C 的方程是x 2+(y -1)2=4,圆外一点P (3,2),求经过点P 且与圆C 相切的直线方程. 解:当过P 的直线的斜率不存在时,显然不是圆的切线. 设所求的直线的斜率为k ,直线方程为y -2=k (x -3), 化为一般形式为kx -y -3k +2=0. 由于直线与圆相切,故圆心到直线的距离d 等于半径2,即 d =|-1-3k +2|k 2+1=|3k -1|k 2+1 =2, 解得k =3±265 . 所以切线方程为y -2=3±265 (x -3). 点评:求切线方程时,点到直线的距离公式相当重要,不能记错.设直线方程时,一定要考虑直线的斜率不存在时的情况,避免漏解. 2.利用方程的判别式来求切线方程 当直线与圆相切时,直线与圆只有一个公共点,此时圆的方程与直线联立,利用判别式等于零即可以求出切线方程. 例2 已知圆C 的方程是x 2+(y -1)2=4,圆外一点P (2,2),求经过点P 且与圆C 相切的直线方程. 解:当过P 的直线的斜率不存在时,直线x =2是圆的切线. 当过P 的直线的斜率存在时,设所求的直线方程为y -2=k (x -2). 直线方程与圆的方程联立,整理,得(1+k 2)x 2+2k (1-2k )x +4k 2-4k -3=0, 因为直线与圆只有一个公共点,故Δ=4k 2(1-2k )2-4(1+k 2)(4k 2-4k -3)=0. 解得k =-34 . 所以所求的切线方程是x =2或y -2=-34 (x -2). 点评:利用判别式求解时计算量比较大,本题注意不能漏解了x =2. 3.利用垂直关系求切线方程 当已知切点时,我们可以利用圆心与切点的连线与直线垂直、斜率之积为-1来求出切线方程. 例3 已知圆C 的方程是x 2+(y -1)2=4,求以P (3,2)为切点的切线方程. 解:由已知得圆心O (0,1),点P 在圆C 上,显然x =3不是圆的切线. 设切线方程为l :y -2=k (x -3). 由直线OP ⊥l 得k ·k OP =-1,所以k =-1k OP =-3. 所以切线方程为y -2=-3(x -3)即y =-3x +5. 点评:由直线垂直求出切线的斜率,可以避免繁杂的计算. 小结:在求圆的切线方程时,先判断切线方程有几条,再是注意特殊情况(如斜率不存在),三是注意使用哪种方法计算最简捷.

圆的方程题型总结含答案

圆的方程题型总结 一、基础知识 1.圆的方程 圆的标准方程为___________________;圆心_________,半径________. 圆的一般方程为___________ _________ ____;圆心________ ,半径__________. 二元二次方程2 2 0Ax Cy Dx Ey F 表示圆的条件为: (1)_______ _______; (2) _______ __ . 2.直线和圆的位置关系: 直线0Ax By C ++=,圆2 2 2 ()()x a y b r -+-=,圆心到直线的距离为d. 则:(1)d=_________________; (2)当______________时,直线与圆相离; 当______________时,直线与圆相切; 当______________时,直线与圆相交; (3)弦长公式:____________________. 3. 两圆的位置关系 圆1C :2 2 21 1 1x a y b r ; 圆2C :2 2 22 2 2x a y b r 则有:两圆相离? _____________________; 两圆外切 ?______________________; 两圆相交?______________________; 两圆内切?_____________________; 两圆内含?_____________________.

二、题型总结: (一)圆的方程 1. ★2 2 310x y x y ++--=的圆心坐标 ,半径 . 2.★★点(1,2-a a )在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是( ) A .-1所表示的曲线关于直线y x =对称,必有( ) A .E F = B .D F = C . D E = D .,,D E F 两两不相等 4.★★★圆03222 2 2 =++-++a a ay ax y x 的圆心在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5. ★若直线34120x y 与两坐标轴交点为A,B,则以线段AB 为直径的圆的方程是 ( ) A. 2 2430x y x y B. 22430x y x y C. 2 2 434 0x y x y D. 2 2 438 0x y x y 6. ★★过圆2 2 4x y +=外一点()4,2P 作圆的两条切线,切点为,A B ,则ABP ?的外接圆方程是( ) A. 42x y --2 2 ()+()=4 B. 2x y -2 2 +()=4 C. 42x y ++2 2 ()+()=5 D. 21x y -+2 2 ()+()=5 7. ★过点1,1A ,1,1B 且圆心在直线20x y 上的圆的方程( ) A. 2 2 3 14x y B.2 2 3 1 4x y C. 22 1 1 1x y D. 2 2 1 1 1x y 8.★★圆2 2 2690x y x y +--+=关于直线250x y ++=对称的圆的方程是 ( ) A .2 2 (7)(1)1x y +++= B .2 2 (7)(2)1x y +++= C . 2 2 (6)(2)1x y +++= D .2 2 (6)(2)1x y ++-=

