最短路径规划

习题课内容

同学主导

?

例2-09(信计101两个同学:常现杰陈少华)

211两个同学付乾乾?

例2-11(信计101两个同学:付乾乾桂大龙)

?

例2-12(信计102两个同学:蔡中华陈恒)214两个同学邓金勇?例2-14(信计102两个同学:邓金勇邓小龙)

?看得见的数学

有趣的小实验

系统最短路径规划专题

系统最短路径规划专题

1有趣的小试验、有趣的小试验An interesting experiment

2、物理可视化原理Visualization Principle

3、最短路径可视化仪及应用

Visualization instrument for system shortest path programming

4、社会评价Social evaluation

5、发明与机遇并存案例、发遇

Case studies for Invention and Chance

系统最短路径规划专题

1、有趣的小试验

测试板放入溶液

取出测试板得到薄膜轨迹系统全局最短路径

系统最短路径规划专题

1有趣的小试验、有趣的小试验An interesting experiment

2、物理可视化原理Visualization Principle

3、最短路径可视化仪及应用

Visualization instrument for system shortest path programming

4、社会评价Social evaluation

5、发明与机遇并存案例、发遇

Case studies for Invention and Chance

1、Fermat (费马)定理:已知平面上不共线的三点A 、存在一点使得它到三点距离之和SA +SB +SC B 、C ,存在点S ,使得它到三点距离之和SA + SB + SC 最小。

2、Steiner Tree (斯坦纳树)定理:作为费马定理的推广考虑欧氏平面上不在同条直线上的,考虑欧氏平面上不在同一条直线上的n 个点(n ≥3)构成的系统,通过增加s 个内部节点,存在连通系统中所有n 个节点和s 个内部节点的一条总长最短的网络,即系统最短路径此时2径,此时,s ≤n-2。

3Pl t (普拉图)泡膜几何学自然界、Plateau (普拉图)泡膜几何学:自然界

的大部分系统倾向于使本身的能量尽可能的低

,即系统最稳定的状态,所以液体倾向于表面

积最小的形状使表面能最低积最小的形状,使表面能最低。

神奇的泡膜

我们都曾注意到吹起的肥皂泡总是圆的水龙头我们都曾注意到,吹起的肥皂泡总是圆的,水龙头

流出的最后一滴水也是圆的。那么,为什么在水里加上肥皂或洗洁精就可以吹出泡泡来?为什么吹出来的泡肥皂或洗洁精,就可以吹出泡泡来?为什么吹出来的泡泡会呈现完美的球形?用铁丝绕成各种奇特的形状,浸到肥皂水里再拿出来,会形成平滑的膜面,这又是为什到肥皂水再拿出来,会形成平滑的膜面,又是为什么呢?

神奇的泡膜

表面张力:生活中,当我们将溶液从滴管里缓缓

挤出时,会先在管口累积成一个不掉落的小液滴,好像被层弹性膜包住样直到小液滴累积到足够重像被一层弹性膜包住一样,直到小液滴累积到足够重,才会落下。其实,是因为溶液表面有一种力量,可以抗拒液滴本身一定的重量,这就是溶液的表面张力。抗拒液滴本身定的重量,这就是溶液的表面张力。

最短路径分析(代码)

最短路径分析(源码) using System; ArcEngine using ESRI.ArcGIS.Carto; using ESRI.ArcGIS.Geometry; using ESRI.ArcGIS.Geodatabase; using https://www.360docs.net/doc/0216657654.html,workAnalysis;//12 namespace GisEditor { ///

/// 最短路径分析 /// public class ClsPathFinder { private IGeometricNetwork m_ipGeometricNetwork; private IMap m_ipMap; private IPointCollection m_ipPoints; private IPointToEID m_ipPointToEID; private double m_dblPathCost =0; private IEnumNetEID m_ipEnumNetEID_Junctions; private IEnumNetEID m_ipEnumNetEID_Edges; private IPolyline m_ipPolyline; #region Public Function //返回和设置当前地图 public IMap SetOrGetMap { set{ m_ipMap = value;} get{return m_ipMap;} } //打开几何数据集的网络工作空间 public void OpenFeatureDatasetNetwork(IFeatureDataset FeatureDataset) { CloseWorkspace(); if (!InitializeNetworkAndMap(FeatureDataset)) Console.WriteLine( "打开network出错"); } //输入点的集合 public IPointCollection StopPoints { set{m_ipPoints= value;} get{return m_ipPoints;}

