分子生物学综述

分子生物学综述
分子生物学综述

基于特定引物PCR的DNA分子标记技术研究进展

摘要:

PCR是一种选择性体外扩增DNA的方法,分子标记是继形态标记、细胞标记和生化标记之后发展起来的一种比较理想的遗传标记技术。SSR、SCAR、SRAP 和TRAP是四种最新发展的基于特定引物PCR的新型DNA分子标记技术,具有简便、高效、重复性好等优点,已在遗传育种的种质资源等各个方面得到广泛应用。介绍了这四种分子标记的基本原理和特点,综述了它们在分子生物学研究中的应用。

关键词:分子标记SSR SCAR SRAP TRAP

DNA分子标记技术的研究始于1980年,本质上是指能反映生物个体或种群间基因组某种差异的特异性DNA片段,DNA分子标记大多以电泳谱带的形式表现生物个体之间DNA差异,通常也称DNA的指纹图谱。与其他几种遗传标记相比具有的优越性有:大多数分子标记为显性,对隐性的农艺形状的选择十分便利;基因组变异及其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标形状的表达,与不良性状无连锁;检测手段简单、迅速。目前DNA分子标记技术已有数十种,主要可分为4大类:基于分子杂交的DNA 分子标记技术;基于随机/特定引物PG R的DNA分子标记技术;基子限制性酶切与PCR技术的分子标记技术;基于芯片技术的DNA分子标记技术。概述新型的基于特定引物PCR的DNA分子标记技术,包括SSR,SCAR,SRAP和TRAP。目前这些I3;VA分子标记技术的应用仍具有相当的局限性,如何将它们有效地利用于分子生物学研究是函待解决的问。

1序列特异扩增区域SCAR

1. 1 SCAR标记的原理

序列特异扩增区域(sequence characterised am-plifiedreginn)简称SCAR标记,是1993年Paran和Michelma记[1]]建立的一种可靠、稳定、可长期利用的RAPD 标记技术。SCAR标记的基本流程:先用随机引物进行RAPD筛选,获取特异的RAPD标记,然后对标记进行克隆和测序,根据测定RADII标记两末端的序列设计一对引物,此引物通常包含有原来的RAPD引物序列,多为20-24,再用该引物对所研究的基因组DNA进行PCR扩增,这样就可以把与原来的RAPI3片段相对应的单一位点鉴定出来。

1. 2 SCAR标记的特点

SCAR标记方便、快捷、可靠,适合于大量个体的快速检测,结果稳定性好,重复性高。由干SCAR标记使用的引物长,因而试验的可重复性高,它克服了RAPD重复性欠佳的弱点,同时具有STS标记的优点,因此比RAPn及其他利用随机引物的方法在基因定位和作图中的应用要好,在分子标记辅助育种、种质资源鉴别等方面有着潜在的应用前景,SCAR标记是共显性遗传的。待检DNA间的差异可直接通过有无扩增产物来显示,这甚至可省却电泳的步骤。由于RAPD 扩增过程中错配几率较高,RAPD标记片段同源性高导致SCAR标记的转化成功

率较低,而由SRAP和I55R分子标记转化得到的。SCAR标记转化成功率较高。

1.3 SCAR标记的应用

SCAR标记直接采用专一特异性引物进行PC R扩增,排除了随机引物结合位点之间的竞争,且避免了筛选引物、估算样品间遗传相似性和构建遗传聚类图的繁琐过程,稳定性和重复性得以显著提高。SCAR标记目前已被广泛用于农林经济作物的种质鉴定、分子标记辅助育种、遗传连锁图谱构建和基因定位等诸多领域[2]。吴学谦等[3]通过对香菇菌株IG2和申香1U号的RAPD分析中分别获得一个多态性片段,再将该片段转化为特异的SCAR标记,该标记能快速鉴定这两个菌株。谢宝贵等[4]将金针菇子实体白色基因连锁的RAPD标记转化为SCAR 标记,认为可应用于白色金针菇良种选育,提高育种效率。Masuzeki等利用8对SC AR锚定引物构建洋葱的SCAR标记连锁图谱,并将此用于其他葱类的遗传分析。Shimada等在黄酮生物合成基因内含子长度多态性的基础上,建立SCAR 标记,可有效鉴定龙胆草极其变种,从而保护育种者权利。假单胞菌可代替农药用于雪霉病的生物防治,Halm-berg等应用SCAR标记来有效监测假单胞菌的生物防治作用效果。

2相关序列扩增多态性(SRAP )

2.1 SNAP标记的原理

相关序列扩增多态性简称SRAP,是一种新型的基于PCR技术的分子标记系统,由美国加州大学蔬菜作物系LI与Q博士于2001年提出,又叫基于序列扩增多态性。该标记通过一对引物对开放读码框进行扩增,上游引物长17 bp,5'端的前10bp是一段填充序列,紧接着是CCGG,它们组成核心序列及3'端3个选择碱基,对外显子进行特异扩增。下游引物长18 bp , 5'端的前10一11帅是一段填充序列,紧接着是AATT,它们组成核心序列及3'端3个选择碱基,对内含子区域、启动子区域进行特异扩增,因个体不同以及物种的内含子、启动子与间隔长度不等而产生多态性。

2. 2 SRAP标记的特点

SRAP标记测序显示多数标记为外显子区域,25条多态性带中16条序列GC含量超过35%,表明可能是外显子部分;Blas t搜索表明,60%条带与已知基因序列高度一致,这就确认了SRAP产生的多数标记包含了可译框中的外显子。测序还表明SRAP多态性产生于两个方面:由于小的插入与缺失导致片段大小改变.而产生共显性标记;核昔酸改变影响引物的结合位点,导致显性标记产生。该标记的优点:多态性高、产率中等;重复性好;操作简单;在基因组中分布均匀:可显示大量的共显性标记;较易对扩增得到的目标片段进行测序;引物具有通用性,而且其正向引物可以与反向引物两两搭配组合,因此用少量的引物可组配得到多个引物对,提高了引物的使用效率,降低引物合成成本。

2. 3 SRAP标记的应用

SRAP分子标记系统主要应用于物种资源鉴定与评价、遗传图谱构建、绘制基因转录图谱、基因定位以及标记重要基因并克隆测序。该分子技术最早是在芸甚属作物开发出来,目前已在其他作物如马铃薯、水稻、生菜、油菜、大蒜、苹果、

樱挑、柑橘与芹菜中也成功扩增。李翠翠等[5]利用SRAP分子标记对12个真姬菇进行遗传多样性分析,结果表明SRAP稳定性好,适于真姬菇的种内鉴定。金梦阳等构建了甘蓝型油菜的SRAP标记遗传图谱,得到了202个SRAP标记。朱坚等[6]将SRAP分子标记用于金针菇的种质资源分析。Peag等应用SRAP分析研究23个种群的红花及其两个近缘种种群的造传多样性,发现23个红花种群遗传差异较大,两个近缘种群间亲缘关系极为密切;运用SRAP标记对86个柑橘亚科柑橘属品种及其近缘种的遗传多样性和亲缘关系进行研究,共产生376个多态性片段,但他们在系统树上的差异并不明显,亲缘关系极近。Liu等首次将SRAP 标记应用于自交系竺麻DIV A水平的变化的研究,为竺麻的杂交育种提供理论依据,结果发现巴西的竺麻品种可能为中国品种进化而来的。

