间接寻址及地址寄存器指令

间接寻址及地址寄存器指令
间接寻址及地址寄存器指令

详解西门子间接寻址

【址概念】

完整一条指令,应该包含指令符+操作数(当然不包括那些单指令,比如NOT等)。其中操作数是指令要执行目标,也就是指令要进行操作址。

我们知道,PLC中划有各种用途存储区,比如物理输入输出区P、映像输入区I、映像输出区Q、位存储区M、定时器T、计数器C、数据区DB和L等,同时我们还知道,每个区域可以用位(BIT)、字节(BYTE)、字(WORD)、双字(DWORD)来衡量,说来指定确切大小。当然定时器T、计数器C不存这种衡量体制,它们仅用位来衡量。由此我们可以到,要描述一个址,至少应该包含两个要素:

1、存储区域

2、这个区域中具体位置

比如:A Q2.0

其中A是指令符,Q2.0是A操作数,也就是址。这个址由两部分组成:

Q:指是映像输出区

2.0:就是这个映像输出区第二个字节第0位。

由此,我们出,一个确切址组成应该是:

〖存储区符〗〖存储区尺寸符〗〖尺寸数值〗.〖位数值〗,例如:DBX200.0。

DB X 200 . 0

其中,我们又把〖存储区符〗〖存储区尺寸符〗这两个部分合称为:址标识符。这样,一个确切址组成,又可以写成:

址标识符 + 确切数值单元

【间接寻址概念】

寻址,就是指定指令要进行操作址。给定指令操作址方法,就是寻址方法。

谈间接寻址之前,我们简单了解一下直接寻址。所谓直接寻址,简单说,就是直接给出指令确切操作数,象上面所说,A Q2.0,就是直接寻址,A这个指令来说,Q2.0就是它要进行操作址。

这样看来,间接寻址就是间接给出指令确切操作数。对,就是这个概念。

比如:A Q[MD100] ,A T[DBW100]。程序语句中用方刮号 [ ] 标明内容,间接指明了指令要进行址,这两个语句中MD100和DBW100称为指针Pointer,它指向它们其中包含数值,才是指令真正要执行址区域确切位置。间接由此名。

西门子间接寻址方式计有两大类型:存储器间接寻址和寄存器间接寻址。

【存储器间接寻址】

存储器间接寻址址给定格式是:址标识符+指针。指针所指示存储单元中所包含数值,就是址确切数值单元。

存储器间接寻址具有两个指针格式:单字和双字。

单字指针是一个16bit结构,从0-15bit,指示一个从0-65535数值,这个数值就是被寻址存储区域编号。

双字指针是一个32bit结构,从0-2bit,共三位,8进制指示被寻址位编号,也就是0-7;而从3-18bit,共16位,指示一个从0-65535数值,这个数值就是被寻址字节编号。

指针可以存放M、DI、DB和L区域中,也就是说,可以

用这些区域内容来做指针。

单字指针和双字指针使用上有很大区别。下面举例说明:

L DW#16#35 //将32位16进制数35存入ACC1

T MD2 //这个值再存入MD2,这是个32位位存储区域

L +10 //将16位整数10存入ACC1,32位16进制数35自动移动到ACC2

T MW100 //这个值再存入MW100,这是个16位位存储区域

OPN DB[MW100] //打开DB10。这里[MW100]就是个单字指针,存放指针区域是M区, MW100中值10,就是指针间接指定址,它是个16位值!

--------

L L#+10 //以32位形式,把10放入ACC1,此时,ACC2中内容为:16位整数10

T MD104 //这个值再存入MD104,这是个32位位存储区域

A I[MD104] //对I1.2进行与逻辑操作!

=DIX[MD2] //赋值背景数据位DIX6.5!

--------

A DB[MW100].DBX[MD2] //读入DB10.DBX6.5数据位状态

=Q[MD2] //赋值给Q6.5

--------

A DB[MW100].DBX[MD2] //读入DB10.DBX6.5数据位状态

=Q[MW100] //错误!!没有Q10这个元件

---------------------------------------------------------------------------------------------------

从上面系列举例我们至少看出来一点:

单字指针只应用址标识符是非位情况下。确,单字指针前面描述过,它确定数值是0-65535,而byte.bit这种具体位结构来说,只能用双字指针。这是它们第一个区别,单字指针另外一个限制就是,它只能对T、C、DB、FC和FB进行寻址,通俗说,单字指针只可以用来指代这些存储区域编号。

相单字指针,双字指针就没有这样限制,它可以对位址进行寻址,还可以对BYTE、WORD、DWORD寻址,没有区域限制。,有必有失,对非位区域进行寻址时,必须确保其0-2bit为全0!

总结一下:

单字指针存储器间接寻址只能用址标识符是非位场合;双字指针有位格式存,对址标识符没有限制。也正是双字指针是一个具有位指针,,当对字节、字双字存储区址进行寻址时,必须确保双字指针内容是8倍数。

现,我们来分析一下上述例子中A I[MD104] 为什么最后是对I1.2进行与逻辑操作。

L L#+10 ,我们知道存放MD104中值应该是:

MD104:0000 0000 0000 0000 0000 0000 0000 1010

当作为双字指针时,就应该3-18bit指定byte,0-2bit指定bit来确定最终指令要操作址,:

0000 0000 0000 0000 0000 0000 0000 1010 = 1.2

详解西门子间接寻址<2>

【址寄存器间接寻址】

先前所说存储器间接寻址中,间接指针用M、DB、DI和L直接指定,就是说,指针指向

存储区内容就是指令要执行确切址数值单元。但寄存器间接寻址中,指令要执行确切址数值单元,并非寄存器指向存储区内容,也就是说,寄存器本身也是间接指向真

正址数值单元。从寄存器到出真正址数值单元,西门子提供了两种途径:

1、区域内寄存器间接寻址

2、区域间寄存器间接寻址

址寄存器间接寻址一般格式是:

〖址标识符〗〖寄存器,P#byte.bit〗,比如:DIX[AR1,P#1.5] 或 M[AR1,P#0.0] 。

〖寄存器,P#byte.bit〗统称为:寄存器寻址指针,而〖址标识符〗上帖中谈过,它包含〖存储区符〗+〖存储区尺寸符〗。但这里,情况有所变化。比较一下刚才例子:DIX [AR1,P#1.5]

X [AR1,P#1.5]

DIX可以认为是我们通常定义址标识符,DI是背景数据块存储区域,X是这个存储区域尺寸符,指是背景数据块中位。但下面一个示例中M呢?X指定了存储区域尺寸符,那么存储区域符哪里呢?毫无疑问,AR1中!

DIX [AR1,P#1.5] 这个例子,要寻址址区域事先已经确定,AR1可以改变这个区域内确切址数值单元,我们称之为:区域内寄存器间接寻址方式,相应,这里[AR1,P#1.5] 就叫做区域内寻址指针。

X [AR1,P#1.5] 这个例子,要寻址址区域和确切址数值单元,都未事先确定,确定了存储大小,这就是意味着我们可以不同区域间不同址数值单元以给定区域大小进行寻址,称之为:区域间寄存器间接寻址方式,相应,这里[AR1,P#1.5] 就叫做区域间寻址指针。

既然有着区域内和区域间寻址之分,那么,同样AR1中,就存有不同内容,它们代表着不同含义。

【AR格式】

址寄存器是专门用于寻址一个特殊指针区域,西门子址寄存器共有两个:AR1和AR2,每个32位。

当使用区域内寄存器间接寻址中时,我们知道这时AR中内容指明数值单元,,区域内寄存器间接寻址时,寄存器中内容等同于上帖中提及存储器间接寻址中双字指针,也就是:其0-2bit,指定bit位,3-18bit指定byte字节。其第31bit固定为0。

AR:

0000 0000 0000 0BBB BBBB BBBB BBBB BXXX

这样规定,就意味着AR取值只能是:0.0 ——65535.7

例如:当AR=D4(hex)=0000 0000 0000 0000 0000 0000 1101 0100(b),实际上就是等于26.4。

而区域间寄存器间接寻址中,要寻址区域也要AR中指定,显然这时AR中内容肯定于寄存器区域内间接寻址时,对AR内容要求,说规定不同。

AR:

1000 0YYY 0000 0BBB BBBB BBBB BBBB BXXX

比较一下两种格式不同,我们发现,这里第31bit被固定为1,同时,第24、25、26位有了可以取值范围。聪明你,肯定可以联想到,这是用于指定存储区域。对,bit24-26取值确定了要寻址区域,它取值是这样定义:

区域标识符

26、25、24位

P(外部输入输出)

000

I(输入映像区)

001

Q(

输出映像区)

010

M(位存储区)

011

DB(数据块)

100

DI(背景数据块)

101

L(暂存数据区,也叫局域数据)

111

我们把这样AR内容,用HEX表示话,那么就有:

当是对P区域寻址时,AR=800xxxxx

当是对I区域寻址时,AR=810xxxxx

当是对Q区域寻址时,AR=820xxxxx

当是对M区域寻址时,AR=830xxxxx

当是对DB区域寻址时,AR=840xxxxx

当是对DI区域寻址时,AR=850xxxxx

当是对L区域寻址时,AR=870xxxxx

列举,我们有了初步结论:AR中内容是8开头,那么就一定是区域间寻址;要DB区中进行寻址,只需8后面跟上一个40。84000000-840FFFFF指明了要寻址范围是:DB区0.0——65535.7。

例如:当AR=840000D4(hex)=1000 0100 0000 0000 0000 0000 1101 0100(b),实际上就是等于DBX26.4。

我们看到,寄存器寻址指针 [AR1/2,P#byte.bit] 这种结构中,P#byte.bit又是什么呢?