用动态规划法实现有向图的最短路径问题。

动态规划法实现有向图的最短路径实验 实验题目: 设计一个求解有向图,单源最短路径的算法 实验目的: 1)了解,并掌握分支限界算法思想 2)会编写常见算法。 实验要求: 1.编写实验代码 2.分析算法时间和空间复杂度 实验主要步骤: 1 算法代码 package suanfa; publicclass ShortPath{ privatestatic Integer M = Integer.MAX_VALUE; publicstaticvoid main(String[]args){ int[][]c={{M,4,2,3,M,M,M,M,M,M}, {M,M,M,M,9,8,M,M,M,M}, {M,M,M,M,6,7,8,M,M,M}, {M,M,M,M,M,4,7,M,M,M}, {M,M,M,M,M,M,M,5,6,M}, {M,M,M,M,M,M,M,8,6,M}, {M,M,M,M,M,M,M,6,5,M}, {M,M,M,M,M,M,M,M,M,7}, {M,M,M,M,M,M,M,M,M,3}, {M,M,M,M,M,M,M,M,M,M}}; shortPath(10,c); } publicstaticvoid shortPath(int n,int[][]c){ int[] cost=newint[n];//cost[i]存储i到n-1的子问题的最短路径值 int[] path=newint[n];//path[i]存储状态,使cij+cost[i]最小的j值 //对数组cost[n]和path[n]进行初始化 for(int i=0;i=0;i--){

最短路径规划实验报告

电子科技大学计算机学院标准实验报告 (实验)课程名称最短路径规划 电子科技大学教务处制表

实验报告 学生姓名:李彦博学号:2902107035 指导教师:陈昆 一、实验项目名称:最短路径规划 二、实验学时:32学时 三、实验原理:Dijkstra算法思想。 四、实验目的:实现最短路径的寻找。 五、实验内容: 1、图的基本概念及实现。 一、图的定义和术语 图是一种数据结构。 ADT Graph{ 数据对象V :V是据有相同特性的数据元素的集合,称为顶点集。 数据关系R : R={VR} VR={|v,w∈V且P(v,w), 表示从v到w的弧,P(v,w)定义了弧的意义或信息} 图中的数据元素通常称为顶点,V是顶点的有穷非空集合;VR是两个顶点之间的关系的集合,若顶点间是以有向的弧连接的,则该图称为有向图,若是以无向的边连接的则称为无向图。弧或边有权值的称为网,无权值的称为图。 二、图的存储结构 邻接表、邻接多重表、十字链表和数组。这里我们只介绍数组表示法。 图的数组表示法: 用两个数组分别存储数据元素(顶点)的信息和数据元素之间的关系(边或弧)的信息。其形式描述如下: //---------图的数组(邻接矩阵)存储表示---------- #define INFINITY INT_MAX //最大值 #define MAX_VERTEX_NUM 20 //最大顶点个数 Typedef enum{DG,DN,UDG,UDN} GraphKind; //有向图,有向网,无向图,无向网Typedef struct ArcCell{ VRType adj; //顶点关系类型,对无权图,有1或0表示是否相邻; //对带权图,则为权值类型。 InfoType *info; //弧相关信息的指针

最短路径分析

分类号 密级 编号 2015届本科生毕业论文 题目基于AHP决策分析法和Dijkstra 算法的最短路径 学院资源与环境工程学院 姓名杜玉琪 专业地理科学 学号20111040205 指导教师王荣 提交日期2015年5月8日

原创性声明 本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果。学位论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处。除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。 本声明的法律责任由本人承担。 论文(设计)作者签名: 指导老师签名: 签名日期: 2013 年 5 月18 日 目录

0 引言 (3) 1 研究区概况 (4) 2.数据来源与研究方法 (4) 2.1数据来源 (4) 2.2研究方法 (5) 2.2.1AHP决策分析方法 (5) 2.2.2Dijkstra算法 (6) 3实例分析 (7) 3.1 基于AHP对3A级景区决策分析 (7) 3.1.1层次结构模型的构造 (7) 3.1.2模型计算过程 (8) 3.1.3结果分析 (10) 3.2基于Dijkstar算法对3A级景点旅游路线的设计 (10) 3.2.1旅游路线模型构造 (10) 3.2.2模型计算与分析 (13) 4结语 (13) 参考文献 (14) 致谢 (15) 基于AHP决策分析法和Dijkstar算法的最短路径分析

——以天水市3A级旅游景点为例 杜玉琪 (天水师范学院资源与环境工程学院甘肃天水741000) 摘要:随着西部旅游业的发展,旅游最佳路线的选择变得越来越重要。本文运用AHP决策分析的方法进行综合评价分析天水市众多旅游景点中的麦积石窟、伏羲庙、玉泉观、南郭寺、大象山、武山水帘洞、清水温泉,这7个3A级景点各自的旅游价值。再通过Dijkstar算法,对上述旅游景点的最短旅游路线的选择进行研究,最终为不同要求的游客提供出最佳的旅游路线。 关键字:AHP决策分析;Dijkstar算法;最短路径分析;天水市 Based on the AHP decision analysis method and the analysis of Dijkstar algorithm of the shortest path ——in tianshui 3 a-class tourist attractions as an example Abstract:With the development of the western tourism, tourism optimal route choice is becoming more and more important.This article applies the method of AHP decision analysis on comprehensive evaluation analysis of the numerous tourist attractions tianshui wheat product, yuquan view, nanguo temple grottoes, fu xi temple, the elephant, wushan waterfall cave, water hot springs, the seven aaa scenic spot tourism value. Again through the Dijkstra algorithm, the choice of the tourist attractions of the shortest travel route, finally for different requirements of the best travel route for tourists. Key words: Analytic hierarchy process; Dijkstar; Shortest path; tianshui city 0 引言 随着西部旅游业如火如荼的发展,天水市自驾旅游开始被越来越多的人选择。自驾车旅游者追求以最少的花销走更远的路,看更优美的风景。因此设计出一条多景点间距离最短(或费用,时间最少)的旅游线路是自驾车游客的现实需求[1]。而对于旅游景点的评价及旅游线路的选择问题,是旅游学术界一直关注的课题。众多学者所采用的方法,大体可归纳为主观定性评价和客观定量评价。景点评价方法在我国开展的时间并不长,主要侧重定性描述,较缺乏定量