4靶位区域扩增多态性(TRAP)

3. 1 TRAP标记的原理

靶位区域扩增多态性简称TRAP,也是一种新型的基于PCR的植物基因型标记技术,由美国农业部北方作物科学实验室Hu与Vick于2003年提出。与SRAP,RAPD和AFLP等标记技术无须任何序列信息即可直接PC R扩增不同,TRAP技术是基于已知的cDNA或EST序列信息。它借助日益增长的庞大的生物序列信息利用生物信息工具和EST数据库信息,产生目标候选基因区多态性标记。TRAP技术是从SRAP技术改进而来的,SRAP使用两个任意引物,而TRAP 是使用长度为16 - 20核昔的固定引物(fixed primer)与任意引物(HF}11tI8I)如mC}o固定引物以公用数据库中的靶EST序列设计而来;任意引物与SRAP所用的一样,针对外显子和内含子的特点。设计为分别富含GC或AT核心区的任意序列。固定引物的设计步骤:从EST数据库中鉴别所需序列,再采用有关引物设计软件(如Prirner3等)设定核着酸序列合理长度(18个碱基)与最适、最大和最小Tm值( 53 , 55 , 50} ) ,最后选定最适的引物。任意引物设计完全同S1iAP技术,PCR扩增前5个循环采用35℃的退火温度,后35个循环采用5D℃的退火温度,每次TRAP-PCR反应在6. 50%聚丙烯酸胺测序胶可产生54一900bp的片段34 -50个。

3.2 TRAP标记的特点

TRAP标记技术不但具有PAPD技术的操作简单、易于建立的特点。而且具有AFLP技术强大功能的优势,它是一种新的基于PC R的植物基因型标记技术,具有操作简单、重复性好、多态性丰富、效率高和稳定性好的特点。

3. 3 TRAP标记的应用

TRAP技术适用于在不同作物上用于各种目的的研究,包括遗传图谱的构建、重要性状基因标记、种质资源的多样性研究和鉴定评价、标记辅助选择育种、gDNA与。DNA指纹分析乃至图位克隆等方面。Hu等L})将TRAP标记运用于植物的基因分型研究。金梦阳等[3]构建了甘蓝型油菜的TRAP标记遗传图谱,得到了14个TRAP标记。杜晓华等「zs ]用TRAP标记对多年生向日葵的1G个种进行了遗传多样性研究,建立的系统树与基于形态特征的分类结果相似。研究表明,TRAP可以有效地应用于接骨木的普通种、栽培种和野生选育种的遗传多样性评估。H ong等利用TRAP标记对天葵的遗传变异种进行评价研究,发现该

TRAP标记系统非常适合于天葵选育种的分类鉴定。Alwal}等利用TRAP分子标记进行甘蔗种间杂交的连锁图谱和基因组分析研究,结果发现TRAP标记比

A.FLP标记和SRAP标记的效果都要好,因为该标记具有靶基因定位功能。

4 SSR标记

SSR标记又称为sequence tagged microsatellite site,简写为STMS,是目前最常用的微卫星标记之一。由于基因组中某一特定的微卫星的侧翼序列通常都是保守性较强的单一序列,因而可以将微卫星侧翼的DNA片段克隆、测序,然后根据微卫星的侧翼序列就可以人工合成引物进行PCR扩增,从而将单个微卫星位点扩增出来。由于单个微卫星位点重复单元在数量上的变异,个体的扩增产物在长度上的变化就产生长度的多态性,这一多态性称为简单序列重复长度多态性(SSLP),每一扩增位点就代表了这一位点的一对等位基因。由于SSR重复数目变化很大,所以SSR标记能揭示比RFLP高得多的多态性。

4. 2 SSR标记的特点

SSR具有以下优点;(1)检测快速、信息量大;(2)一般检测到的是一个单一的多等位基因位点;(3)微卫星呈共显性遗传,故可鉴别杂合子和纯合子;(4)所需DNA 量少,即便降解了也能有效地分析鉴定出。SSR分析的缺点:在采用SSR技术分析微卫星DNA多态性时必须知道重复序列两端的DNA序列的信息,如不能直接从DNA数据库查寻,必须针对每个染色体座位的SSR测定并找到其两端的单拷贝序列设计引物并筛选。因而使其开发成本高、工作量大。

4. 3 SSR标记的应用

SSR标记是物种的基因型鉴定与品种保护、种子纯度评价和种质保存、多样性研究、基因和QTL,分析、系谱分析和分子标记辅助选择育种、资源鉴定、连续图谱绘制和克隆并筛选大片段文库等领域的有用工具,是应用较为广泛的遗传标记。孙琦等,应用SSR标记进行了玉米遗传育种的研究。金梦阳等[3]甘蓝型油菜的SSR标记遗传图谱,得到65个SSR 标记。Tang等利用SSH分子标记对14个花生属野生种和来自多个不同国家的24个花生栽培种进行亲缘关系研究,结果表明花生栽培种可被划分为两个主要类群和4亚类群。ZHAN 等对48个高粱、苏丹草及其近缘种进行S5R标记研究,发现该48个样品可被聚为5个类群,且高粱和苏丹草关系十分密切,可归为同一品种阮唱,用12个SSR标记研究利古里亚和地中海的橄榄的种质差异,结果发现利古里亚橄榄的种质资源和多态性都略胜一筹。

前景展望

分子标记技术发展迅速,但在某些物种的应用仍具有相当局限性,如在食用菌研究中,开发的分子标记数量不足,难找到与目标基因紧密连锁的分子标记;分子标记对数量性状基因的精确定位有较大差距;试验程序未实现自动化,难以对大群体进行研究。

随着生物信息学、比较基因组学,功能基因组学、基因表达的序列分析,DNA芯片技术和cDNA微阵列等生物技术的发展,DNA分子标记技术也将不断完善,它们将在种质基因型鉴别评价和目的农艺性状的基因标记等才刚起步的研究领域开拓更广泛的应用前景。

[1]Paran 1, Michelmore RW. eveloptnent of reliable PCR-basedmarkers linked to downy mildew

resistance in lettuce. 'Iheor ApplGcnei,1993,85(8);985-993.

[2]车克鹅,许勇,梁春阳,等西瓜核心种质的AFLP指纹图谱和5CAR标记,植物学报:英

文版,2003,45(6):731-735

[3]昊学谦,李海波,魏梅龙,等.Sen.分子标记技术在香菇菌鉴定上的应用研究.苗物学

报,2005,24(2)254-266.

[4]谢宝贵,刘维侠,王秀全,等.金针菇子实体颜色基因的分子标记.福建农林大学学报:自然科学版.2004,(33)3);3G3-358.

[5]李象翠,郭立忠,卢伟东.等.HAPD和SRAP分子标记在真姬菇菌种鉴定中的应用,食用菌学报,2009,16(1):21-25.

[6]朱坚,高兜.林伯箱,等。金针菇种质资源的SRAM分析.福建农林大学学报。2007 ,36 (2);154-158.