【P#指针】

P#中P是Pointer,是个32位直接指针。所谓直接,是指P#中#后面所跟数值存储单元,是P直接给定。这样P#XXX这种指针,就可以被用来指令寻址中,作为一个“常数”来对待,这个“常数”可以包含或不包含存储区域。例如:

● L P#Q1.0 //把Q1.0这个指针存入ACC1,此时ACC1内容=82000008(hex)=Q1.0

★ L P#1.0 //把1.0这个指针存入ACC1,此时ACC1内容=00000008(hex)=1.0

● L P#MB100 //错误!必须byte.bit结构给定指针。

● L P#M100.0 //把M100.0这个指针存入ACC1,此时ACC1内容=83000320(hex)=M100.0

● L P#DB100.DBX26.4 //错误!DBX已经提供了存储区域,不能重复指定。

● L P#DBX26.4 //把DBX26.4这个指针存入ACC1,此时ACC1内容=840000D4(hex)=DBX26.4

我们发现,当对P#指定数值时,累加器中值和区域内寻址指针规定格式相同(也和存储器间接寻址双字指针格式相同);而当对P#指定带有存储区域时,累加器中内容和区域间寻址指针内容完全相同。事实上,把什么样值传给AR,就决定了是以什么样方式来进行寄存器间接寻址。实际应用中,我们正是利用P#这种特点,不同需要,指定P#指针,然后,再传递给AR,以确定最终寻址方式。

寄存器寻址中,P#XXX作为寄存器AR指针偏移量,用来和AR指针进行相加运算,运算结果,才是指令真正要操作确切址数值单元!

是区域内区域间寻址,址所存储区域都有了指定,,这里P#XXX只能指定纯粹数值,如上面例子中★。

【指针偏移运算法则】

寄存器寻址指针 [AR1/2,P#byte.bit] 这种结构中,P#byte.bit如何参与运算,出最终址呢?

运算法则是:AR1和P#中数值,BYTE位和BIT位分

类相加。BIT位相加按八进制规则运算,而BYTE位相加,则十进制规则运算。

例如:寄存器寻址指针是:[AR1,P#2.6],我们分AR1=26.4和DBX26.4两种情况来分析。

当AR1等于26.4,

AR1:26.2

+ P#: 2.6

---------------------------

= 29.7 这是区域内寄存器间接寻址最终确切址数值单元

当AR1等于DBX26.4,

AR1:DBX26.2

+ P#: 2.6

---------------------------

= DBX29.7 这是区域间寄存器间接寻址最终确切址数值单元

【AR址数据赋值】

前面介绍,我们知道,要正确运用寄存器寻址,最重要是对寄存器AR赋值。同样,区分是区域内区域间寻址,也是看AR中赋值。

对AR赋值通常有下面几个方法:

1、直接赋值法

例如:

L DW#16#83000320

LAR1

可以用16进制、整数二进制直接给值,但必须确保是32位数据。赋值AR1中既存储了址数值,也指定了存储区域,这时寄存器寻址方式肯定是区域间寻址。

2、间接赋值法

例如:

L [MD100]

LAR1

可以用存储器间接寻址指针给定AR1内容。具体内容存储MD100中。

3、指针赋值法

例如:

LAR1 P#26.2

使用P#这个32位“常数”指针赋值AR。

总之,使用哪种赋值方式,AR存储数据格式有明确规定,,都要赋值前,确认所赋值是否符合寻址规范。

详解西门子间接寻址<3>

使用间接寻址主要目,是使指令执行结果有动态变化,简化程序是第一目,某些情况下,这样寻址方式是必须,比如对某存储区域数据遍历。此外,间接寻址,还可以使程序更具柔性,换句话说,可以标准化。

下面实例应用来分析如何灵活运用这些寻址方式,实例分析过程中,将对前面帖子中笔误、错误和遗漏做纠正和补充。

【存储器间接寻址应用实例】

我们先看一段示例程序:

L 100

T MW 100 // 将16位整数100传入MW100

L DW#16#8 // 加载双字16进制数8,当把它用作双字指针时,BYTE.BIT结构,

结果演变过程就是:8H=1000B=1.0

T MD 2 // MD2=8H

OPN DB [MW 100] // OPN DB100

L DBW [MD 2] // L DB100.DBW1

T MW[MD2] // T MW1

A DBX [MD 2] // A DBX1.0

= M [MD 2] // =M1.0

这个例子中,我们中心思想其实就是:将DB100.DBW1中内容传送到MW1中。这里我们使用了存储器间接寻址两个指针——单字指针MW100用于指定DB块编号,双字指针MD2用于指定DBW和MW存储区字址。

------------------------------------------------------------------------------------------------------------------------------------------------- 坛友提出 DB[MW100].DBW[MD2] 这样寻址是错误提法,这里做

个解释:

DB[MW100].DBW[MD2] 这样寻址结构就寻址原理来说,是可以理解,但从SIEMENS程序执行机理来看,是非法。实际程序中,这样寻址,程序语句应该写成:

OPN DBW[WM100],L DBW[MD2]------------------------------------------------------------------------------------------------------------------------------------------------- 事实上,从这个例子中心思想来看,根本没有必要如此复杂。但为什么要用间接寻址呢?

要澄清使用间接寻址优势,就让我们从比较中,找答案吧。

例子告诉我们,它最终执行是把DB某个具体字数据传送到位存储区某个具体字中。这是针对数据块1001数据字传送到位存储区第1字中具体操作。我们现需要对同样数据块多个字(连续不连续)进行传送呢?直接方法,就是一句一句写这样具体操作。有多少个字传送,就写多少这样语句。毫无疑问,不知道间接寻址道理,也应该明白,这样编程方法是不合理。而使用间接寻址方法,语句就简单多了。

【示例程序结构分析】

我将示例程序从结构上做个区分,重新输入如下:

=========================== 输入1:指定数据块编号变量

|| L 100

|| T MW 100

===========================输入2:指定字址变量

|| L DW#16#8

|| T MD 2

===========================操作主体程序

OPN DB [MW 100]

L DBW [MD 2]

T MW[MD2]

显然,我们根本不需要对主体程序(红色部分)进行简单而重复复写,而只需改变MW100和MD2赋值(绿色部分),就可以完成应用要求。

结论:对间接寻址指针内容修改,就完成了主体程序执行结果变更,这种修改是可以是动态和静态。

正是对真正目标程序(主体程序)不做任何变动,而寻址指针是这个程序中唯一要修改方,可以认为,寻址指针是主体程序入口参数,就好比功能块输入参数。可使程序标准化,具有移植性、通用性。

那么又如何动态改写指针赋值呢?不会是另一种简单而重复复写吧。

让我们以一个具体应用,来完善这段示例程序吧:

将DB100中1-11数据字,传送到MW1-11中

设计完成这个任务程序之前,我们先了解一些背景知识。

【数据对象尺寸划分规则】

数据对象尺寸分为:位(BOOL)、字节(BYTE)、字(WORD)、双字(DWORD)。这似乎是个简单概念,但,MW10=MB10+MB11,那么是说,MW11=MB12+MB13?你回答是肯定,我建议你继续看下去,不要跳过,这里疏忽,会导致最终程序错误。

按位和字节来划分数据对象大小时,是以数据对象bit来偏移。这句话就是说,0bit后就是1bit,1bit后肯定是2bit,以此类推直到

7bit,完成一个字节大小指定,再有一个bit偏移,就进入下一个字节0bit。

而按字和双字来划分数据对象大小时,是以数据对象BYTE来偏移!这就是说,MW10=MB10+MB11,并说,MW11=MB12+MB13,正确是MW11=MB11+MB12,然后才是MW12=MB12+MB13!