最短路径规划

习题课内容 同学主导 ? 例2-09(信计101两个同学:常现杰陈少华) 211两个同学付乾乾? 例2-11(信计101两个同学:付乾乾桂大龙) ? 例2-12(信计102两个同学:蔡中华陈恒)214两个同学邓金勇?例2-14(信计102两个同学:邓金勇邓小龙) ?看得见的数学 有趣的小实验 系统最短路径规划专题

系统最短路径规划专题 1有趣的小试验、有趣的小试验An interesting experiment 2、物理可视化原理Visualization Principle 3、最短路径可视化仪及应用 Visualization instrument for system shortest path programming 4、社会评价Social evaluation 5、发明与机遇并存案例、发遇 Case studies for Invention and Chance

系统最短路径规划专题 1、有趣的小试验 测试板放入溶液 取出测试板得到薄膜轨迹系统全局最短路径

系统最短路径规划专题 1有趣的小试验、有趣的小试验An interesting experiment 2、物理可视化原理Visualization Principle 3、最短路径可视化仪及应用 Visualization instrument for system shortest path programming 4、社会评价Social evaluation 5、发明与机遇并存案例、发遇 Case studies for Invention and Chance

运用动态规划模型解决最短路径问题

运用动态规划模型解决物流配送中的最短路径问题 王嘉俊 (盐城师范学院数学科学学院09(1)班) 摘要:随着现代社会的高速发展,物流配送成为了连接各个生产基地的枢纽,运输的成本问题也成为了企业发展的关键。运费不但与运量有关,而且与运输行走的线路相关。传统的运输问题没有考虑交通网络,在已知运价的条件下仅求出最优调运方案,没有求出最优行走路径。文中提出“网络上的物流配送问题“,在未知运价,运量确定的情况下,将运输过程在每阶段中选取最优策略,最后找到整个过程的总体最优目标,节省企业开支。 关键词:动态规划,数学模型,物流配送,最优路径 1 引言 物流配送是现代化物流系统的一个重要环节。它是指按用户的订货要求, 在配送中心进行分货、配货, 并将配好的货物及时送交收货人的活动。在物流配送业务中, 合理选择配送径路, 对加快配送速度、提高服务质量、降低配送成本及增加经济效益都有较大影响。物流配送最短径路是指物品由供给地向需求地的移动过程中, 所经过的距离最短(或运输的时间最少, 或运输费用最低) , 因此, 选定最短径路是提高物品时空价值的重要环节。[1] 经典的Dijkstra 算法和Floyd 算法思路清楚,方法简便,但随着配送点数的增加,计算的复杂性以配送点数的平方增加,并具有一定的主观性。我国学者用模糊偏好解试图改善经典方法[]5,取得了较好的效果。遗憾的是,模糊偏好解本身就不完全是客观的。文献[]6详细分析了经典方法的利弊之后,提出将邻接矩阵上三角和下三角复制从而使每条边成为双通路径,既适用于有向图也适用于无向图, 但复杂性增加了。为了避免上述方法存在的不足,本文以动态规划为理论,选择合理的最优值函数,用于解决物流配送最短路径问题。 动态规划是解决多阶段决策过程最优化问题的一种数学方法。1951年美国数学家Bellman(贝尔曼)等人根据一类多阶段决策问题的特性,提出了解决这类问题的“最优性原理”,并研究了许多实际问题,从而创建了最优化问题的一种新方法——动态规划。 动态规划在工程技术、管理、经济、工业生产、军事及现代控制工程等方面都有广泛的应用,而且由于动态规划方法有其独特之处,在解决某些实际问题时,显得更加方便有效。由于决策过程的时间参数有离散的和连续的情况,故决