圆与方程测试题及答案

圆与方程测试题 一、选择题 1.若圆C的圆心坐标为(2,-3),且圆C经过点M(5,-7),则圆C的半径为(). A.5B.5 C.25 D.10 2.过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是(). A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4 3.以点(-3,4)为圆心,且与x轴相切的圆的方程是(). A.(x-3)2+(y+4)2=16 B.(x+3)2+(y-4)2=16 C.(x-3)2+(y+4)2=9 D.(x+3)2+(y-4)2=19 4.若直线x+y+m=0与圆x2+y2=m相切,则m为(). A.0或2 B.2 C.2D.无解 5.圆(x-1)2+(y+2)2=20在x轴上截得的弦长是(). A.8 B.6 C.62D.43 6.两个圆C1:x2+y2+2x+2y-2=0与C2:x2+y2-4x-2y+1=0的位置关系为(). A.内切B.相交C.外切D.相离 7.圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程是(). A.x+y-1=0 B.2x-y+1=0 C.x-2y+1=0 D.x-y+1=0 8.圆x2+y2-2x=0和圆x2+y2+4y=0的公切线有且仅有(). A.4条B.3条C.2条D.1条 9.在空间直角坐标系中,已知点M(a,b,c),有下列叙述: 点M关于x轴对称点的坐标是M1(a,-b,c); 点M关于y oz平面对称的点的坐标是M2(a,-b,-c); 点M关于y轴对称的点的坐标是M3(a,-b,c); 点M关于原点对称的点的坐标是M4(-a,-b,-c). 其中正确的叙述的个数是(). A.3 B.2 C.1 D.0 10.空间直角坐标系中,点A(-3,4,0)与点B(2,-1,6)的距离是(). A.243B.221C.9 D.86 二、填空题 11.圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为. 12.圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为. 13.以点C(-2,3)为圆心且与y轴相切的圆的方程是. 14.两圆x2+y2=1和(x+4)2+(y-a)2=25相切,试确定常数a的值. 15.圆心为C(3,-5),并且与直线x-7y+2=0相切的圆的方程为. 16.设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是.

《圆的方程》专题

《圆的方程》专题 2019年( )月( )日 班级 姓名 1.圆的定义及方程 ?标准方程强调圆心坐标为(a ,b ),半径为r . ?(1)当D 2+E 2-4F =0时,方程表示一个点????-D 2,-E 2; (2)当D 2+E 2-4F <0时,方程不表示任何图形. 2.点与圆的位置关系 点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2. 二、常用结论汇总——规律多一点 (1)二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是???? ? A =C ≠0, B =0,D 2+E 2-4AF >0. (2)以A (x 1,y 1),B (x 2,y 2)为直径端点的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.

三、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)确定圆的几何要素是圆心与半径.( ) (2)方程(x -a )2+(y -b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的一个圆.( ) (3)方程x 2+y 2+4mx -2y =0不一定表示圆.( ) (4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 2 0+Dx 0+Ey 0+F >0.( ) 答案:(1)√ (2)× (3)× (4)√ (二)选一选 1.圆x 2+y 2-4x +6y =0的圆心坐标是( ) A .(2,3) B .(-2,3) C .(-2,-3) D .(2,-3) 解析:选D 因为圆的方程可化为(x -2)2+(y +3)2=13,所以圆心坐标是(2,-3). 2.圆心为(1,1)且过原点的圆的方程是( ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=2 解析:选D 因为圆心为(1,1)且过原点,所以该圆的半径r =12+12=2,则该圆的方程为(x -1)2+(y -1)2=2,选D. 3.若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是( ) A .(-1,1) B .(-3,3) C .(-2,2) D.?? ? ? - 22, 22 解析:选C ∵点(0,0)在(x -m )2+(y +m )2=4的内部,∴(0-m )2+(0+m )2<4,解得-2<m < 2.故选C. (三)填一填 4.(2018·天津高考)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.