这个概念重要性,你程序中使用了MW10,那么,就不能对MW11进行任何操作,,MB11是MW10和MW11交集。

也就是说,“将DB100中1-11数据字,传送到MW1-11中”这个具体任务而言,我们只需

要对DBW1、DBW3、DBW5、DBW7、DBW9、DBW11这6个字进行6次传送操作即可。这就是单独分出一节,说明数据对象尺寸划分规则这个看似简单概念目所。

【循环结构】

要“将DB100中1-11数据字,传送到MW1-11中”,我们需要将指针内容顺序逐一指向相应数据字,这种对指针内容动态修改,其实就是遍历。遍历,最简单莫过于循环。

一个循环包括以下几个要素:

1、初始循环指针

2、循环指针自加减

2、继续退出循环体条件判断

被循环程序主体必须位于初始循环指针之后,和循环指针自加减之前。

比如:

初始循环指针:X=0

循环开始点M

被循环程序主体:-------

循环指针自加减:X+1=X

循环条件判断:X≤10 ,False:GO TO M;True:GO TO N

循环退出点N

把X作为间接寻址指针内容,对循环指针操作,就等于对寻址指针内容动态而循环修改了。

【将DB100中1-11数据字,传送到MW1-11中】

L L#1 //初始化循环指针。这里循环指针就是我们要修改寻址指针

T MD 102

M2: L MD 102

T #COUNTER_D

OPN DB100

L DBW [MD 102]

T MW [MD 102]

L #COUNTER_D

L L#2 // +2,是数据字偏移基准是字节。

+D

T MD 102 //自加减循环指针,这是动态修改了寻址指针关键

L L#11 //循环次数=n-1。n=6。这是,首次进入循环是无条件,

但已事实上执行了一次操作。

<=D

JC M2

有T MD102 ,L L#11, <=D详细分析,请前面内容推导。

【将DB1-10中1-11数据字,传送到MW1-11中】

这里增加了对DB数据块寻址,使用单字指针MW100存储寻址址,同样使用了循环,嵌套数据字传送循环外,这样,要完成“将DB1-10中1-11数据字,传送到MW1-11中”这个任务,共需要M1循环10次× M2循环6次 =60次。

L 1

T MW 100

L L#1

T MD 102

M1: L MW 100

T #COUNTER_W

M2: 对数据字循环传送程序,同上例

L #COUNTER_W

L 1 //这里数据字偏移,编号简单递增,+1

+I

T MW 100

L 9 //循环次数=n-1,n=10

<=I

JC M1

示例分析,程序是让

寻址指针对要操作数据对象范围内进行遍历来编程,完成这个任务。我们看到,这种对存储器间接寻址指针遍历是基于字节和字,如何对位进行遍历呢?

这就是下一个帖子要分析寄存器间接寻址实例内容了。

详解西门子间接寻址<4>

L [MD100]

LAR1

L MD100

LAR1

有什么区别?

当将MD100以这种 [MD100] 形式表示时,你既要对MD100赋值时考虑到所赋值是否符合存储器间接寻址双字指针规范,又要使用这个寻址格式作为语句一部分时,是否符合语法规范。

你给出第一个例程第一句:L [MD100]上,我们看出它犯了后一个错误。

存储器间接寻址指针,是作为指定存储区域确切数值单元来运用。也就是说,指针不包含区域标识,它指明了一个数值。,要 [MD100]前加上区域标识如: M、DB、I、Q、L等,还要加上存储区尺寸大小如:X、B、W、D等。加存储区域和大小标识时,要考虑累加器加载指令L不能对位址操作,,只能指定非位址。

对比下面寄存器寻址方式,我们这里,修改为:L MD[MD100]。并假定MD100=8Hex,同时我们也假定MD1=85000018Hex。

当把MD100这个双字作为一个双字指针运用时,其存储值0-18bit将会双字指针结构Byte.bit来重新“翻译”,“翻译”结果才是指针指向址,MD100中8Hex=1000B=1.0,下面语句:

L MD[MD100]

LAR1

“翻译”就是:

L MD1

LAR1

前面我们已经假定了MD1=85000018,同样道理,MD1作为指针使用时,对0-18bit应该

Byte.bit结构“翻译”,是传送给AR址寄存器,还要对24-31bit进行区域寻址“翻译”。这样,我们出LAR1中最终值=DIX3.0。就是说,我们址寄存器AR1中存储了一个指针,它指向DIX3.0。

-----------------------------

L MD100

LAR1

这段语句,是直接把MD100值传送给AR,当然也要“翻译”,结果AR1=1.0。就是说,我们址寄存器AR1中存储了一个指针,它指向1.0,这是由MD100直接赋值。

似乎,两段语句,赋值给AR1结果不同而已,其实不然。我们事先假定值是考虑到对比关系,特意指定。MD100=CHex呢?

前一段,CHex=1100,其0-3bit为非0,程序将立即出错,无法执行。(没有MD1.4这种址!!)

后一段AR1值翻译以后,等于1.4,程序能正常执行。

间接寻址及地址寄存器指令

详解西门子间接寻址 【址概念】 完整一条指令,应该包含指令符+操作数(当然不包括那些单指令,比如NOT等)。其中操作数是指令要执行目标,也就是指令要进行操作址。 我们知道,PLC中划有各种用途存储区,比如物理输入输出区P、映像输入区I、映像输出区Q、位存储区M、定时器T、计数器C、数据区DB和L等,同时我们还知道,每个区域可以用位(BIT)、字节(BYTE)、字(WORD)、双字(DWORD)来衡量,说来指定确切大小。当然定时器T、计数器C不存这种衡量体制,它们仅用位来衡量。由此我们可以到,要描述一个址,至少应该包含两个要素: 1、存储区域 2、这个区域中具体位置 比如:A Q2.0 其中A是指令符,Q2.0是A操作数,也就是址。这个址由两部分组成: Q:指是映像输出区 2.0:就是这个映像输出区第二个字节第0位。 由此,我们出,一个确切址组成应该是: 〖存储区符〗〖存储区尺寸符〗〖尺寸数值〗.〖位数值〗,例如:DBX200.0。 DB X 200 . 0 其中,我们又把〖存储区符〗〖存储区尺寸符〗这两个部分合称为:址标识符。这样,一个确切址组成,又可以写成: 址标识符 + 确切数值单元 【间接寻址概念】 寻址,就是指定指令要进行操作址。给定指令操作址方法,就是寻址方法。 谈间接寻址之前,我们简单了解一下直接寻址。所谓直接寻址,简单说,就是直接给出指令确切操作数,象上面所说,A Q2.0,就是直接寻址,A这个指令来说,Q2.0就是它要进行操作址。 这样看来,间接寻址就是间接给出指令确切操作数。对,就是这个概念。 比如:A Q[MD100] ,A T[DBW100]。程序语句中用方刮号 [ ] 标明内容,间接指明了指令要进行址,这两个语句中MD100和DBW100称为指针Pointer,它指向它们其中包含数值,才是指令真正要执行址区域确切位置。间接由此名。 西门子间接寻址方式计有两大类型:存储器间接寻址和寄存器间接寻址。 【存储器间接寻址】 存储器间接寻址址给定格式是:址标识符+指针。指针所指示存储单元中所包含数值,就是址确切数值单元。 存储器间接寻址具有两个指针格式:单字和双字。 单字指针是一个16bit结构,从0-15bit,指示一个从0-65535数值,这个数值就是被寻址存储区域编号。 双字指针是一个32bit结构,从0-2bit,共三位,8进制指示被寻址位编号,也就是0-7;而从3-18bit,共16位,指示一个从0-65535数值,这个数值就是被寻址字节编号。 指针可以存放M、DI、DB和L区域中,也就是说,可以