ArcGIS_7 最短路径问题分析与应用

综合实习7:最短路径问题分析与应用 1.背景 在现实中,最短路径的求取问题可以拓展为许多方面的最高效率问题,最短路径不仅指一般意义上的距离最短,还可以是时间最短、费用最少、线路利用率最高等标准。 2.目的 学会用ArcGIS10进行各种类型的最短路径分析,理解网络分析原理。 3.数据 GeoDatabase地理数据库:City.mdb。 数据库中包含一个数据库:City,其中含有城市交通网net、商业中心及家庭住址place、网络节点city_Net_Junctions等要素。 4.要求 根据不同的要求,获得到达指定目的地的最佳路径,并给出路径的长度;找出距景点最近的某设施的路径。 在网络中指定一个商业中心,分别求出在不同距离、时间的限制下从家到商业中心的最佳路径。 给定访问顺序,按要求找出从家出发,逐个经过访问点,最终到达目的地的最佳路径。 研究阻强的设置对最佳路径选择的影响。 5.操作步骤 启动ArcMap,打开city.mdb,双击city数据库,加载数据。 对点状要素place符号化:以HOME字段,1值为家,0值为商业中心。 (1)无权重最佳路径的生成 1)在几何网络分析工具条上,选择旗标工具,将旗标放在“家”和想要取得“商业中心”点上。 2)选择分析|选项命令,打开“分析选项”对话框,确认“权重”和“权重过滤器”标签项全部是“无(None)”,这种情况下进行的最短路径分析是完全按照这个网络自身的长短来确定。 3)在“追踪任务”文本框中选择“网络路径分析”。单击“解决”按钮。显示出最短路径(图7-1),这条路径的总成本显示在状态栏中。

图7-1 无权重参照的最短路径的显示 (2)加权最佳路径生成 1)在几何网络分析工具条上,点选旗标工具,将旗标分别放在“家”和想去的某个“商业中心”的位置上。 2)选择“分析|选项”命令,打开“分析选项”对话框(图7-2)进入“权重”标签页,在边的权重(Edge weights)上,全部选择长度(length)权重属性。 图7-2 长度权重属性设置

最短路径问题的0-1规划模型,lingo直接求解

解:对于无向图的最短路问题,可以这样理解,从点到点和点到点的边看成有向弧,其他各条边均看成有不同方向的双弧,因此,可以按照前面介绍有向图的最短路问题来编程序,但按照这种方法编写LINGO程序相当于边(弧)增加了一倍.这里选择邻接矩阵和赋权矩阵的方法编写LINGO程序. MODEL: 1] sets: 2] cities/1..11/; 3] roads(cities, cities): p, w, x; 4] endsets 5] data: 6] p = 0 1 1 1 0 0 0 0 0 0 0 7] 0 0 1 0 1 0 0 0 0 0 0 8] 0 1 0 1 1 1 1 0 0 0 0 9] 0 0 1 0 0 0 1 0 0 0 0 10] 0 1 1 0 0 1 0 1 1 0 0 11] 0 0 1 0 1 0 1 0 1 0 0 12] 0 0 1 1 0 1 0 0 1 1 0 13] 0 0 0 0 1 0 0 0 1 0 1 14] 0 0 0 0 1 1 1 1 0 1 1 15] 0 0 0 0 0 0 1 0 1 0 1 16] 0 0 0 0 0 0 0 0 0 0 0; 17] w = 0 2 8 1 0 0 0 0 0 0 0 18] 2 0 6 0 1 0 0 0 0 0 0 19] 8 6 0 7 5 1 2 0 0 0 0 20] 1 0 7 0 0 0 9 0 0 0 0 21] 0 1 5 0 0 3 0 2 9 0 0 22] 0 0 1 0 3 0 4 0 6 0 0 23] 0 0 2 9 0 4 0 0 3 1 0 24] 0 0 0 0 2 0 0 0 7 0 9 25] 0 0 0 0 9 6 3 7 0 1 2 26] 0 0 0 0 0 0 1 0 1 0 4 27] 0 0 0 0 0 0 0 9 2 4 0; 28] enddata 29]n=@size(cities); 30]min=@sum(roads:w*x); 31]@for(cities(i) | i #ne# 1 #and# i #ne# n: 32] @sum(cities(j): p(i,j)*x(i,j)) 33] =@sum(cities(j): p(j,i)*x(j,i))); 34]@sum(cities(j): p(1,j)*x(1,j))=1; END 在上述程序中,第6]行到第16]行给出了图的邻接矩阵,到和到的边按单向计算,其余边双向计算.第17]行到第27]行给出了图的赋权矩阵, 注意:由于有了邻接矩阵,两点无道路连接时,权值可以定义为0. 其它的处理方法基本上与有向图相同. 用LINGO软件求解,得到(仅保留非零变量)

例:动态规划解最短路径问题:

● 例:动态规划解最短路径问题: 步骤(1)、(2)已实现。 最优子结构:从起点到终点的最短路径包含了该路径 上各点到终点的最短路径。 递归公式:设v 为图中一个顶点,v 1, v 2,…, v m 为v 的 直接后继,cost(v)表示v 到终点的最短路径 长度,c[u, w]表示边上的权,t 为终点, 则cost 满足如下递归公式: ??? ????≠∞=≠+=≤≤无后继且有后继且v t v , t v , 0v t v , )}cost(v ] v {c[v,min cost(v)i i m i 1 步骤(3) 计算最优值(求最短路径长度):