基于特定引物PCR的DNA分子标记技术研究进展(综述)

姓名:方婷

学号:1302021005

班级:生物技术

分子生物学综述

基于特定引物PCR的DNA分子标记技术研究进展 摘要: PCR是一种选择性体外扩增DNA的方法,分子标记是继形态标记、细胞标记和生化标记之后发展起来的一种比较理想的遗传标记技术。SSR、SCAR、SRAP 和TRAP是四种最新发展的基于特定引物PCR的新型DNA分子标记技术,具有简便、高效、重复性好等优点,已在遗传育种的种质资源等各个方面得到广泛应用。介绍了这四种分子标记的基本原理和特点,综述了它们在分子生物学研究中的应用。 关键词:分子标记SSR SCAR SRAP TRAP DNA分子标记技术的研究始于1980年,本质上是指能反映生物个体或种群间基因组某种差异的特异性DNA片段,DNA分子标记大多以电泳谱带的形式表现生物个体之间DNA差异,通常也称DNA的指纹图谱。与其他几种遗传标记相比具有的优越性有:大多数分子标记为显性,对隐性的农艺形状的选择十分便利;基因组变异及其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标形状的表达,与不良性状无连锁;检测手段简单、迅速。目前DNA分子标记技术已有数十种,主要可分为4大类:基于分子杂交的DNA 分子标记技术;基于随机/特定引物PG R的DNA分子标记技术;基子限制性酶切与PCR技术的分子标记技术;基于芯片技术的DNA分子标记技术。概述新型的基于特定引物PCR的DNA分子标记技术,包括SSR,SCAR,SRAP和TRAP。目前这些I3;VA分子标记技术的应用仍具有相当的局限性,如何将它们有效地利用于分子生物学研究是函待解决的问。 1序列特异扩增区域SCAR 1. 1 SCAR标记的原理 序列特异扩增区域(sequence characterised am-plifiedreginn)简称SCAR标记,是1993年Paran和Michelma记[1]]建立的一种可靠、稳定、可长期利用的RAPD 标记技术。SCAR标记的基本流程:先用随机引物进行RAPD筛选,获取特异的RAPD标记,然后对标记进行克隆和测序,根据测定RADII标记两末端的序列设计一对引物,此引物通常包含有原来的RAPD引物序列,多为20-24,再用该引物对所研究的基因组DNA进行PCR扩增,这样就可以把与原来的RAPI3片段相对应的单一位点鉴定出来。 1. 2 SCAR标记的特点 SCAR标记方便、快捷、可靠,适合于大量个体的快速检测,结果稳定性好,重复性高。由干SCAR标记使用的引物长,因而试验的可重复性高,它克服了RAPD重复性欠佳的弱点,同时具有STS标记的优点,因此比RAPn及其他利用随机引物的方法在基因定位和作图中的应用要好,在分子标记辅助育种、种质资源鉴别等方面有着潜在的应用前景,SCAR标记是共显性遗传的。待检DNA间的差异可直接通过有无扩增产物来显示,这甚至可省却电泳的步骤。由于RAPD 扩增过程中错配几率较高,RAPD标记片段同源性高导致SCAR标记的转化成功

医学分子生物学

医学分子生物学 疾病和基因关系始终是医学领域关注的重大问题。在孟德尔遗传规律被重新认识的初期,就发现许多疾病受到遗传因素的控制,遵守孟德尔遗传因子的传递规律。遗传连锁定律的提出,现代经典遗传学理论体系的完善,极大地促进了对遗传性疾病的认识。上世纪40年代,L Pauling提出了”分子病”的概念,1956年,V Ingram发现血红蛋白β链第六位氨基酸从谷氨酸突变为缬氨酸是导致镰刀状贫血的原因。几乎同时,J.Lejeune发现Down综合症是由于21号染色体三陪体异常所致,系列染色体疾病病因。1976年,H Vanmus 和M Bishop在对肿瘤病毒学的研究中,发现了病毒癌基因,继而又无确定细胞癌基因的存在,此后抑癌基因也相继被发现,建立了肿瘤发生的基因理论,肿瘤被认为是体细胞的遗传病得到了普遍的认可。1983年,将亨廷顿病基因定位于第四号染色体上,1986年,克隆了慢性肉芽肿病的致病基因,同年杜氏肌营养不良和视网膜母细胞瘤的基因,也被定位克隆成功,掀起了单基因遗传病致病基因鉴定和克隆的热潮。世纪之交,人类基因组计划的完成,新的DNA标记的发现,为研究常见病的遗传因素成为了可能,2005年,首次用全基因组关联分析(GWAS),解析了视网膜黄斑变性病的相关基因,揭开了复杂性疾病易感基因确定的序幕,此后,一系列的常见多发疾病基因的GWAS研究,极大地丰富了人们对疾病发病机制的认识,加深了对疾病发生发展机制的认知。今天,疾病和基因关系仍是很长一段时间的重点工作,解析疾病基因,不但可以确定疾病的遗传易感性,有目的的开展预防、诊治,更

重要的是了解疾病新的致病机制,为分子诊断、分子靶向干预提供分子靶点。另一方面,药物作用靶点分子基因在人群的多态性,对药物作用的疗效影响;参与药物吸收、分布、代谢、排泄和毒性(admet)的基因多态性,也会影响药物的疗效,即药物基因组方面的研究,必将成为后基因组时代的重要研究内容。以疾病基因组学和药物基因组学为代表的组学研究进展,将为个体化医疗、精准医学提供理论和实践基础。