ARM处理器9种基本寻址方式

寻址方式是根据指令中给出的地址码字段来实现寻找真实操作数地址的方式,ARM处理器有9 种基本寻址方式。 1.寄存器寻址 操作数的值在寄存器中,指令中的地址码字段给出的是寄存器编号,寄存器的内容是操作数,指令执行时直接取出寄存器值操作。 例如指令: MOV R1,R2 ;R1←R2 SUB R0,R1,R2 ;R0←R1- R2 2.立即寻址 在立即寻址指令中数据就包含在指令当中,立即寻址指令的操作码字段后面的地址码部分就是操作数本身,取出指令也就取出了可以立即使用的操作数(也称为立即数)。立即数要以“#”为前缀,表示16进制数值时以“0x”表示。 例如指令: ADD R0,R0,#1 ;R0←R0 + 1 MOV R0,#0xff00 ;R0←0xff00 3.寄存器移位寻址 寄存器移位寻址是ARM指令集特有的寻址方式。第2个寄存器操作数在与第1个操作数结合之前,先进行移位操作。 例如指令: MOV R0,R2,LSL #3 ;R2的值左移3位,结果放入R0,即R0=R2 * 8 ANDS R1,R1,R2,LSL R3 ;R2的值左移R3位,然后和R1相与操作,结果放入R1 可采用的移位操作如下: LSL:逻辑左移(Logical Shift Left),寄存器中字的低端空出的位补0。 LSR:逻辑右移(Logical Shift Right),寄存器中字的高端空出的位补0。 ASR:算术右移(Arithmetic Shift Right),移位过程中保持符号位不变,即如果源操作数为正数,则字的高端空出的位补0,否则补1 ROR:循环右移(Rotate Right),由字的低端移出的位填入字的高端空出的位 RRX:带扩展的循环右移(Rotate Right extended by 1 place),操作数右移一位,高端空出的位用原C 标志值填充。 各移位操作过程如图所示。

西门子间接寻址详解

完整的一条指令,应该包含指令符+操作数(当然不包括那些单指令,比如NOT等)。其中的操作数是指令要执行的目标,也就是指令要进行操作的地址。 我们知道,在PLC中划有各种用途的存储区,比如物理输入输出区P、映像输入区I、映像输出区Q、位存储区M、定时器T、计数器C、数据区DB和L等,同时我们还知道,每个区域可以用位(BIT)、字节(BYTE)、字(WORD)、双字(DWORD)来衡量,或者说来指定确切的大小。当然定时器T、计数器C 不存在这种衡量体制,它们仅用位来衡量。由此我们可以得到,要描述一个地址,至少应该包含两个要素: 1、存储的区域 2、这个区域中具体的位置 比如:A Q2.0 其中的A是指令符,Q2.0是A的操作数,也就是地址。这个地址由两部分组成: Q:指的是映像输出区 2.0:就是这个映像输出区第二个字节的第0位。 由此,我们得出,一个确切的地址组成应该是: 〖存储区符〗〖存储区尺寸符〗〖尺寸数值〗.〖位数值〗,例如:DBX200.0。 DB X 200 . 0 其中,我们又把〖存储区符〗〖存储区尺寸符〗这两个部分合称为:地址标识符。这样,一个确切的地址组成,又可以写成: 地址标识符+ 确切的数值单元 【间接寻址的概念】 寻址,就是指定指令要进行操作的地址。给定指令操作的地址方法,就是寻址方法。 在谈间接寻址之前,我们简单的了解一下直接寻址。所谓直接寻址,简单的说,就是直接给出指令的确切操作数,象上面所说的,A Q2.0,就是直接寻址,对于A这个指令来说,Q2.0就是它要进行操作的地址。 这样看来,间接寻址就是间接的给出指令的确切操作数。对,就是这个概念。 比如:A Q[MD100] ,A T[DBW100]。程序语句中用方刮号[ ] 标明的内容,间接的指明了指令要进行的地址,这两个语句中的MD100和DBW100称为指针Pointer,它指向它们其中包含的数值,才是指令真正要执行的地址区域的确切位置。间接由此得名。

单片机寻址方式

51单片机的寻址方式 寻址方式:指定操作数所在单元的方法。 在我们学习的8051单片机中,有7种寻址方法,下面我们将逐一进行分析。 一、立即寻址 用“#”作前缀 MOV A,#20H 在这种寻址方式中,指令多是双字节的。立即数就是存放在程序存储器中的常数,换句话说就是操作数(立即数)是包含在指令字节中的。 例如: MOV A,#3AH 这条指令的指令代码为74H、3AH,是双字节指令,这条指令的功能是把立即数3AH送入累加器A中。 MOV DPTR,#8200H在前面学单片机的专用寄存器时,我们已学过,DPTR 是一个16位的寄存器,它由DPH及DPL两个8位的寄存器组成。这条指令的意思就是把立即数的高8位(即82H)送入DPH寄存器,把立即数的低8位(即00H)送入DPL寄存器。 二、直接寻址

指令中直接给出操作数的地址。 MOV A,30H;这条指令中操作数就在30H单元中,也就是30H是操作数的地址,并非操作数。 MOV 30H,DPH 在80C51单片机中,直接地址只能用来表示内部数据存储器、位地址空间以及特殊功能寄存器,具体的说就是: 1、内部数据存储器RAM低128单元。在指令中是以直接单元地址形式给出。 我们知道低128单元的地址是00H-7FH。在指令中直接以单元地址形式给出这句话的意思就是这0-127共128位的任何一位,例如0位是以00H这个单元地址形式给出、1位就是以01H单元地址给出、127位就是以7FH 形式给出。 2、位寻址区。20H-2FH地址单元。 3、特殊功能寄存器。专用寄存器除以单元地址形式给出外,还可以以寄存器符号形式给出。例如下面我们分析的一条指令 MOV IE,#85H 前面的学习我们已知道,中断允许寄存器IE的地址是80H,那么也就是此指令也可以以 MOV 80H,#85H的形式表述。

寄存器与7种寻址方式

一、寄存器 总共有14个16位寄存器,8个8位寄存器 通用寄存器: 数据寄存器: AH(8位) AL(8位) AX(16位) (AX和AL又称累加器) BH(8位) BL(8位) BX(16位) (BX又称基址寄存器,唯一作为存储器指针使用寄存器) CH(8位) CL(8位) CX(16位) (CX用于字符串操作,控制循环的次数,CL 用于移位) DH(8位) DL(8位) DX(16位) (DX一般用来做32位的乘除法时存放被除数或者保留余数) 指针寄存器: SP 堆栈指针(存放栈顶地址) BP 基址指针(存放堆栈基址偏移) 变址寄存器:主要用于存放某个存储单元地址的偏移,或某组存储单元开始地址的偏移, 即作为存储器(短)指针使用。作为通用寄存器,它们可以保存16位算术逻辑运算中的操 作数和运算结果,有时运算结果就是需要的存储单元地址的偏移. SI 源地址(源变址寄存器) DI 目的地址(目的变址寄存器) 控制寄存器: IP 指令指针 FLAG 标志寄存器 ①进位标志CF,记录运算时最高有效位产生的进位值。

②符号标志SF,记录运算结果的符号。结果为负时置1,否则置0。 ③零标志ZF,运算结果为0时ZF位置1,否则置0。 ④溢出标志OF,在运算过程中,如操作数超出了机器可表示数的范围称为溢出。溢出时OF位置1,否则置0。 ⑤辅助进位标志AF,记录运算时第3位(半个字节)产生的进位值。 ⑥奇偶标志PF,用来为机器中传送信息时可能产生的代码出错情况提供检验条件。当结果操作数中1的个数为偶数时置1,否则置0。 段寄存器 CS 代码段IP DS 数据段 SS 堆栈段SP BP ES 附加段 二、七种寻址方式: 1、立即寻址方式: 操作数就包含在指令中。作为指令的一部分,跟在操作码后存放在代码段。 这种操作数成为立即数。立即数可以是8位的,也可以是16位的。 例如: 指令: MOV AX,1234H 则: AX = 1234H 2、寄存器寻址方式: 操作数在CPU内部的寄存器中,指令指定寄存器号。 对于16位操作数,寄存器可以是:AX、BX、CX、DX、SI、DI、SP和BP等。对于8位操作数,寄存器可以是AL 、AH、BL、BH、CL、CH、DL、DH。 这种寻址方式由于操作数就在寄存器中,不需要访问存储器来取得操作数 因而可以取得较高的运算数度。