设有向网G含n个顶点,用邻接矩阵c[1..n, 1..n]表示,起点为s,终点为t 。 有关信息的保存: 数组cost[1..n]: 存储子问题的解。 (cost[i]表示从顶点i到终点t的最短路径长 度。) 数组succ[1..n]: 存储最短路径的有关信息。 (succ[i]表示顶点i到终点t的最短路径上顶 点i的直接后继。) 原问题的最优值为cost[s]。 (1) 自底向上的迭代算法 关键:根据递归公式确定迭代顺序(即子问题的求解顺序)。 原则:计算cost[i]时,顶点i的所有后继的cost值应先计算。 计算顺序:按图G的逆拓扑排序顺序。 算法SHORTEST_ROUTE_LEN1 输入:有向网G的顶点数n, 邻接矩阵c[1..n, 1..n], 起点s和终点t , 1<=s, t<=n。

输出:G的从起点s到终点t的最短路径长度cost[s]和最短路径有关信息的数组succ[1..n]。 //对图G拓扑排序,结果存于数组a[1..n] 中。 toposort(c, n, a) j=n while a[j]< >t j=j-1 //找出j使得a[j]=t 。 for i=j+1 to n cost[a[j]]=∞//排除无关的顶 点。 cost[t]=0 //从终点开始迭代。 while a[j]< >s j=j-1; k=a[j]; i0=0 ; min=∞ for i=1 to n if c[k, i]+cost[i]

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例 一.摘要 (3) 二.网络最短路径问题的基础知识 (5) 2.1有向图 (7) 2.2连通性................... 错误!未定义书签。 2.3割集....................... 错误!未定义书签。 2.4最短路问题 (8) 三.最短路径的算法研究.. 错误!未定义书签。 3.1最短路问题的提出 (9) 3.2 Bellman最短路方程错误!未定义书签。 3.3 Bellman-Ford算法的基本思想错误!未定义书签 3.4 Bellman-Ford算法的步骤错误!未定义书签。 3.5实例....................... 错误!未定义书签。 3.6 Bellman-FORD算法的建模应用举例错误!未定义 3.7 Dijkstra算法的基本思想 (9) 3.8 Dijkstra算法的理论依据 (9) 3.9 Dijkstra算法的计算步骤 (9) 3.10 Dijstre算法的建模应用举例 (10) 3.11 两种算法的分析错误!未定义书签。

1.Diklstra算法和Bellman-Ford算法 思想有很大的区别错误!未定义书签。 Bellman-Ford算法在求解过程中,每 次循环都要修改所有顶点的权值,也就 是说源点到各顶点最短路径长度一直 要到Bellman-Ford算法结束才确定下 来。...................... 错误!未定义书签。 2.Diklstra算法和Bellman-Ford算法 的限制.................. 错误!未定义书签。 3.Bellman-Ford算法的另外一种理解错误!未定 4.Bellman-Ford算法的改进错误!未定义书签。 摘要 近年来计算机发展迅猛,图论的研究也得到了很大程度的发展,而最短路径 问题一直是图论中的一个典型问题,它已应用在地理信息科学,计算机科学等 诸多领域。而在交通路网中两个城市之间的最短行车路线就是最短路径问题的 一个典型例子。 由于最短路径问题在各方面广泛应用,以及研究人员对最短路径的深入研究, 使得在最短路径问题中也产生了很多经典的算法。在本课题中我将提出一些最 短路径问题的算法以及各算法之间的比较,最后将这些算法再应用于实际问题

贪心、分支限界、动态规划解决最短路径问题

算法综合实验报告 学号: 1004111107 姓名:黄琼莹 一、实验内容: 分别用动态规划、贪心及分支限界法实现对TSP问题(无向图)的求解,并至少用两个测试用例对所完成的代码进行正确性及效率关系上的验证。 二、程序设计的基本思想、原理和算法描述: (包括程序的数据结构、函数组成、输入/输出设计、符号名说明等) 1、动态规划法 (1)数据结构: 利用二进制来表示集合,则集合S可由一个十进制数x相对应,此x所 对应的二进制数为y,如果y的第k位为1,则表示k存在集合S中。 例如: 集合S={0,1}(其子集合为{}{0}{1}{01}),我们用二进制数11(所对应 十进制数为3)表示S,11中右手边第1个数为1表示0在集合S中, 右手边第二个数为1表示1在集合S中,其他位为0表示其它数字不在 集合S中;同理, 集合S={0,2}(其子集合为{}{0}{2}{02}可用二进制数101(所对应十进制 数为5)表示(右手边第1个数为1表示0在集合S中,右手边第二个 数为0表示1不在集合S中,右手边第3个数为1表示2在集合S中, 则说明0,2在集合中,1不在集合中。 (2)函数组成 getmin():获得该数组的最小值; getJ():根据2进制j和j中1的个数找下一个j getnextj():返回下一个j的十进制数 (3)输入/输出设计 本题通过键盘进行输入,通过屏幕进行输出