直线与圆的方程典型例题(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。 高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 2224)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a . ∴ 所 求 圆 方 程 为 2 224)4()1022(=-+--y x ,或 2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2 2 2 7)14()2(=--+-a ,或2 2 2 1)14()2(=--+-a (无解),故 622±=a . ∴ 所 求 圆 的 方 程 为 2 224)4()622(=++--y x ,或 2224)4()622(=+++-y x . 说明:对本题,易发生以下误解: 由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如 2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其 圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2 2 2 7)14()2(=-+-a ,解

直线与圆的方程练习题

直线与圆的方程复习题 一、选择题 1.若直线0=-+a ay x 与直线01)32(=---y a ax 垂直,则a 的值为 ( ) A .2 B .-3或1 C .2或0 D .1或0 2.从集合}10,9,8,7,6,5,4,3,2,1{中任取三个不同的元素作为直线0:=++c by ax l 中c b a ,,的值,若直线l 倾斜角小于?135,且l 在x 轴上的截距小于1-,那么不同的直线l 条数有 A 、109条 B 、110条 C 、111条 D 、120条 3.已知圆222:()()(0)C x b y c a a -+-=>与x 轴相交,与y 轴相离,圆心(,)C b c 在第一象限,则直线0ax by c ++=与直线10x y ++=的交点在 A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.已知两点(2,3)M -、(3,2)N --,直线l 过点(1,1)P 且与线段MN 相交,则直线l 的斜率k 的取值范围是 A .344k -≤≤ B .34 k ≥或4k ≤- C .344k ≤≤ D .344k -≤≤ 5. 已知直线a 与直线b 垂直,a 平行于平面α,则b 与α的位置关系是( ) A.b∥α B.b α C.b 与α相交 D.以上都有可能 6.平行直线03125=++y x 与052410=++y x 的距离是( ) A.132 B.131 C. 261 D.265 7.过点(1,1)A -且与线段3230(11)x y x --=-≤≤相交的直线倾斜角的取值范围是( )

A.[,]42ππ B.[,)2ππ C.[0,][,)42πππU D.(0,][,]42 πππU 8.过点()2,11A 作圆01644222=--++y x y x 的弦,其中弦长为整数的共有( ) A .16条 B .17条 C .32条 D .34条 9.直线03)1(:1=--+y a ax l 与02)32()1(:2=-++-y a x a l 互相垂直,则a 的值是( ) A .3- B .1 C .0或23 - D .1或3- 10.圆22460x y x y +-+=的圆心坐标是( ) A .(2,3) B .(-2,3) C .(-2,-3) D .(2,-3) 11.经过圆0222=++y x x 的圆心C ,且与直线x+y =0垂直的直线方程是( ) A .01=--y x B. 01=+-y x C.01=-+y x D. 01=++y x 12.若曲线C :04542222=-+-++a ay ax y x 上所有的点均在第二象限内,则a 的取值范围为( ) A .)2,(--∞ B .)1,(--∞ C .),1(∞+ D .),2(∞+ 二、填空题 13.已知直线斜率的绝对值等于1,直线的倾斜角 . 14.过点(1,3)A -且平行于直线230x y -+=的直线方程为 15.在空间直角坐标系O-xyz 中,若A(1,3,2)关于y 轴的对称点为A 1,则线段AA 1的长度为 16.设曲线y=(ax ﹣1)e x 在点A (x 0,y 1)处的切线为l 1,曲线y=(1﹣x )e ﹣x 在点B (x 0,y 2)处的切线为l 2.若存在 ,使得l 1⊥l 2,则实数a 的取值范围为 . 17.若直径为2的半圆上有一点P ,则点P 到直径两端点,A B 距离之和的最大值