桑树分子生物学研究进展

桑树分子生物学研究进展 王钰婷,汪泰初,李瑞雪,王伟 (安徽省农科院蚕桑研究所,安徽合肥230061) 摘要:桑树是多年生木本植物,具有良好的经济效益、生态效益和社会效益。遗传改良在桑树资源可持续发展中起到关键作用,现代分子生物学技术的迅速发展为之带来了新的机遇和挑战。近年来,桑树分子生物技术研究取得了重要突破,显示出独特的优势和巨大的发展潜力。概述了桑树分子生物学研究进展,包括分子标记技术、转基因技术、筛选基因耐型、桑树育种等,并对桑树分子生物学研究的应用前景进行讨论,以期为桑树分子生物学的进一步研究提供参考资料。 关键词:桑树;分子生物学;改良;基因转化 中图分类号:S888.3+1文献标识码:A文章编号:1004-874X(2013)12-0153-03 Research advances on mulberry molecular biology WANG Yu-ting,WANG Tai-chu,LI Rui-xue,WANG Wei (The Sericultural Research Institute,Anhui Academy of Agricultural Sciences,Hefei230061,China) Abstract:Mulberry is a perennial woody plant with a huge economic,ecological and social value.Genetic improvement programs play a crucial role in the sustainable management of mulberry resources.The rapid development of modern molecular biotechnology brings new opportunities and challenges to mulberry improvement.Molecular biotechnology has already shown great application potential for mulberry improvement.The recent advance on molecular biology of mulberry,including its molecular markers,transgenic technology, screening for genotypic stress tolerance and mulberry breeding were summarized in this paper.Moreover,the perspective applications of molecular biotechnology to mulberry genetic improvement were also discussed.This work provides a reference for further study of the molecular biology of mulberry. Key words:mulberry;molecular biology;amelioration;genetic transformation 桑树是一种多年生木本植物,属于蔷薇目(Rosales)桑科(Moraceae)桑属(Morus L.)桑种(Morus alba L.)[1]。作为家蚕的唯一饲料,桑树良种是发展蚕业生产的重要物质基础,种植优良桑树品种不仅可以提高桑叶产量和质量,增加蚕桑生产经济效益,而且对茧丝绸的品质改善也起着重要作用,具有重要的生态和经济价值。桑树分子生物学研究始于20世纪80年代,随着现代分子生物学及其技术的快速发展,现代先进研究手段逐步应用于桑树研究,桑树分子生物学研究得到了长足发展,对桑树种质资源的研究也由早期的种质资源鉴定、分布调查及形态学特征等方面的基础研究,逐步深入到桑树种质资源分子生物学研究的发展阶段。本文对分子生物学技术在桑树中的研究现状进行综述,以期为桑树分子生物学的进一步研究提供参考。 1桑树DNA分子标记技术 分子标记是以DNA多态性为基础的遗传标记,是DNA水平遗传变异的直接反映。近年来,随着分子生物学及其技术的快速发展,分子标记技术广泛应用于各种作物的种质资源鉴定与分类、遗传图谱构建、基因定位以及育种中。DNA分子标记技术能对不同发育时期的个体、所有组织器官甚至细胞作检测,具有多肽性高、多等位基因、遍及整个基因组且不受组织和环境及其他因素影响等特点。当前DNA分子标记已广泛应用于作物遗传资源与育种研究,分别被称为分子种质资源鉴定和分子标记育种[2]。DNA 分子标记可以克服形态学鉴定以及同工酶、蛋白电泳鉴定中的许多缺陷和难题,因而在品种鉴定方面展示了广阔的应用前景。 桑树是重要的经济作物,但分子标记技术在桑树上的应用较晚。1993年,杨光伟等[3]采用显性分子标记RAPD 技术对我国桑树现行分类的15个种、4个变种及近缘属的48份供试材料进行桑属种群遗传结构分析,结果表明桑树具有丰富的遗传多样性,多态位点百分率为78.95%。向仲怀等[4]利用RAPD技术研究了PCR反应条件,构建了桑属9个种的共9种材料基因DNA指纹图谱,对桑属植物分类进行了探索性研究。之后,楼程富等[5]、赵卫国等[6]、Bhattacharya等[7]利用此技术对桑树不同种质资源进行了多态性分析,为构建桑树遗传图谱、分子辅助育种、重要农艺性状基因定位和系统分类等提供了重要理论依据。 随着分子生物学的发展,新的分子标记技术不断出现,ISSR(Inter-simple sequence repeats)标记在桑树中是最常见的分子标记,并可结合RAPD(Randomly amplified polymorphic DNA)[8]和SSR(Simple sequence repeats)[9]研究桑树品种的遗传变异。因SNP(Single nucleotide 收稿日期:2013-03-25 基金项目:安徽省农科院院长青年创新基金(13B0632);国家蚕 桑产业技术体系合肥综合试验站(CARS-22-SYZ09);安徽省农科院 创新团队项目(11C0610) 作者简介:王钰婷(1985-),女,硕士,助理研究员,E-mail:wang yuting656@https://www.360docs.net/doc/037449022.html, 通讯作者:汪泰初(1970-),男,硕士,研究员,E-mail:189498538 28@https://www.360docs.net/doc/037449022.html, 广东农业科学2013年第12期153

分子生物学实验指

DNA分离 核酸包括DNA、RNA两种分子在细胞中都是以与蛋白质结合的状态存在。真核生物的染色体DNA为双链线性分子;原核生物的"染色体"、质粒及真核细胞器DNA为双链环状分子;有些噬菌体DNA有时为单链环状分子;RNA分子在大多数生物体内均是单链线性分子;不同类型的RNA分子可具有不同的结构特点,如真核自由RNA分子多数在3'端带有ploy(A)结构。至于病毒的DNA、RNA分子,其存在形式多种多样,有双链环状、单链环状、双链线状和单链线状等。 95%的真核生物DNA主要存在于细胞核内,其它5%为细胞器DNA,如线粒体、叶绿体等。RNA分子主要存在于细胞质中,约占75%,另有10%在细胞核内,15%在细胞器中。RNA以rRNA 的数量最多(80%~85%),tRNA及核内小分子RNA占10%~15%,而mRNA分子只占1%~5%,mRNA分子大小不一,序列各异。总的来说,DNA分子的总长度一般随着生物的进化程度而增大,而mRNA 的分子量与生物进化无明显关系。 分离纯化核酸总的原则:①应保证核酸一级结构的完整性;②排除其它分子的污染。为了保证核酸结构与功能的研究,完整的一级结构是最基本的要求,因为遗传信息全部贮存在一级结构之内。核

酸的一级结构还决定其高级结构的形式以及和其它生物大分子结合的方式。 核酸的纯化应达到的要求:①核酸样品中不应存在对酶有抑制作用的有机溶剂和过高浓度的金属离子;②其它生物大分子如蛋白质、多糖和脂类分子的污染应降低到最低程度;③排除其它核酸分子的污染,如提取DNA分子时,应去除RNA分子,反之亦然。 实验过程中注意事宜: ①尽量简化操作步骤,缩短提取过程,以减少各种有害因素对核酸的破坏;②减少化学因素对核酸的降解,为避免过酸、过碱对核酸链中磷酸二酯键的破坏,操作多在pH4~10条件下进行;③减少物理因素对核酸的降解,物理降解因素主要是机械剪切力,其次是高温。机械剪切力包括强力高速的溶液震荡、搅拌,使溶液快速地通过狭长的孔道;细胞突然置于低渗液中;细胞爆炸式的破裂以及DNA样品的反复冻贮。这些操作细节在实验操作中应备加注意。机械剪切作用的主要危害对象是大分子量的线性DNA分子,如真核细胞的染色体DNA。对分子量小的环状DNA分子,如质粒DNA及RNA分子,威胁相对小一些。高温,如长时间的煮沸,除水沸腾带来的剪切力外,高温本身对核酸分子中的有些化学键也有破坏作用。核酸提取过程中,常规操作温度为0~4℃,此温度环境降低核酸酶的活性与反应速率,减少对核酸的生