由于题目的输入要求是:第一行输入一个整数n(2<=n<=10),接下来的n行,每行输入n-1个整数,表示i与除了自己之外的所有点之间的距离,按点的编号从小到大顺序输入 可以设计两个for循环来实现数据的输入,外层for循环实现一行一行地输入,内层for循环实现某一行中数据的输入 5 3 1 5 8 3 6 7 9 1 6 4 2 5 7 4 3 8 9 2 3 (4)符号名说明 N:节点数,即城市的数目 matr[20][20]:存邻接矩阵 d[20][40000]={0}:存动态填表数据 min:花费的最小值,即答案 jlist[20]:存放j的二进制数组 V[20]:标记节点是不是被访问过 tmpres[20]:存放结果的数组 (5)算法描述 假设从顶点i出发,令d(i,V’)表示从顶点i出发经过V’中各个顶点一次且仅一次,最后回到出发点i的最短路径的长度,开始时,V’=V-{i},于是,旅行商问题的动态规划函数为: d(i,V’) = min{c ik + d(k,V’-{k})} (k∈V’) 1) d(k,{}) = c ki (k ≠ i) 2) 简单来说,就是用递归表达:从出发点0到1号点,假设1是第一个,则剩下的路程就是从1经过剩下的点最后回到0点的最短路径. 所以当V’为空的时候, d(k,{}) = c ki (k ≠ i), 找的是最后一个点到0点的距离.递归求解1之后,再继续求V’之中剩下的点,最后找出min. 如果按照这个思想直接做,对于每一个i都要递归剩下的V中所有的点,所以这样的时间复杂度就近似于N!,其中有很多重复的工作. 可以从小的集合到大的集合算,并存入一个二维数组,这样当加入一个节点时,就可以用到之前的结果,如四个点的情况: 邻接矩阵: node 0 1 2 3 0 5 3 2

AE 最短路径分析

ArcEngine 最短路径分析 using System; using ESRI.ArcGIS.Carto; using ESRI.ArcGIS.Geometry; using ESRI.ArcGIS.Geodatabase; using https://www.360docs.net/doc/0216657654.html,workAnalysis; namespace GisEditor { ///

/// 最短路径分析 /// public class ClsPathFinder { private IGeometricNetwork m_ipGeometricNetwork; private IMap m_ipMap; private IPointCollection m_ipPoints; private IPointToEID m_ipPointToEID; private double m_dblPathCost =0; private IEnumNetEID m_ipEnumNetEID_Junctions; private IEnumNetEID m_ipEnumNetEID_Edges; private IPolyline m_ipPolyline; #region Public Function //返回和设置当前地图 public IMap SetOrGetMap { set{ m_ipMap = value;} get{return m_ipMap;} } //打开几何数据集的网络工作空间 public void OpenFeatureDatasetNetwork(IFeatureDataset FeatureDataset) { CloseWorkspace(); if (!InitializeNetworkAndMap(FeatureDataset)) Console.WriteLine( "打开network出错"); } //输入点的集合 public IPointCollection StopPoints { set{m_ipPoints= value;} get{return m_ipPoints;} }

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

动态规划算法实现多段图的最短路径问题算法设计与分析实验报告

算法设计与分析实验报告 实验名称 动态规划算法实现多段图的最短路径问题 评分 实验日期 年 月 日 指导教师 姓名 专业班级 学号 一.实验要求 1. 理解最优子结构的问题。 有一类问题的活动过程可以分成若干个阶段,而且在任一阶段后的行为依赖于该阶段的状态,与该阶段之前的过程如何达到这种状态的方式无关。这类问题的解决是多阶段的决策过程。在50年代,贝尔曼(Richard Bellman )等人提出了解决这类问题的“最优化原理”,从而创建了最优化问题的一种新的算法设计方法-动态规划。 对于一个多阶段过程问题,是否可以分段实现最优决策,依赖于该问题是否有最优子结构性质,能否采用动态规划的方法,还要看该问题的子问题是否具有重叠性质。 最优子结构性质:原问题的最优解包含了其子问题的最优解。 子问题重叠性质:每次产生的子问题并不总是新问题,有些子问题被反复计算多次。问题的最优子结构性质和子问题重叠性质是采用动态规划算法的两个基本要素。 2.理解分段决策Bellman 方程。 每一点最优都是上一点最优加上这段长度。即当前最优只与上一步有关。 U s 初始值,u j 第j 段的最优值。 ? ????+==≠}.{min , 0ij i j i j s w u u u

3.一般方法 1)找出最优解的性质,并刻画其结构特征;2)递归地定义最优值(写出动态规划方程);3)以自底向上的方式计算出最优值; 4)根据计算最优值时得到的信息,构造一个 最优解。 步骤1-3是动态规划算法的基本步骤。在只需要求出最优值的情形,步骤4可以省略,步骤3中记录的信息也较少;若需要求出问题的一个最优解,则必须执行步骤4,步骤3中记录的信息必须足够多以便构造最优解。 二.实验内容 1.编程实现多段图的最短路径问题的动态规 划算法。 2.图的数据结构采用邻接表。 3.要求用文件装入5个多段图数据,编写从文件到邻接表的函数。 4.验证算法的时间复杂性。 三.程序算法 多段图算法: Procedure FGRAPH(E,k,n,P) //输入是按段的顺序给结点编号的,有n个结点的k段图。E是边集,c(i,j)是边的成本。P(1:k)是最小成本路径。// real COST(n),integer(n-1),P(k),r,j,k,n COST(n)<-0 for j<-n-1 to 1 by -1 do //计算COST(j)// 设r是一个这样的结点,(j,r) E且使c(j,