详解西门子间接寻址完整版

详解西门子间接寻址 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

详解西门子间接寻址 【地址的概念】 完整的一条指令,应该包含指令符+操作数(当然不包括那些单指令,比如NOT 等)。其中的操作数是指令要执行的目标,也就是指令要进行操作的地址。 我们知道,在PLC中划有各种用途的存储区,比如物理输入输出区P、映像输入区I、映像输出区Q、位存储区M、定时器T、计数器C、数据区DB和L等,同时我们还知道,每个区域可以用位(BIT)、字节(BYTE)、字(WORD)、双字(DWORD)来衡量,或者说来指定确切的大小。当然定时器T、计数器C不存在这种衡量体制,它们仅用位来衡量。由此我们可以得到,要描述一个地址,至少应该包含两个要素: 1、存储的区域 2、这个区域中具体的位置 比如:A 其中的A是指令符,是A的操作数,也就是地址。这个地址由两部分组成: Q:指的是映像输出区 :就是这个映像输出区第二个字节的第0位。 由此,我们得出,一个确切的地址组成应该是: 〖存储区符〗〖存储区尺寸符〗〖尺寸数值〗.〖位数值〗,例如:。 DB X 200 . 0 其中,我们又把〖存储区符〗〖存储区尺寸符〗这两个部分合称为:地址标识符。这样,一个确切的地址组成,又可以写成: 地址标识符 + 确切的数值单元 【间接寻址的概念】 寻址,就是指定指令要进行操作的地址。给定指令操作的地址方法,就是寻址方法。 在谈间接寻址之前,我们简单的了解一下直接寻址。所谓直接寻址,简单的说,就是直接给出指令的确切操作数,象上面所说的,A ,就是直接寻址,对于A这个指令来说,就是它要进行操作的地址。 这样看来,间接寻址就是间接的给出指令的确切操作数。对,就是这个概念。 比如:A Q[MD100] ,A T[DBW100]。程序语句中用方刮号 [ ] 标明的内容,间接的指明了指令要进行的地址,这两个语句中的MD100和DBW100称为指针Pointer,它指向它们其中包含的数值,才是指令真正要执行的地址区域的确切位置。间接由此得名。 西门子的间接寻址方式计有两大类型:存储器间接寻址和寄存器间接寻址。 【存储器间接寻址】 存储器间接寻址的地址给定格式是:地址标识符+指针。指针所指示存储单元

详解西门子间接寻址(讲解标准规定样式分析)

详解西门子间接寻址 等级:弓剑手 威望:0 发贴:116 经验:416 财产:407 魅力:411

注册:2005-5-21 【地址的概念】 完整的一条指令,应该包含指令符+操作数(当然不包括那些单指令,比如NOT等)。其中的操作数是指令要执行的目标,也就是指令要进行操作的地址。 我们知道,在PLC中划有各种用途的存储区,比如物理输入输出区P、映像输入区I、映像输出区Q、位存储区M、定时器T、计数器C、数据区DB和L等,同时我们还知道,每个区域可以用位(BIT)、字节(BYTE)、字(WORD)、双字(DWORD)来衡量,或者说来指定确切的大小。当然定时器T、计数器C不存在这种衡量体制,它们仅用位来衡量。由此我们可以得到,要描述一个地址,至少应该包含两个要素: 1、存储的区域 2、这个区域中具体的位置 比如:A Q2.0 其中的A是指令符,Q2.0是A的操作数,也就是地址。这个地址由两部分组成: Q:指的是映像输出区 2.0:就是这个映像输出区第二个字节的第0位。 由此,我们得出,一个确切的地址组成应该是:

〖存储区符〗〖存储区尺寸符〗〖尺寸数值〗.〖位数值〗,例如:DBX200.0。 DB X 200 . 0 其中,我们又把〖存储区符〗〖存储区尺寸符〗这两个部分合称为:地址标识符。这样,一个确切的地址组成,又可以写成:地址标识符+ 确切的数值单元 【间接寻址的概念】 寻址,就是指定指令要进行操作的地址。给定指令操作的地址方法,就是寻址方法。在谈间接寻址之前,我们简单的了解一下直接寻址。所谓直接寻址,简单的说,就是直接给出指令的确切操作数,象上面所说的,A Q2.0,就是直接寻址,对于A这个指令来说,Q2.0就是它要进行操作的地址。 这样看来,间接寻址就是间接的给出指令的确切操作数。对,就是这个概念。 比如:A Q[MD100] ,A T[DBW100]。程序语句中用方刮号[ ] 标明的内容,间接的指明了指令要进行的地址,这两个语句中的MD100和DBW100称为指针Pointer,它指向它们其中包含的数值,才是指令真正要执行的地址区域的确切位置。间接由此得名。 西门子的间接寻址方式计有两大类型:存储器间接寻址和寄存器间接寻址。 【存储器间接寻址】 存储器间接寻址的地址给定格式是:地址标识符+指针。指针所指示存储单元中所包含的数值,就是地址的确切数值单元。 存储器间接寻址具有两个指针格式:单字和双字。 单字指针是一个16bit的结构,从0-15bit,指示一个从0-65535的数值,这个数值就是被寻址的存储区域的编号。 双字指针是一个32bit的结构,从0-2bit,共三位,按照8进制指示被寻址的位编号,也就是0-7;而从3-18bit,共16位,指示一个从0-65535的数值,这个数值就是被寻址

详解西门子间接寻址

详解西门子间接寻址 详解西门子间接寻址 【地址的概念】 完整的一条指令,应该包含指令符+操作数(当然不包括那些单指令,比如NOT等)。其中的操作数是指令要执行的目标,也就是指令要进行操作的地址。 我们知道,在PLC中划有各种用途的存储区,比如物理输入输出区P、映像输入区I、映像输出区Q、位存储区M、定时器T、计数器C、数据区DB和L等,同时我们还知道,每个区域可以用位(BIT)、字节(BYTE)、字(WORD)、双字(DWORD)来衡量,或者说来指定确切的大小。当然定时器T、计数器C不存在这种衡量体制,它们仅用位来衡量。由此我们可以得到,要描述一个地址,至少应该包含两个要素: 1、存储的区域 2、这个区域中具体的位置 比如:A Q2.0 其中的A是指令符,Q2.0是A的操作数,也就是地址。这个地址由两部分组成: Q:指的是映像输出区 2.0:就是这个映像输出区第二个字节的第0位。 由此,我们得出,一个确切的地址组成应该是: 〖存储区符〗〖存储区尺寸符〗〖尺寸数值〗.〖位数值〗,例如:DBX200.0。 DB X 200 . 0 其中,我们又把〖存储区符〗〖存储区尺寸符〗这两个部分合称为:地址标识符。这样,一个确切的地址组成,又可以写成: 地址标识符+ 确切的数值单元 【间接寻址的概念】 寻址,就是指定指令要进行操作的地址。给定指令操作的地址方法,就是寻址方法。 在谈间接寻址之前,我们简单的了解一下直接寻址。所谓直接寻址,简单的说,就是直接给出指令的确切操作数,象上面所说的,A Q2.0,就是直接寻址,对于A这个指令来说,Q2.0就是它要进行操作的地址。 这样看来,间接寻址就是间接的给出指令的确切操作数。对,就是这个概念。 比如:A Q[MD100] ,A T[DBW100]。程序语句中用方刮号[ ] 标明的内容,间接的指明了指令要进行的地址,这两个语句中的MD100和DBW100称为指针Pointer,它指向它们其中包含的数值,才是指令真正要执行的地址区域的确切位置。间接由此得名。 西门子的间接寻址方式计有两大类型:存储器间接寻址和寄存器间接寻址。 【存储器间接寻址】 存储器间接寻址的地址给定格式是:地址标识符+指针。指针所指示存储单元中所包含的数值,就是地址的确切数值单元。 存储器间接寻址具有两个指针格式:单字和双字。 单字指针是一个16bit的结构,从0-15bit,指示一个从0-65535的数值,这个数值就是被寻址的存储区域的编号。 双字指针是一个32bit的结构,从0-2bit,共三位,按照8进制指示被寻址的位编号,也就是0-7;而从3-18bit,共16位,指示一个从0-65535的数值,这个数值就是被寻址的字节编号。 指针可以存放在M、DI、DB和L区域中,也就是说,可以用这些区域的内容来做指针。 单字指针和双字指针在使用上有很大区别。下面举例说明: L DW#16#35 //将32位16进制数35存入ACC1 T MD2 //这个值再存入MD2,这是个32位的位存储区域