综述:进化论与进化生物学的发展

综述:进化论与进化生物学的发展自达尔文1859年发表《物种起源》(The Origin of Species)一书以来,“进化”(evolution)已逐渐成为生物学文献中出现频率最高的词汇之一,进化生物学(evolutionary biology)则成为当今生命科学中一个重要的前沿领域。 纵观150年来,随着科学界对生物进化现象的认识不断深化,人们对达尔文进化论的理解也随之不断深入,进化论自身也走过了曲折的发展之路。除了像其他任何一种科学理论一样需要补充和修正外,进化论还经受了来自科学领域之外的一次又一次挑战。今天,分子水平的生物进化研究正在蓬勃兴起,人们对进化论的兴趣有增无减,同时也提出了更高的要求,即以进化论为核心的进化生物学研究不仅应能够解释各种复杂生命现象,重建生物的自然历史,而且还应具有一定的预测性和应用潜力。因而,藉纪念达尔文(C. Darwin)诞辰200周年和《物种起源》出版150周年之际,回顾进化论与进化生物学的发展历程,将有助于我们全面了解该领域的科学理论与知识,并用于指导21世纪生命科学的研究。 进化论的科学本质 进化论从本质上改变了人们对地球生命现象的理解。进化论围绕生物多样性的起源与发展,引导人们探索各种生物之间的亲缘关系(或称进化谱系)。例如,作为地球生物的一员,人类究竟何时又是如何在地球上出现的?不同人种或不同人群之间关系如何?人类与其他生物(如细菌)有何种进化上的关联?如此等等,进化论为我们提供了科学的解释。 在进化论中,具有有益性状的生物存在差异的繁殖优势被称为自然选择(natural selection),因为是自然来“选择”提高生物生存与繁殖能力的性状。如果生物的突变性状降低其生存与繁殖能力的话,自然选择就会减少这些性状在生物群体中的扩散。人工选择也是一个类似的过程,但在这种情况下是人而不是自然环境使生物交配以选择理想的性状。最常见的莫过于通过人工选择来获得人们所需的家畜品系和园艺植物品种等。 迄今为止,支持进化论的证据层出不穷,从中华龙鸟化石的发现到酵母实验进化的分析,不胜枚举[1]。近年来比较突出的例子有加拿大北部“大淡水鱼”化石的发现。科学家们根据进化理论和化石分析预测出浅水鱼类向陆地过渡阶段的大致时间,随后他们将目光投向加拿大北部努维特地区的埃尔斯米尔岛,那里有大约37 500万年前的沉积岩。通过四年的努力,科学家们终于从岩层中发掘出命名为“Tiktaalik”(因纽特人的语言中意为“大淡水鱼”)的生物化石,它既具有许多鱼类特征,又具有早期四足动物的典型特征,而它的鳍包含骨骼,可形成类似于有肢动物的肢体,用来移动和支撑躯体[2]。“大淡水鱼”的发现证实了科学家们基于进化论的预测。反过来,对于进化论预测的证实也提高了达尔文理论的可信度。的确,每一种科学理论本质上都要具备对尚未观察到的自然事件或现象作出预测的能力。 另一个经典的例子是科学家们对特立尼达岛阿立波河中的虹鳉鱼进行的观察与实验。按照进化理论,不同时间尺度上的自然选择可能产生全然不同的进化效应。在仅仅几个时代的周期内,生物个体就有可能产生小规模的变异,可称之为微进化(microevolution)。科学家们发现,生活在阿立波河中的虹鳉鱼无论是其幼体还是成体均遭受较大鱼类的捕食,生活在河流上游小溪中的虹鳉鱼只有其幼体会被较小鱼类捕食,因而长期的进化过程导致该河流中的虹鳉鱼个体较小(更易于躲避捕食者),而溪流中的虹鳉鱼则个体较大(不易被较小的鱼类捕食)。科学家们将河流中的虹鳉鱼置于原来没有虹鳉鱼种群的溪流中,发现它们仅仅在20代后就进化出了溪流中虹鳉鱼的特性[3]。 毋庸讳言,在科学上,我们不可能绝对肯定地证明某种解释是完美无缺的,或者是终结性的。然而,迄今为止,许多科学解释已经被人们反复检验,不断增添的新观察结果或新的实验分析很难对其作出重大改变。换言之,科学界已广泛接受这些解释,它们是以观察自然世界获得的证据为基础的。进化理论就是其中一个代表。从这一点出发,我们可以明确地将

分子生物学课程论文

分子生物学课程论文

PCR技术发展与应用的研究进展 王亚纯 09120103 摘要:聚合酶链式反应(polymerase chain reaction,PCR)是最常用的分子生物学技术之一,通过变性、退火和延伸的循环来完成核酸分子的大量扩增.定量PCR技术是克服了原有的PCR技术存在的不足,能准确敏感地测定模板浓度及检测基因变异等,快速PCR技术快速PCR在保证PCR反应特异性、灵敏性和保真度的前提下,在更短时间内完成对核酸分子的扩增.mRNA 差异显示PCR技术是在基因转录水平上研究差异表达和性状差异的有效方法之一.近年来已经开展了许多这三方面的研究工作,本文就定量PCR技术、快速PCR技术、mRNA差异显示PCR技术作一综述,以便更好地理解及应用这项技术。 关键字:定量PCR;荧光PCR;快速PCR;DNA聚合酶;mRNA差异显示PCR 0 前言 聚合酶链反应(polymerase chain reaction,PCR)技术由于PCR简便易行、灵敏度

高等优点,该技术被广泛应用于基础研究。但是,由于传统的PCR技术不能准确定量,且操作过程中易污染而使得假阳性率高等缺点,使其在临床上的应用受到限制[1]。鉴于此,对PCR产物进行准确定量便成为迫切的需要。几经探索,先后出现了多种定量PCR (quantitative PCR,Q-PCR)方法,其中结果较为可靠的是竞争性PCR和荧光定量PCR(fluorescence quantitative PCR,FQ-PCR)。 随着生命科学和医学检测的不断发展,人们越来越希望在保证PCR反应特异性、灵敏性、保真度的同时,能够尽量缩短反应的时间,即实现快速PCR(Rapid PCR or Fast PCR)。快速PCR 技术不仅可使样品在有限的时间内可以尽快得到扩增,而且可以显著增加可检测的样品数量,显然,在大批量样本检测和传染病快速诊断等方面将会有重要的应用前景。例如,快速PCR在临床检测中可大大加快疾病的诊断效率;在生物恐怖袭击时能有效帮助快速鉴定可疑物中有害生物的存在与否;同时,由于PCR已经渗入到现代生物学研究的各个方面,快速PCR的实现必然可以使许多科学研究工作的进展显著加快,最终影

中南大学_医学分子生物学试题库答案.pdf

医学分子生物学习题集 (参考答案) 第二章基因与基因组 一、名词解释 1.基因(gene):是核酸中储存有功能的蛋白质多肽链或RNA序列信息及表达这些信息 所必需的全部核苷酸序列。 2.断裂基因(split gene):真核生物基因在编码区内含有非编码的插入序列,结构基因 不连续,称为断裂基因。 3.结构基因(structural gene):基因中用于编码RNA或蛋白质的DNA序列为结构基因。 4.非结构基因(non-structural gene):结构基因两侧一段不编码的DNA片段,含有基 因调控序列。 5.内含子(intron):真核生物结构基因内非编码的插入序列。 6.外显子(exon):真核生物基因内的编码序列。 7. 基因间DNA (intergenic DNA):基因之间不具有编码功能及调控作用的序列。 8. GT-AG 法则 (GT-AG law):真核生物基因的内含子5′端大多数是以GT开始,3′ 端大多数是以 AG 结束,构成 RNA 剪接的识别信号。 9.启动子(promoter):RNA聚合酶特异识别结合和启动转录的DNA序列。 10.上游启动子元件(upstream promoter element ):TATA合上游的一些特定的DNA序 列,反式作用因子,可与这些元件结合,调控基因转录的效率。 11.反应元件(response element):与被激活的信息分子受体结合,并能调控基因表达的 特异DNA序列。 12.poly(A)加尾信号 (poly(A) signal) :结构基因末端保守的 AATAAA 顺序及下游 GT 或T富含区,被多聚腺苷酸化特异因子识别,在mRNA 3′端加约200个A。 13.基因组(genome):细胞或生物体一套完整单倍体的遗传物质的总称。 14.操纵子(operon):多个功能相关的结构基因成簇串联排列,与上游共同的调控区和下 游转录终止信号组成的基因表达单位。 15.单顺反子(monocistron):一个结构基因转录生成一个mRNA分子。 16.多顺反子(polycistron):原核生物的一个mRNA分子带有几个结构基因的遗传信息,