动态规划-最短路径问题

最短路径问题 下图给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路长度。 现在,我们想从城市a到达城市E。怎样走才能使得路径最短,最短路径的长度是多少?设DiS[x]为城市x到城市E的最短路径长度(x表示任意一个城市); map[i,j]表示i,j两个城市间的距离,若map[i,j]=0,则两个城市不通; 我们可以使用回溯法来计算DiS[x]: var S:未访问的城市集合; function search(who{x}):integer; {求城市who与城市E的最短距离} begin if Who=E Then Search←0 {找到目标城市} Else begin min←maxint;{初始化最短路径为最大} for i 取遍所有城市 Do if(map[Who,i]>0{有路})and(i S{未访问}) then begin S←S-[i];{置访问标志} j←map[Who,i]+ search(i); {累加城市E至城市Who的路径长度} S←S+[i]; {回溯后,恢复城市i未访问状态} if j<min Then min←j; {如果最短则记下} end;{then} search←min;{返回最短路径长度} End;{else} End;{search} begin S←除E外的所有城市; Dis[a]←search(a);{计算最短路径长度} 输出Dis[a]; end.{main} 这个程序的效率如何呢?我们可以看到,每次除了已经访问过的城市外,其他城市都要访问,所以时间复杂度为O(n!),这是一个“指数级”的算法。那么,还有没有效率更高的解题方法呢?

最短路径Floyd算法动态规划问题及其程序设计样本

最短路径动态规划问题及其程序设计 林旭东 (深圳大学管理学院,广东深圳518060) [摘要]本文以最短路径问题为例,在给出佛洛伊德算法的基础上,设计了求解该算法的计算程序,这样可大大提高最短路径计算的效率。 [关键词]最短路径; 动态规划; 程序设计 1 佛洛伊德算法 已知有n个顶点的有向图,佛洛伊德算法能够求解出每一对顶点之间的最短路径。假设使用邻接矩阵d ( i, j)来对图进行存储, d ( i, j)表示υi 到υj 之间的距离,可是该距离不一定是最短距离。佛洛伊德算法的基本思想是:为求顶点υi→υj 之间的最短距离,需要进行n次试探。首先将υ0 加入路[收稿日期] - 12 - 22[作者简介]林旭东(1972 - ) ,男, 湖北武汉人,深圳大学管理学院副教授,博士后,主要研究方向:数量模型与决策分析。径,考虑路径υi →υ0 →υj 是否存在,如果存在,则比较υi →υj和υi →υ0 →υj 的路径长度,取长度短的路径作为υi →υj 的路径,记作(υi ,υj ) 。接着在路径上再增加一个顶点υ1 ,比较υi→υ1 →υj 和(υi ,υj )的路径长度, 取长度短的路径作为(υi ,υj) 。不断将顶点υ2 ,υ3 , .,υn - 1加入进行试探, 最后得到的(υi ,υj )必定为υi →υj 的最短路径。若使用数组dk ( i, j)表示加入顶点k后,最短路径长度的变化情况,使用数组pk ( i, j)表示加入顶点k后,最短路径上顶点的变化情况,这样佛洛伊德算法就会产生一组d 0 ( i, j) ,d1 ( i, j) , ., dn - 1 ( i, j)和一组p0 ( i, j) , p1 ( i, j) , ., pn - 1 ( i, j) 。 R2 = 01314 014 01286 0 01197 01263 01394 01146

图论最短路径分析及应用

最短路问题及其应用 1 引言 图论是应用数学地一个分支,它地概念和结果来源非常广泛,最早起源于一些数学游戏地难题研究,如欧拉所解决地哥尼斯堡七桥问题,以及在民间广泛流传地一些游戏难题,如迷宫问题、博弈问题、棋盘上马地行走路线问题等.这些古老地难题,当时吸引了很多学者地注意.在这些问题研究地基础上又继续提出了著名地四色猜想和汉米尔顿(环游世界)数学难题. 1847年,图论应用于分析电路网络,这是它最早应用于工程科学,以后随着科学地发展,图论在解决运筹学,网络理论,信息论,控制论,博弈论以及计算机科学等各个领域地问题时,发挥出越来越大地作用.在实践中,图论已成为解决自然科学、工程技术、社会科学、军事等领域中许多问题地有力工具之一. 最短路问题是图论理论地一个经典问题.寻找最短路径就是在指定网络中两结点间找一条距离最小地路.最短路不仅仅指一般地理意义上地距离最短,还可以引申到其它地度量,如时间、费用、线路容量等. 最短路径算法地选择与实现是通道路线设计地基础,最短路径算法是计算机科学与地理信息科学等领域地研究热点,很多网络相关问题均可纳入最短路径问题地范畴之中.经典地图论与不断发展完善地计算机数据结构及算法地有效结合使得新地最短路径算法不断涌现. 2 最短路 2.1 最短路地定义 对最短路问题地研究早在上个世纪60年代以前就卓有成效了,其中对赋权图()0 w≥地有效算法是由荷兰著名计算机专家E.W.Dijkstra在1959年首次提出地, ij 该算法能够解决两指定点间地最短路,也可以求解图G中一特定点到其它各顶点地最短路.后来海斯在Dijkstra算法地基础之上提出了海斯算法.但这两种算法都不能解决含有负权地图地最短路问题.因此由Ford提出了Ford算法,它能有效地解决含有负权地最短路问题.但在现实生活中,我们所遇到地问题大都不含负权,所以我们在()0 w≥地情况下选择Dijkstra算法. ij 定义①1若图G=G(V,E)中各边e都赋有一个实数W(e),称为边e地权,则称这