间接寻址及寄存器指令

内容页码 STEP 7 中可能的寻址方式 (2) 变量直接寻址 (3) DB中地址标识符直接寻址 (4) 在程序中分析DB信息 (5) 存储器间接寻址 (6) 用于存储器间接寻址的指针结构 (7) 存储器间接寻址的特性 (8) 间接寻址示例 (9) 练习4.1:用间接寻址的方法进行循环编程 (10) 内部区域,寄存器间接寻址 (11) 交叉区域,寄存器间接寻址 (12) 用于装载地址寄存器的指令 (13) 其它用于地址寄存器的指令 (14) 寄存器间接寻址的特性 (15) 练习4.2:用寄存器间接寻址的方法进行循环编程 (16) POINTER类型和ANY类型数据的块参数 (17) POINTER类型的结构和参数赋值 (18) ANY数据类型的结构 (19) ANY数据类型参数赋值 (20) ANY (21) 参数类型间接赋值 评估ANY型指针传递 (22) 练习4.3:用于求和及计算平均值的功能 (23)

直接寻址使用直接寻址,存储单元地址可以直接包含在指令中,也就是说,地址标识符指明了指令所要处理数值的地址。 了指令所要处理数值的地址 符号寻址在控制程序中,可以进行绝对地址寻址(比如:I 1.0)或进行符号地址寻址( 比如“开始信号”)。符号地址是使用名称来代替绝对地址。 使用有意义的名称使程序的可读性增强。不过,在使用符号寻址时,要注意区分局 部符号(在块的声明部分)和全局符号(符号表)。 间接寻址使用间接寻址,可以寻址那些只有在程序运行时才确定其地址的地址标识符。 例如,通过间接寻址,可以对程序的一些部分进行反复扫描(循环编程),由此,每 次扫描所用到的地址被赋予不同的地址数值。 次扫描所用到的地址被赋予不同的地址数值 关于间接寻址,要注意区分以下两种情况: ?存储器间接寻址:寻址的地址指针位于用户储存器存储单元里(比 如MD30)。 使用存储器间接寻址,也可以为位于保存寻址地址标识符指针的存储器中的变量赋予符号化名称。 ?寄存器间接寻址:在访问之前,要将指向寻址地址的指针装载到其中一个S7处理器地址寄存器(AR1或AR2)中去。 警告用于使用间接寻址时,只有在程序运行期间才计算地址,所以,就会有这样的潜在的危险性,即存储器被意外覆盖,进而导致PLC的意外动作。

7种寻址方式

七种寻址方式 1、(直接寻址方式) 指令所要的操作数存放在内存中,在指令中直接给出该操作数的有效地址,这种寻址方式为直接寻址方式。在通常情况下,操作数存放在数据段中,所以,其物理地址将由数据段寄存器DS和指令中给出的有效地址直接形成,但如果使用段超越前缀,那么,操作数可存放在其它段。例:假设有指令:MOV BX, [1234H],在执行时,(DS)=2000H,内存单元21234H的值为5213H。问该指令执行后,BX的值是什么?解:根据直接寻址方式的寻址规则,把该指令的具体执行过程用下图来表示。从图中,可看出执行该指令要分三部分: 由于1234H是一个直接地址,它紧跟在指令的操作码之后,随取指令而被读出;访问数据段的段寄存器是DS,所以,用DS的值和偏移量1234H 相加,得存储单元的物理地址:21234H;取单元21234H的值5213H,并按“高高低低”的原则存入寄存器BX中。所以,在执行该指令后,BX的值就为5213H。由于数据段的段寄存器默认为DS,如果要指定访问其它段内的数据,可在指令中用段前缀的方式显式地书写出来。下面指令的目标操作数就是带有段前缀的直接寻址方式。 MOV ES:[1000H], AX 直接寻址方式常用于处理内存单元的数据,其操作数是内存变量的值,该寻址方式可在64K字节的段内进行寻址。注意:立即寻址方式和直接寻址方式的书写格式的不同,直接寻址的地址要写在括号“[”,“]”内。在程序中,直接地址通常用内存变量名来表示,如:MOV BX, VARW,其中,VARW是内存字变量。试比较下列指令中源操作数的寻址方式(VARW是内存字变量): MOV AX, 1234H MOV AX, [1234H] ;前者是立即寻址,后者是直接寻址 MOV AX, VARW MOV AX, [VARW] ;两者是等效的,均为直接寻址 2、(寄存器间接寻址方式) 操作数在存储器中,操作数的有效地址用SI、DI、BX和BP等四个寄存器之一来指定,称这种寻址方式为寄存器间接寻址方式。该寻址方式物理地址的计算方法如下:

西门子间接寻址精讲教程

【地址的概念】 完整的一条指令,应该包含指令符+操作数(当然不包括那些单指令,比如NOT等)。其中的操作数是指令要执行的目标,也就是指令要进行操作的地址。 我们知道,在PLC中划有各种用途的存储区,比如物理输入输出区P、映像输入区I、映像输出区Q、位存储区M、定时器T、计数器C、数据区DB和L等,同时我们还知道,每个区域可以用位(BIT)、字节(BYTE)、字(WORD)、双字(DWORD)来衡量,或者说来指定确切的大小。当然定时器T、计数器C不存在这种衡量体制,它们仅用位来衡量。由此我们可以得到,要描述一个地址,至少应该包含两个要素: 1、存储的区域 2、这个区域中具体的位置 比如:A Q2.0 其中的A是指令符,Q2.0是A的操作数,也就是地址。这个地址由两部分组成: Q:指的是映像输出区 2.0:就是这个映像输出区第二个字节的第0位。 由此,我们得出,一个确切的地址组成应该是: 〖存储区符〗〖存储区尺寸符〗〖尺寸数值〗.〖位数值〗,例如:DBX200.0。 DB X 200 . 0 其中,我们又把〖存储区符〗〖存储区尺寸符〗这两个部分合称为:地址标识符。这样,一个确切的地址组成,又可以写成: 地址标识符+ 确切的数值单元 【间接寻址的概念】 寻址,就是指定指令要进行操作的地址。给定指令操作的地址方法,就是寻址方法。 在谈间接寻址之前,我们简单的了解一下直接寻址。所谓直接寻址,简单的说,就是直接给出指令的确切操作数,象上面所说的,A Q2.0,就是直接寻址,对于A这个指令来说,Q2.0就是它要进行操作的地址。 这样看来,间接寻址就是间接的给出指令的确切操作数。对,就是这个概念。 比如:A Q[MD100] ,A T[DBW100]。程序语句中用方刮号[ ] 标明的内容,间接的指明了指令要进行的地址,这两个语句中的MD100和DBW100称为指针Pointer,它指向它们其中包含的数值,才是指令真正要执行的地址区域的确切位置。间接由此得名。 西门子的间接寻址方式计有两大类型:存储器间接寻址和寄存器间接寻址。 【存储器间接寻址】 存储器间接寻址的地址给定格式是:地址标识符+指针。指针所指示存储单元中所包含的数值,就是地址的确切数值单元。 存储器间接寻址具有两个指针格式:单字和双字。 单字指针是一个16bit的结构,从0-15bit,指示一个从0-65535的数值,这个数值就是被寻址的存储区域的编号。 双字指针是一个32bit的结构,从0-2bit,共三位,按照8进制指示被寻址的位编号,也就是0-7;而从3-18bit,共16位,指示一个从0-65535的数值,这个数值就是被寻址的字节编号。 指针可以存放在M、DI、DB和L区域中,也就是说,可以用这些区域的内容来做指针。 单字指针和双字指针在使用上有很大区别。下面举例说明: L DW#16#35 //将32位16进制数35存入ACC1 T MD2 //这个值再存入MD2,这是个32位的位存储区域 L +10 //将16位整数10存入ACC1,32位16进制数35自动移动到ACC2

西门子间接寻址的详细介绍

西门子间接寻址的详细介绍 在先前所说的存储器间接寻址中,间接指针用M、DB、DI和L直接指定,就是说,指针指向的存储区内容就是指令要执行的确切地址数值单元。但在寄存器间接寻址中,指令要执行的确切地址数值单元,并非寄存器指向的存储区内容,也就是说,寄存器本身也是间接的指向真正的地址数值单元。从寄存器到得出真正的地址数值单元,西门子提供了两种途径: 1、区域内寄存器间接寻址 2、区域间寄存器间接寻址 地址寄存器间接寻址的一般格式是: 〖地址标识符〗〖寄存器,P#byte.bit〗,比如:DIX[AR1,P#1.5] 或M[AR1,P#0.0] 。 〖寄存器,P#byte.bit〗统称为:寄存器寻址指针,而〖地址标识符〗在上帖中谈过,它包含〖存储区符〗+〖存储区尺寸符〗。但在这里,情况有所变化。比较一下刚才的例子: DIX [AR1,P#1.5] X [AR1,P#1.5] DIX可以认为是我们通常定义的地址标识符,DI是背景数据块存储区域,X是这个存储区域的尺寸符,指的是背景数据块中的位。但下面一个示例中的M呢?X只是指定了存储区域的尺寸符,那么存储区域符在哪里呢?毫无疑问,在AR1中! DIX [AR1,P#1.5] 这个例子,要寻址的地址区域事先已经确定,AR1