分子生物学实验技术考试题库

一、名词解释 1.分配常数:又称分配系数,是指一种分析物在两种不相混合溶剂中的平衡常数。 2.多肽链的末端分析:确定多肽链的两末端可作为整条多肽链一级结构测定的标志,分为氨基端分析和羧基端分析。 3.连接酶:指能将双链DNA中一条单链上相邻两核苷酸连接成一条完整的分子的酶。 4.预杂交:在分子杂交实验之前对杂交膜上非样品区域进行封闭,用以降低探针在膜上的非特异性结合。 5.反转录PCR:是将反转录RNA与PCR结合起来建立的一种PCR技术。首先进行反转录产生cDNA,然后进行常规的PCR反应。 6.稳定表达:外源基因转染真核细胞并整合入基因组后的表达。 7.基因敲除:是指对一个结构已知但功能未知或未完全知道的基因,从分子水平上设计实验,将该基因从动物的原基因组中去除,或用其它无功能的DNA片断取代,然后从整体观察实验动物表型,推测相应基因的功能。 8.物理图谱:人类基因组的物理图是指以已知核苷酸序列的DNA片段为“路标”,以碱基对(bp,kb,Mb)作为基本测量单位(图距)的基因组图。 9.质谱图:不同质荷比的离子经质量分析器分开后,到检测器被检测并记录下来,经计算机处理后所表示出的图形。 10.侧向散射光:激光束照射细胞时,光以90度角散射的讯号,用于检测细胞内部结构属性。

11.离子交换层析:是以离子交换剂为固定相,液体为流动相的系统中进行的层析。 12.Edman降解:从多肽链游离的N末端测定氨基酸残基的序列的过程。 13.又称为限制性核酸内切酶(restriction endonuclease):是能够特异识别双链DNA序列并进行切割的一类酶。 14.电转移:用电泳技术将凝胶中的蛋白质,DNA或RNA条带按原位转移到固体支持物,形成印迹。 15.多重PCR:是在一次反应中加入多对引物,同时扩增一份模板样品中不同序列的PCR 过程。 16.融合表达: 在表达载体的多克隆位点上连有一段融合表达标签(Tag),表达产物为融合蛋白(有分N端或者C端融合表达),方便后继的纯化步骤或者检测。 17.同源重组:发生在DNA同源序列之间,有相同或近似碱基序列的DNA分子之间的遗传交换。 18.遗传图谱又称连锁图谱(linkage map),它是以具有遗传多态性的遗传标记为“路标”,以遗传学距离为图距的基因组图。 19.碎片离子:广义的碎片离子为由分子离子裂解产生的所有离子。 20.前向散射光:激光束照射细胞时,光以相对轴较小角度向前方散射的讯号用于检测细胞等离子的表面属性,信号强弱与细胞体积大小成正比。 21.亲和层析:利用共价连接有特异配体的层析介质分离蛋白质混合物中能特异结合配体的目的蛋白或其他分子的一种层析法。(利用分子与其配体间特殊的、可逆性的亲和结合

《分子生物学大(综合)实验》课程介绍(精)

《分子生物学大(综合)实验》课程介绍 课程代码(学校统一编制) 课程名称分子生物学大(综合)实验 英文名称MolecularBiologyBigExperiment 学分:3修读期:第七学期 授课对象:生物科学、生物技术 课程主任:姓名、职称、学位 关洪斌,副教授,博士 课程简介 21世记是生命科学的世记,而分子生物学是带动生命科学的前沿科学。分子生物学是在生物大分子水平上研究细胞的结构、功能及调控的学科,在现代生物学学科发展中的重要性与不容置疑的带头作用是众所周知的。许多重大的理论和技术问题都将依赖于分子生物学的突破。随着分子生物学研究工作的不断深入,相关实验技术方法和技术日新月异的发展。为了适应分子生物学研究工作日益发展的需要,满足培养从事现代生物学研究,尤其是进行分子生物学研究的人才的需要,特设置分子生物学大(综合)实验课程。本课程的教学目标和基本要求是使学习者基本掌握分子生物学实验技术的基本原理和方法,教学内容包括TRIZOL试剂盒提取RNA、RNA质量的检测、RT-PCR和变性聚丙烯酰胺凝胶电泳检测cDNA。通过本实验可提高学生的动手能力和创造性思维能力,较好地掌握分子生物学实验操作和技能,为今后独立进行科研工作打下坚实基础。 实践教学环节(如果有) 实验内容包括TRIZOL试剂盒提取RNA、RNA质量的检测、RT-PCR和变性聚丙烯酰胺凝胶电泳检测cDNA。 课程考核 实验报告 指定教材 自编 参考书目 1.分子生物学实验指导高等教育出版社施普林格出版社,1999 2.彭秀玲,袁汉英等.基因工程实验技术.湖南科学技术出版社,1997 3.吴乃虎.基因工程原理(上下册).科学出版社,1998 4.F.奥斯伯等著:颜子颖,王海林译.分子克隆实验指南(第二版).科学出版社,1998 5.J.萨姆布鲁克等著:金冬雁,黎孟枫等译.精编分子生物学实验指南.科学出版社,1993

分子生物学课程论文

生物芯片研究进展 摘要:生物芯片是便携式生物化学分析器的核心技术。通过对微加工获得的微米结构作生物化学处理能使成千上万个与生命相关的信息集成在一块厘米见方的芯片上。采用生物芯片可进行生命科学和医学中所涉及的各种生物化学反应,从而达到对基因、抗原和活体细胞等进行测试分析的目的。生物芯片发展的最终目标是将从样品制备、化学反应到检测的整个生化分析过程集成化以获得所谓的微型全分析系统(micro total analytical system)或称缩微芯片实验室(laboratory on a chip)。生物芯片技术的出现将会给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品和环境卫生监督等领域带来一场革命。 关键词:生物芯片,缩微芯片实验室,疾病诊断,基因表达 正文:人们利用人类基因组计划中所发现的已知基因对其功能进行研究,把已知基因的序列与功能联系在一起的功能基因组学研究。另外,与疾病相关的研究已从研究疾病的起因向探索发病机理方面转移,并从疾病诊断向疾病易感性研究转移。由于所有上述这些研究都与DNA结构、病理和生理等因素密切相关,因此许多国家现已开始考虑在后基因组时期,研究人员是否能用有效的硬体技术来对如此庞大的DNA信息以及蛋白质信息加以利用。为此,先后已有多种解决方案问世,如DNA的质谱分析法、荧光单分子分析法、阵列式毛细管电泳、杂交分析等。 但到目前为止,在对DNA和蛋白质进行分析的各种技术中,发展最快和应用前景最好看的技术当数以生物芯片技术为基础的亲和结合分析、毛细管电泳分析法和质谱分析法。此外,在此基础上,通过与采用生物芯片技术和样品制备方法(芯片细胞分离技术和生化反应方法(如芯片免疫分析和芯片核酸扩增)相结合,许多研究机构和工业界都已开始构建所谓的缩微芯片实验室。 建立缩微芯片实验室的最终目的是将生命科学研究中的许多不连续的分析过程,如样品制备,化学反应和分离检测等,通过采用象集成电路制作过程中的半导体光刻加工那样的缩微技术,将其移植到芯片中并使其连续化和微型化。用这些生物芯片所制作的具有不同用途的生化分析仪具有下述一些主要优点,即分析全过程自动化、生产成本低、防污染(芯片系一次性使用)、分析速度可获得成千上万倍的提高、同时,所需样品及化学药品的量可获得成百上千倍的减少、极高的多样品处理能力、仪器体积小、重量轻、便于携带。 一.生物芯片的微加工制备 生物芯片的加工借用的是微电子工业和其他加工工业中比较成熟的一些微细加工工艺,在玻璃、塑料、硅片等基底材料上加工出用于生物样品分离、反应的微米尺寸的微结构,如过滤器、反应室、微泵、微阀门等微结构。然后在微结构上施加必要的表面化学处理,再在微结构上进行所需的生物化学反应和分析。 生物芯片中目前发展最快的要算亲和结合芯片(包括DNA和蛋白质微阵列芯片)。它的加工除了用到一些微加工工艺以外,还需要使用机器人技术。现在有四种比较典型的亲和结合芯片加工方法。一种是Affymetrix公司开发出的光学光刻法与光化学合成法相结合的光引导原位合成法。第二种方法是Incyte pharmaceutical公司所采用的化学喷射法,它的原理是将事先合成好的寡核苷酸探针喷射到芯片上指定的位置来制作DNA芯片的。第三种是斯坦福大学所使用的接触式点涂法。该方法的实现是通过使用高速精密机械手所带的移液头与玻璃芯片表面接触而将探针定位点滴到芯片上的[11]。第四种方法是通过使用四支分别装有A、T、G、C核苷的压电喷头在芯片上作原位DNA探针合成的。