GIS环境下的最短路径规划算法

GIS 环境下的最短路径规划算法 ―――此处最短路理解为路径长度最小的路径 02计算机1班刘继忠 学号:2002374117 1.整体算法说明: 将图的信息用一个邻接矩阵来表达,通过对邻接矩阵的操作来查找最短路进,最短路径的查找采用迪杰斯特拉算法,根据用户给出的必经结点序列、起点、终点进行分段查找。 2.各函数功能及函数调用说明。 1).void Welcome() 程序初始化界面,介绍程序的功能、特点及相关提示 2) void CreatGraph(MGraph *G,char buf[]) 把图用邻接矩阵的形式表示,并进行 初始化。 3).int ShortestPath(MGraph *G,int jump,int end,int avoid[],int P[MAXSIZE][MAXSIZE],int Dist[],int ShPath[])根据用户给出的起点、终点、必经结点、避开结点进行最短路径的分段查找。 4).void Print(int jump,int end,int Dist[],int ShPath[]) 输出找到的最短路径所经的 结点和路径长度。 函数调用图: 3.各函数传入参数及返回值说明: 1).void Welcome() 无传入和返回值 2) void CreatGraph(MGraph *G,char buf[ ]) MGraph *G为主函数中定义的指向存放图的信息的指针变量。 char buf[ ]为主函数中定义的用来存放在图的相关信息录入时的界面信息的数组,以便以后调用查看各结点的信息。

无返回值。 3).int ShortestPath(MGraph *G,int jump,int end,int avoid[],int P[MAXSIZE][MAXSIZE],int Dist[ ],int ShPath[ ]) MGraph *G指向存放图的信息的指针变量。 int jump起点,int end终点,int avoid[ ] 避开结点序列。 int P[MAXSIZE][MAXSIZE]用来记录各点当前找到的最短路径所经过 的结点。 int Dist[ ] 记录各结点的当前找到的最短路径的长度。 int ShPath[ ]用来存放用户需要的最短路径所经的各结点。 返回最短路径查找是否成功的信息。(return SUCCEED;return ERROR)4).void Print(int jump,int end,int Dist[],int ShPath[]) int jump起点,int end终点。 int Dist[ ] 记录各结点的当前找到的最短路径的长度。 int ShPath[ ]用来存放用户需要的最短路径所经的各结点。 无返回值。 4.用户说明: ①源程序经编译连接后运行,出现程序的初始化界面,其内容为介绍程序的 功能、特点及相关提示。如下: Welcome to shortest path searching system. Instructions Function: 1. Personal travelling route choosing. 2. Assistan helper in city's traffic design. 3. Shortes path choose in the comlicated traffic net of the city. Characteristic: It is convient,you could set vital point you must travel,and the point you must avoid. Prompt: If the condition is too secret ,maybe there will have no path available. Designer: Liu jizhong. Complate-data: 2004. 3. 21 CopyRight: Shared program,welcome to improve it. Press anykey to enter the program... ②按任意键进入图的信息录入界面根据提示即可完成图的信息的录入。

C源码ArcEngine最短路径分析

C源码ArcEngine最短路径分析ArcEngine 最短路径分析(源码)几何网络 using System; using ESRI.ArcGIS.Carto; using ESRI.ArcGIS.Geometry; using ESRI.ArcGIS.Geodatabase; using https://www.360docs.net/doc/0216657654.html,workAnalysis; namespace GisEditor { ///

/// 最短路径分析 /// public class ClsPathFinder { private IGeometricNetwork m_ipGeometricNetwork; private IMap m_ipMap; private IPointCollection m_ipPoints; private IPointToEID m_ipPointToEID; private double m_dblPathCost =0; private IEnumNetEID m_ipEnumNetEID_Junctions; private IEnumNetEID m_ipEnumNetEID_Edges; private IPolyline m_ipPolyline; #region Public Function //返回和设置当前地图

public IMap SetOrGetMap { set{ m_ipMap = value;} get{return m_ipMap;} } //打开几何数据集的网络工作空间 public void OpenFeatureDatasetNetwork(IFeatureDataset FeatureDa taset) { CloseWorkspace(); if (!InitializeNetworkAndMap(FeatureDataset)) Console.WriteLine( "打开network出错"); } //输入点的集合 public IPointCollection StopPoints { set{m_ipPoints= value;} get{return m_ipPoints;} } //路径成本 public double PathCost { get {return m_dblPathCost;} }

相关文档
最新文档