可以改变的只是这个区域内的确切地址数值单元,所以我们称之为:区域内寄存器间接寻址方式,相应的,这里的[AR1,P#1.5] 就叫做区域内寻址指针。 X [AR1,P#1.5] 这个例子,要寻址的地址区域和确切的地址数值单元,都未事先确定,只是确定了存储大小,这就是意味着我们可以在不同的区域间的不同地址数值单元以给定的区域大小进行寻址,所以称之为:区域间寄存器间接寻址方式,相应的,这里的[AR1,P#1.5] 就叫做区域间寻址指针。 既然有着区域内和区域间寻址之分,那么,同样的AR1中,就存有不同的内容,它们代表着不同的含义。 【AR的格式】 地址寄存器是专门用于寻址的一个特殊指针区域,西门子的地址寄存器共有两个:AR1和AR2,每个32位。 当使用在区域内寄存器间接寻址中时,我们知道这时的AR中的内容只是指明数值单元,因此,区域内寄存器间接寻址时,寄存器中的内容等同于上帖中提及的存储器间接寻址中的双字指针,也就是: 其0-2bit,指定bit位,3-18bit指定byte字节。其第31bit固定为0。AR: 0000 0000 0000 0BBB BBBB BBBB BBBB BXXX 这样规定,就意味着AR的取值只能是:0.0 ——65535.7 例如:当AR=D4(hex)=0000 0000 0000 0000 0000 0000 1101 0100(b),实际上就是等于26.4。

寻址方式

01、立即数寻址 数据保存在指令中可以立即使用。所以称为立即数。 例如: mov r0 , # 50 ;将立即数50传送到r0寄存器中。 使用规则: 01、★立即数前面必须使用"#"做标记,这是和MASN32不同之处,初学ARM汇编很容易忘记。 02、如果没有明确标识默认的进制为10进制。 03、16进制数使用"0x"做标记如:0x64。不能使用MASM32中的在末尾加H的写法。64H是错误的。 04、2进制数据使用"2_"做标记如:2_0101。 05、立即数寻址可以使用4则运算例如:mov r0 , # 50 + 50 06、立即数寻址可以使用逻辑运算例如:mov r0 , # 1 | 0 07、★特别注意:由于立即数保存在指令中所以并不是任意立即数都可以使用。立即数必须满足这样的条件:常数必须由一个8位的常数循环移位偶数位得到的。比如:[0,256]之间的数都可以,1024,2048等常数都正确。如果出错则在编译的时候就会出现提示,Xarm构建时控制台会出现白底红字的显示效果。 02、寄存器寻址 操作数的值保存在寄存器中,指令执行时直接取寄存器中数据操作。 例如: mov r1 , r0 ;将r0中的数据传递到r1寄存器中。 add r0 , r0 , r1 ;将r0和r1中数据累加后保存到r0中。 03、寄存器偏移寻址 这种寻址方式是ARM处理器特有的。当第二个操作数是寄存器寻址时,可以首先进行移位操作再和第一个操作数结合。 例如: mov r0 , r1 , lsl #1 ;将r1中的数据逻辑左移一位再传送到r0中。相当于r0 = r1 * 2 这是ARM指令的一个特点:可以将移位操作放在其他操作中在一条指令中完成。这样就提高了指令效率。 移位指令有5种这里简单介绍一下在后面的文章中详细说明: lsl:逻辑左移。

寻址方式

寻址方式就是寻找操作数或操作数地址的方式。8086提供了与操作数有关和与I/O端口地址有关的两类寻址方式。与操作数有关的寻址方式有七种,分别是立即寻址,寄存器寻址,直接寻址,寄存器间接寻址,寄存器相对寻址,基址加变址寻址,相对基址加变址寻址;与I/0端口有关的寻址方式有直接端口寻址和间接端口寻址方式。 目录 与操作数有关的寻址方式 与I/0端口有关的寻址方式 展开 编辑本段与操作数有关的寻址方式 立即数寻址方式 操作数直接存放在指令中,紧跟在操作码之后的寻址方式就是立即数寻址方式。 例如: MOV AX,2345H MOV AL,0EH 寄存器寻址 操作数存放在CPU的内存寄存器时,可在指令中指出寄存器名,这就是寄存器寻址方式。 例如: MOV AX,BX ADD AX,BX 存储器寻址方式 8086指令系统提供了以下5种针对存储器的寻址方式。 直接寻址、寄存器间接寻址、寄存器相对寻址、基址加变址寻址和相对基址加变址寻址。用于说明操作数所在存储单元的地址。由于总线接口单元BIU能根据需要自动引用段寄存器得到段值,所以这五种方式也就是确定存放操作数的存储单元有效地址EA的方法。有效地址EA是一个16位的无符号数,在利用这五种方法计算有效地址时,所得的结果认为是一个无符号数。 (1).直接寻址: 指令中给出的地址码即为操作数的有效地址,就是直接寻址方式。 例子: MOV AX,[2000H] -->2000H为存放操作数单元号的符号地址 MOV AX,2000H -->2000H为源操作数,立即数 上面两者是不等效的 (2).寄存器间接寻址方式:

你就想成:你已经站在你要找的"门户号(家)"的"单元号",你要找到它,必须知道它在当前"单元号"几楼.假如它在6楼,那你就上到6楼就OK了!!注意,最高只有16楼,因为什么呢?那就用DEBUG的D命令看看呀,慢慢数哦,呵呵!! 例子: MOV AX,[BX] 计算公式: 物理地址=16d*(DS)+(BX) 物理地址=16d*(DS)+(SI) 物理地址=16d*(DS)+(DI) 物理地址=16d*(SS)+(BP) (3).寄存器相对寻址方式: 你就想成:你要找的"门户号(家)"其实就在你家的楼上或者楼下,你要找到它,就必须知道它在你楼上几楼,或者在楼下几楼!就OK了! 例子: MOV AX,COUNT[SI] MOV AX,[COUNT+SI] 其中COUNT为位移量的符号地址 计算公式: 物理地址=16d*(DS)+(BX)+8位位移量 物理地址=16d*(SI)+(BX)+16位位移量 物理地址=16d*(DI)+(BX)+16位位移量 物理地址=16d*(SS)+(BP)+8位偏移量 (4).基址变址寻址方式: 你就想成:你要找的"门户号(家)"是跟住在同一栋楼的不同"单元号",你要找到它,就必须知道它是该栋的哪个"单元号",并且住在几楼!那样你就可以找到它了! 例子: MOV AX,[BX][DI] MOV AX,[BX+DI] 计算公式: 物理地址=16d*(DS)+(BX)+(SI) 物理地址=16d*(DS)+(BX)+(DI) 物理地址=16d*(SS)+(BP)+(SI) 物理地址=16d*(SS)+(BP)+(DI) (5).相对基址变址寻址方式: 你就想成:你要找的"门户号(家)"是跟住在同一栋楼的不同"单元号",它比你高几层楼或者低几层楼,然后用的你目前的楼数+/-就可以得出你要找的住在几楼了! 例子: MOV AX,MASK[BX][SI] MOV AX,MASK[BX+SI] MOV AX,[MASK+BX+SI] 以上三个例子是等效的!! 计算公式: 物理地址=16d*(DS)+(BX)+(SI)+8位位移量 物理地址=16d*(DS)+(BX)+(DI)+16位位移量 物理地址=16d*(SS)+(BP)+(SI)+8位位移量 物理地址=16d*(SS)+(BP)+(DI)+16位位移量