圆的一般方程练习题

课时作业23 圆的一般方程 (限时:10分钟) 1.若圆x 2+y 2-2x -4y =0的圆心到直线x -y +a =0的距离为2 2,则a 的值为( ) A .-2或2 或32 C .2或0 D .-2或0 解析:圆的标准方程为(x -1)2+(y -2)2=5,圆心为(1,2),圆心到 直线的距离|1-2+a |12+-1 2=22,解得a =0或2. 答案:C 2.若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:圆心为? ?? ??a ,-32b ,则有a <0,b >0.直线x +ay +b =0变为y =-1a x -b a .由于斜率-1a >0,在y 轴上截距-b a >0,故直线不经过第四象限. 答案:D 3.直线y =2x +b 恰好平分圆x 2+y 2+2x -4y =0,则b 的值为 ( ) A .0 B .2 C .4 D .1 解析:由题意可知,直线y =2x +b 过圆心(-1,2), ∴2=2×(-1)+b ,b =4. 答案:C 4.M (3,0)是圆x 2+y 2-8x -2y +10=0内一点,过M 点最长的弦所在的直线方程为________,最短的弦所在的直线方程是________. 解析:由圆的几何性质可知,过圆内一点M 的最长的弦是直径,最短的弦是与该点和圆心的连线CM 垂直的弦.易求出圆心为C (4,1), k CM =1-04-3=1,∴最短的弦所在的直线的斜率为-1,由点斜式,分

别得到方程:y=x-3和y=-(x-3),即x-y-3=0和x+y-3=0. 答案:x-y-3=0x+y-3=0 5.求经过两点A(4,7),B(-3,6),且圆心在直线2x+y-5=0上的圆的方程. 解析:设圆的方程为x2+y2+Dx+Ey+F=0,其圆心为? ? ? ? ? - D 2,- E 2, 由题意得 ?? ? ??42+72+4D+7E+F=0, -32+62-3D+6E+F=0, 2· ? ? ? ? ? - D 2+? ? ? ? ? - E 2-5=0. 即 ?? ? ??4D+7E+F=-65, 3D-6E-F=45, 2D+E=-10, 解得 ?? ? ??D=-2, E=-6, F=-15. 所以,所求的圆的方程为x2+y2-2x-6y-15=0. (限时:30分钟) 1.圆x2+y2+4x-6y-3=0的圆心和半径分别为() A.(2,-3);16B.(-2,3);4 C.(4,-6);16 D.(2,-3);4 解析:配方,得(x+2)2+(y-3)2=16,所以,圆心为(-2,3),半径为4. 答案:B 2.方程x2+y2+4x-2y+5m=0表示圆的条件是() 1 C.m< 1 4D.m<1 解析:由42+(-2)2-4×5m>0解得m<1. 答案:D 3.过坐标原点,且在x轴和y轴上的截距分别是2和3的圆的方程为() A.x2+y2-2x-3y=0 B.x2+y2+2x-3y=0 C.x2+y2-2x+3y=0

高中数学直线与圆精选题目(附答案)

高中数学直线与圆精选题目(附答案) 一、两直线的位置关系 1.求直线斜率的基本方法 (1)定义法:已知直线的倾斜角为α,且α≠90°,则斜率k =tan α. (2)公式法:已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,则斜率k =y 2-y 1 x 2-x 1. 2.判断两直线平行的方法 (1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2?l 1∥l 2. (2)若不重合的直线l 1与l 2的斜率都不存在,其倾斜角都为90°,则l 1∥l 2. 3.判断两直线垂直的方法 (1)若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1?l 1⊥l 2. (2)已知直线l 1与l 2,若其中一条直线的斜率不存在,另一条直线的斜率为0,则l 1⊥l 2. 1.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值. (1)l 1⊥l 2且l 1过点(-3,-1); (2)l 1∥l 2,且坐标原点到这两条直线的距离相等. [解] (1)∵l 1⊥l 2, ∴a (a -1)-b =0,① 又l 1过点(-3,-1), ∴-3a +b +4=0.② 解①②组成的方程组得??? a =2, b =2. (2)∵l 2的斜率存在,l 1∥l 2, ∴直线l 1的斜率存在. ∴k 1=k 2,即a b =1-a .③ 又∵坐标原点到这两条直线的距离相等,l 1∥l 2, ∴l 1,l 2在y 轴上的截距互为相反数,