分子生物学技术在微藻分类中的应用现状

分子生物学技术在微藻分类中的应用现状 摘要:微藻是一类最原始的物种之一,微藻具有结构简单、生长周期快等特点;对于微藻分类和鉴定是关于微藻基础研究的内容之一。本文综述了传统微藻分类方法和分子生物学分类方法,详细介绍了微藻叶绿体基因组、线粒体基因组和核基因组在分子分类中的应用。 关键词:分子生物学微藻分类现状 1 概述 1.1 传统微藻分类技术简介 微藻是一群小型藻类的总称,微藻细胞微小,结构简单,形态多样,适应性强,整个生物体都能进行光合作用,所以光合作用效率高,生长周期短、速度快等特点[1]。进入上世纪90年代,对于海洋生态系统的研究愈发重要。在探索海洋生产力的构成、分布与作用,赤潮的监测、预报和治理等方面,藻类的鉴定与分类都是其中的基础内容之一[2]。 藻类传统的分类方法主要是依据其形态、生理生化等指标进行[3],但这些指标易受环境条件的影响,并且亲缘关系较相近的物种之间在形态等指标上表现的差异很小;同时,微藻个体微小,一般需要借助电子显微镜辨别鉴定,但有些藻类的结构不利于电子显微镜制片;有些藻类种间界定的形态学标准并不清晰,很难完整而正确地揭示一些物种之间的亲缘关系,以致在某些微藻属、种的分类上造成混乱。并且这种分类方法分析速度慢、耗时长,对操作人员的要求较高,难以满足浮游植物种群动力学观测“量大、连续”的要求。 所以在传统分类的基础上寻找一些新方法弥补它的不足方面并解决上述难题就成为近十几年来微藻分类与鉴定领域研究的新动向。 1.2 分子生物学技术介绍 1953年,Watson 和Crick 成功提出了DNA分子双螺旋的空间结构模型,奠定了分子生物学的基础。1984年Mullis建立的PCR技术使分子生物学得到了迅速发展[4]。随着分子生物学的迅猛发展及实验技术的突破,一些新的技术、方法广泛应用于生物学和医学等相关学科以后,我们对这些学科有了更深入的认识。这些新的技术、方法应用于微生物的分类鉴定中,使微生物的分类取得了令人瞩目的成果,使人们完全能够从分子水平认识生物物种分化的内在原因和物质基础以及各类生物的分子进化历史,从而引起了微藻分类研究领域中的变革[5]。 分子分类方法包括同工酶分析[6]、特异蛋白质分析[7]和以DNA多态性[8]为基础的分类方法。同工酶和特异蛋白质分析技术通过属、种间不同酶系统的同工酶或某些特异蛋白质的基

现代分子生物学小论文

中国因大豆最新研究进展报告(专题三) 摘要:大豆是重要的油料作物和饲料作物,也是人类的主要食用蛋白和工业原料的来源。而转基因是一种将人工分离和修饰过的基因导入到生物体基因组中,由于导入基因的表达,引起生物体的性状的可遗传的修饰的现代技术。目前,越来越多的转基因技术运用到食品医药行业当中。大豆的转基因研究是国内外植物分子生物学研究的热点之一,通过将目的基因整合到大豆基因中,可获得抗虫大豆,其出油率也高于普通大豆。转基因大豆已成为世界大豆主产国大豆产业发展的主要动力。本文概述转基因大豆依据的主要理论,目前国内研究进展,转基因大豆的现状及其安全问题等等。 关键词:转基因大豆食品安全研究进展外源基因现状 前言:大豆是重要的油料作物和高蛋白粮饲兼用作物,含有丰富的蛋白质、脂肪和多种人体有益的生理活性物质。随着基因工程研究的升入,用转基因来改变大豆的性状已被广泛应用。转基因大豆最早的报道是1984年De Bloke等和Horsch 等的研究结果。1988年,McCabe和Hinchee分别用基因枪轰击大豆未成熟胚生长点和用农杆菌侵染大豆子叶节的方法获得转基因植株。1994年5月,美国孟山都公司培育的抗草甘膦除草剂转基因大豆首先获准在美国商业化种植。1997年,杜邦公司获得美国食品药物管理局批准推广种植高油酸转基因大豆。1998年AgrEvo公司研制的抗草丁膦大豆被批准进行商业化生产。转基因大豆品种的育成和推广是世界大豆科技史上具有里程碑意义的重大突破,已成为世界大豆发展生产的主流趋势。 1转基因大豆简介 转基因大豆最早来源于美国,1996年春,美国伊利诺伊西部许多农场主种植了一种大豆新品种,这种大豆是移植了矮牵牛的一种基因。这个新大豆品种可以抵抗杀草剂——草甘膦(毒滴混剂)。草甘膦会把普通大豆植株与杂草一起杀死。这是人类历史上第一次成功培育转基因大豆。 转基因大豆包括抗草胺膦转基因大豆,抗磺酰脲类除草剂转基因大豆,抗草甘膦转基因大豆等等。目前以抗草甘膦为目标而创制出的抗除草剂作物占绝对优势,其中尤以抗草甘膦大豆在世界范围内种植面积最广。 2转基因大豆的主要理论 2.1 转基因技术理论

(珍贵)浙江大学05-12年博士医学分子生物学真题

2012浙江大学医学分子生物学(乙)回忆版: 一.名词解释(3分*5) 1.The Central Dogma 2.Telomere 3.nuclear localization signal, NLS 4.Protein Motif 5.Splicesome 二.简答题:(5分*9) 1.一个基因有哪些结构组成? 2.基因、染色体、基因组的关系? 3.表观遗传机制改变染色质结果的机制? 4.内含子的生物学意义? 5.什么是蛋白质泛素化?其生物学意义是什么? 6.蛋白质纯化的方法? 7.MicroRNA是什么?它如何发挥作用? 8.什么是全基因组关联研究(Genome Wide Association Studies,GWAS)?其研究目的是什么? 9.分子生物学研究为什么需要模式生物? 三.问答题:(10分*4) 1.人体不同部位的细胞其基因组相同,为什么表达蛋白质的种类和数量不同? 2.用分子生物学知识,谈谈疾病发生机制? 3.有一块肿瘤组织及癌旁组织,设计一个实验证明细胞内蛋白质在肿瘤发生发展中的作用? 4.目前,基因靶点研究已成为新药开发的用药部分,结合目前药物靶点在新药开发中的应用,谈谈你的建议和观点?