寻址方式的分辨

汇编语言的寻址方式就是寻找操作数所在地址的方法,有七种:立即寻址、寄存器寻址、直接寻址、寄存器间接寻址、寄存器相对寻址、基址变址寻址、相对基址变址寻址。 1、立即寻址:操作数在指令中,如:MOV AL,12H(源操作数) 2、寄存器寻址:操作数在指令中的寄存器中,如:MOV AL,BH(源操作数) 3、直接寻址:操作数所在存储器的有效地址在指令中,如:MOV AL,[12H](源操作数) 4、寄存器间接寻址:操作数所在存储器的有效地址在指令中的寄存器中,如:MOV AL,[BX](源操作数) 5、寄存器相对寻址:操作数所在存储器的有效地址为指令中的寄存器加位移量,如:MOV AL,[BX+12H]或MOV AL,DAVL[BP](源操作数) 6、基址变址寻址:操作数所在存储器的有效地址为指令中的基址寄存器加变址寄存器,如:MOV AL,[BX+SI]或MOV AL,[BX][SI](源操作数) 7、相对基址变址寻址:操作数所在存储器的有效地址为指令中的基址寄存器加变址寄存器,再加位移量,如:MOV AL,[BX+SI+12H]或MOV AL,DAVL[BX][SI](源操作数)。 MOV DAVL[BP],AX 中目的操作数是寄存器相对寻址,源操作数是寄存器寻址。 8086汇编寻址方式总结 寻址方式是汇编语言的重点和难点。请按如下思路学习: 1. 操作数可以存在什么地方? ⑴操作数存在于指令代码中,处理器译码时就立即获得了这个操作数,这就是立即(数)寻址方式。汇编指令中,这个立即数(操作数)以常量形式出现。 ⑵操作数存在于处理器内部寄存器中,处理器从寄存器中获得这个操作数,这就是寄存器寻址方式。汇编指令中,这个寄存器操作数以寄存器名形式出现。 ⑶操作数存在于主存中,处理器从主存单元获得这个操作数,这就是存储器寻址方式。汇编指令中,这个存储器操作数以主存地址形式出现。 2. 8086/8088处理器的主存地址在程序设计时采用逻辑地址。逻辑地址分成段地址和偏移地址两部分。 3. 存储器寻址方式表达存储器地址时,段地址在默认的或段超越前缀指令指定的段寄存器中,偏移地址被称为有效地址EA(Effective Address)。有效地址用中括号括起来。 4. 有多种获得偏移地址的方法,所以存储器寻址方式又分成多种寻址方式。 ⑴有效地址直接给出,存在于指令代码中,就是直接寻址方式。 ⑵有效地址存在寄存器中,就是通过寄存器的间接寻址方式。 ⑶有效地址是两部分的和,一部分在寄存器中,另一部分直接给出(称为位移量),这就是寄存器相对寻址方式。 ⑷有效地址是两部分的和,一部分在基址寄存器中(8086是B X和BP),另一部分在变址寄存器中(8086是SI和DI),这就是基址

计算机组成原理第四章答案

第4章习题参考答案 1.ASCII码是7位,如果设计主存单元字长为32位,指令字长为12位,是否合理?为什么? 答:不合理。指令最好半字长或单字长,设16位比较合适。一个字符的ASCII 是7位,如果设计主存单元字长为32位,则一个单元可以放四个字符,这也是可以的,只是在存取单个字符时,要多花些时间而已,不过,一条指令至少占一个单元,但只占一个单元的12位,而另20位就浪费了,这样看来就不合理,因为通常单字长指令很多,浪费也就很大了。 2.假设某计算机指令长度为32位,具有双操作数、单操作数、无操作数三类指令形式,指令系统共有70条指令,请设计满足要求的指令格式。 答:字长32位,指令系统共有70条指令,所以其操作码至少需要7位。 双操作数指令 单操作数指令 无操作数指令 3.指令格式结构如下所示,试分析指令格式及寻址方式特点。 答:该指令格式及寻址方式特点如下: (1) 单字长二地址指令。 (2) 操作码字段OP可以指定26=64种操作。 (3) 源和目标都是通用寄存器(可分指向16个寄存器)所以是RR型指令,即两个操作数均在寄存器中。 (4) 这种指令结构常用于RR之间的数据传送及算术逻辑运算类指令。 4.指令格式结构如下所示,试分析指令格式及寻址方式特点。 15 10 9 8 7 4 3 0

答:该指令格式及寻址方式特点如下: (1)双字长二地址指令,用于访问存储器。 (2)操作码字段OP可以指定26=64种操作。 (3)RS型指令,一个操作数在通用寄存器(选择16个之一),另一个操作数 在主存中。有效地址可通过变址寻址求得,即有效地址等于变址寄存器(选择16个之一)内容加上位移量。 5.指令格式结构如下所示,试分析指令格式及寻址方式特点。 答:该指令格式及寻址方式特点如下: (1)该指令为单字长双操作数指令,源操作数和目的操作数均由寻址方式和寄 存器构成,寄存器均有8个,寻址方式均有8种。根据寻址方式的不同,指令可以是RR型、RS型、也可以是SS型; (2)因为OP为4位,所以最多可以有16种操作。 6.一种单地址指令格式如下所示,其中为I间接特征,X为寻址模式,D为形式地址,I、X、D组成该指令的操作数有效地址E,设R为变址寄存器,R1为基值寄存器,PC为程序计数器,请在下表中第一列位置填入适当的寻址方式名 答:①直接寻址②相对寻址③变址寻址 ④基址寻址⑤间接寻址⑥先基址后间接寻址 7.某计算机字长为32位,主存容量为64K字,采用单字长单地址指令,共有40条指令。试采用直接、立即、变址、相对四种寻址方式设计指令格式。 答:根据题意,40种指令至少需6位OP;四种寻址方式至少需用2位表示;主存为64K,则地址需要16位,而机器字长为32位,可设计如下格式: 设:

寻址方式

MCS-51单片机的7种寻址方式 1.寄存器寻址方式:寄存器中存放的是操作数。 如:MOV A,Rn ;其中n=0-7 ,此句表示把寄存器Rn中的内容送给累加器A。 寻址范围包括:(1)4组通用工作寄存器区,共32个工作寄存器。 (2)部分特殊功能寄存器,例如累加器A、寄存器B以及数据指 针DPTR等。 2.直接寻址方式:指令中操作数直接以单元地址的形式给出。 如:MOV A,40H ;表示把内部RAM 40H单元的内容传送给A。 寻址范围包括:(1)内部RAM的128个单元(因为直接寻址方式只能使用8 位二进制数表示的地址) (2)特殊功能寄存器,如: MOV A,80H 也可写成MOV A,P0方式。3.寄存器间接寻址方式:寄存器中存放的是操作数的地址。 如:MOV A,@Ri;其中i=0或1,假设Ri中的内容为40H,该句的意思是把内部 RAM中40H单元的内容送到A。 寻址范围包括:(1)访问内部RAM低128个单元,其通用形式为@Ri (2)片外RAM的64K字节,如:MOVX A,@DPTR;其功能是 把DPTR指定的外部RAM单元的内容送累加器A。 (3)片外RAM的低256字节,除可用上述方法,也可以用 如:MOVX A,@Ri;其中i=0或1, 其功能是把Ri指定的 外部RAM单元的内容送累加器A。 (4)堆栈区:使用堆栈指针SP作间址寄存器 4. 立即寻址方式:操作数在指令中直接给出。 如:MOV A,#40H ;表示把立即数40H送给A,40H这个常数是指令代码的一部分,就是放在程序存储器内的常数。 5.基址寄存器加变址寄存器间址寻址方式:访问程序存储器中的数据表格,变址寻址以DPTR或PC作基址寄存器,以累加器A作变址寄存器,并以两者内容相加形成的16位地址作为操作数的地址 如: MOVC A,@A+DPTR ;@应理解为针对(A+DPTR)的,而不是单单针对A的。假定指令执行前(A)=54H,(DPTR)=3F21H,则变址寻址形成的操作数地址为 3F75H,又假设3F75H单元的内容为6EH,则该指令执行的结果是A的内容 为6EH。 变址寻址只能对程序存储器进行寻址,指令只有三条,都是单字节指令: MOVC A,@A+DPTR MOVC A,@A+PC JMP @A+DPTR ;无条件转移指令 6. 位寻址方式:位寻址指令中可以直接使用位地址。 如:MOV C,40H ;把40H位的状态送进位位C 寻址范围包括:(1)内部RAM中的位寻址区,单元地址为20H-2FH,共16个单 元,128个位,位地址是00H-7FH (2)特殊功能寄存器的可寻址位,可供寻址的特殊功能寄存器 有11个,实际寻址位有83个。这些寻址位在指令中有四种 表示方法:如PSW寄存器位5可表示为0D5H或F0或 (0D0H).5或PSW.5

相关文档
最新文档