即4 b =-(-b ).④ 由③④联立,解得??? a =2, b =-2或????? a =23 ,b =2. 经检验此时的l 1与l 2不重合,故所求值为 ??? a =2, b =-2或????? a =23 , b =2. 注: 已知两直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0 (1)对于l 1∥l 2的问题,先由A 1B 2-A 2B 1=0解出其中的字母值,然后代回原方程检验这时的l 1和l 2是否重合,若重合,舍去. (2)对于l 1⊥l 2的问题,由A 1A 2+B 1B 2=0解出字母的值即可. 2.直线ax +2y -1=0与直线2x -3y -1=0垂直,则a 的值为( ) A .-3 B .-4 3 C .2 D .3 解析:选D 由2a -6=0得a =3.故选D. 3.已知直线x +2ay -1=0与直线(a -1)x +ay +1=0平行,则a 的值为( ) A.32 B.32或0 C .0 D .-2 解析:选A 当a =0时,两直线的方程化为x =1和x =1,显然重合,不符合题意;当a ≠0时,a -11=a 2a ,解得a =3 2.故选A. 二、直线方程 1.直线方程的五种形式

高中数学圆的方程专题复习

1 / 4 高一数学辅导资料 内容:圆与方程 本章考试要求 一、圆的方程 【知识要点】 1.圆心为),(b a C ,半径为r 的圆的标准方程为:)0()()(222>=-+-r r b y a x 0==b a 时,圆心在原点的圆的方程为:222r y x =+. 2.圆的一般方程02 2 =++++F Ey Dx y x ,圆心为点,2 2D E ?? -- ???,半径2 r = , 其中0422 >-+F E D . 3.圆系方程:过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++= 交点的圆系方程是()22221112220x y D x E y F x y D x E y F λ+++++++++=(不含圆2C ), 当1λ=-时圆系方程变为两圆公共弦所在直线方程. 【互动探究】 考点一 求圆的方程 问题1. 求满足下列各条件圆的方程: ()1以两点(3,1)A --,(5,5)B 为直径端点的圆的方程是 ()2求经过)2,5(A ,)2,3(-B 两点,圆心在直线32=-y x 上的圆的方程; ()3过点()4,1A 的圆C 与直线10x y --=相切于点()2,1B ,则圆C 的方程是? 考点二 圆的标准方程与一般方程 问题2.方程2222210x y ax ay a a +++++-=表示圆,则a 的取值范围是 考点三 轨迹问题

问题3.点()4,2P -与圆224x y +=上任一点连线的中点轨迹方程是 问题4.设两点()3,0A -,()3,0B ,动点P 到点A 的距离与到点B 的距离的比为2,求P 点的轨迹. 二、直线和圆、圆与圆的位置关系 【知识要点】 1.直线与圆的位置关系 将直线方程代入圆的方程得到一元二次方程,设它的判别式 为△,圆的半径为r ,圆心C 到直线l 的距离为d 则直线与 圆的位置关系满足以下关系: 2.直线截圆所得弦长的计算方法: 利用垂径定理和勾股定理:AB =r 为圆的半径,d 直线到圆心的距离). 0:111221=++++F y E x D y x C 0:222222=++++F y E x D y x C 则两圆的公共弦所在的直线方程是 4.相切问题的解法: ①利用圆心到切线的距离等于半径列方程求解 ②利用圆心、切点连线的斜率与切线的斜率的乘积为1-(或一条直线存在斜率,另一条不存在) ③利用直线与圆的方程联立的方程组的解只有一个,即0=?来求解. 特殊地,已知切点),(00y x P ,圆222r y x =+的切线方程为 . 圆222)()(r b y a x =-+-的切线方程为 【互动探究】 考点一 直线与圆的位置关系 问题1:()1已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则 .A l 与C 相交 .B l 与C 相切 .C l 与C 相离 .D 以上三个选项均有可能 ()2直线l :1mx y m -+-与圆C :() 2 211x y +-=的位置关系是 .A 相离 .B 相切 .C 相交 .D 无法确定,与m 的取值有关. ()3过点()1,3P 引圆2244100x y x y +---=的弦,则所作的弦中最短的弦长为

相关文档
最新文档