2011浙江大学博士入学考试医学分子生物学试题回忆 一、英文名解 1、冈崎片段: 2、反式作用因子: 3、多克隆位点: 4、micro RNA: 5、分子伴侣: 二、简答 1、蛋白质四级结构。 2、真核转录调控点。 3、表观遗传学调控染色质。 4、真核RNA聚合酶类型及作用。 5、基因突变。 6、组学概念及举例。 7、简述兔源多克隆抗体的制备。

分子生物学实验项目三

分子生物学实验项目三

实验三植物基因组DNA的提取 实验目的 通过本实验学习从植物组织中提取DNA的方法。 实验原理 利用液氮对植物组织进行研磨,从而破碎细胞。细胞提取液中含有SDS溶解膜蛋白而破坏细胞膜,使蛋白质变性而沉淀下来。EDTA抑制DNA酶的活性。再用酚、氯仿抽提的方法去除蛋白,得到的DNA溶液经乙醇沉淀。 仪器、材料与试剂 (一)仪器 1低温离心机 2 恒温水浴锅 3 台式离心机 4 琼脂糖凝胶电泳系统 5 微量加样器 (二)材料与试剂 1 三羟甲基氨基甲烷(Tris) 2 乙二胺四乙酸(EDTA) 3 氯化钠(Nacl) 4 β-巯基乙醇 5 氯化钾(KCl) 6 异丙醇

7 乙醇 8 琼脂糖 9 十二烷基硫酸钠(SDS) 10 50mL离心管 11陶瓷研钵 12 吸头、小指管 13 细胞提取液 100mmol/L Tris.HCl(PH 8.0) 5 mmol/L EDTA(PH 8.0) 500 mmol/L Nacl 1.25% SDS 1 mmol/L β-巯基乙醇 14 5 mol/L KCl 15 TE缓冲液 10 mmol/L Tris.HCl(PH 8.0) 1 mmol/L EDTA(PH 8.0) 16 哥伦比亚野生型拟南芥(Arabidopsis Columbia)三周幼叶。 17 TIANGEN基因组DNA提取试剂盒(Plant Genomic DNA Kit)(离心柱型)。 实验步骤 一、自配试剂提取步骤

1 取4g新鲜叶片,在液氮中充分研磨成粉末状(越细越好)。 2 将研磨好的粉末转移至50mL的离心管中,加入16mL细胞提取液,充分混匀,65℃水浴保温20min。 3 从水浴中取出离心管,加入5mL5mol/L的KCl溶液,混匀,冰浴20min。 4 4000r/min离心20min。 5 降上清液转移到另一50mL的离心管中。 6 加等体积的酚/氯仿混匀,12000 r/min离心5min,取上清。 7 加等体积氯仿,混匀,12000r/min离心5min,取上清。 8 加入0.6-1倍体积的异丙醇(沉淀DNA),混匀。 9 离心获得沉淀,加70%乙醇洗涤3次,风干沉淀。 10加入500μLTE缓冲液,溶解DNA。 11取3 mL上清液,琼脂糖凝胶电泳检测DNA的浓度和质量。 二植物基因组DNA提取试剂盒提取步骤 1、拟南芥基因组DNA的提取 以野生型拟南芥(Arabidopsis Columbia)2周幼叶为材料(称取叶片约100毫克),用TIANGEN基因组DNA提取试剂盒(Plant Genomic DNA Kit)(离心柱型)按以下步骤提取基因组DNA: 1) 取干净幼叶100mg,加入液氮充分研磨。 2) 将研磨好的粉末迅速转移到预先装有700μL65℃预热缓冲液GP1的离心管中(实验前在预热的GP1加入巯基乙醇,使其终浓度为0.1%),迅速颠倒混匀后,将离心管放在65℃水浴中20分钟,水浴过程中颠倒离心管以混合样品数

分子生物学技术在土壤生物修复中的应用研究和展望剖析

分子生物学手段 在土壤污染生物修复中的应用 摘要: 污染土壤的修复技术主要有物理修复、化学修复和生物修复,文章 综述了分子生物学技术包括环境微生物群落降解基因分析、16S rRNA序列 分析技术以及荧光原位杂交技术在生物修复技术中跟踪污染土壤中降解微 生物行为、监测降解基因和微生物群落变化,揭示了其中的分子机制的应 用现状,对各项技术应用中需要注意的问题进行了讨论并对其发展前景进 行了展望。 关键词: 分子生物学;降解基因;16S rRNA;FISH Molecular biology techniques in bioremediation of soil: Current status and future Abstract:This review starts with a brief overview of the molecular biology techniques applied to the bioremediation of soil. The principles of the catabolic gene probe analysis of microbial community, 16S rRNA sequence analysis and fluorescent in situ hybridization (FISH) and their applications to monitoring the fate of contaminant-degrading microorganisms, detecting catabolic gene and analyzing the changes of microbial community in contaminated soil are highlighted. The problems and prospects of these techniques are discussed. Key words: molecular biology; catabolic gene; 16S rRNA; FISH

分子生物学论文

分子生物学课程论文 基因治疗与基因诊断的研究与发展 邓小红临床医学08级3班200805090346 摘要:基因诊断与基因治疗能够在比较短的时间从理论设想变为现实,主要是由于分子生物学的理论及技术方法,特别是重组DNA技术的迅速发展,使人们可以在实验室构建各种载体、克隆及分析目标基因。所以对疾病能够深入至分子水平的研究,并已取得了重大的进展。因此在20世纪70年代末诞生了基因诊断(gene diagnosis);随后于1990年美国实施了第一个基因治疗(gene therapy)的临床试验方案。可见,基因诊断和基因治疗是现代分子生物学的理论和技术与医学相结合的范例。 关键词:基因治疗基因诊断重组DNA 英文题目:Molecular biology course in dissertation Molecular biology curriculum paper gene treatment and gene diagnosis research and developmen t Deng Xiaohong clinical medicine 08 levels of 3 classes 200805090346 Summary: gene-diagnosing and gene therapy in the relatively short time from theoretical ideas into reality, mainly due to the molecular biology of theory and techniques, in particular the recombinant DNA technology is developing rapidly, so that people can build a variety of carriers in the laboratory, cloning and analysis of target genes. The disease can drill down to the molecular level research and has made significant progress. Thus, in the late 1970s was born gene diagnosis (gene diagnosis); subsequently, in 1990, United States implemented the first gene therapy (gene therapy) clinical trials programme. V isible, genetic diagnosis and gene therapy is a modern molecular biology of theory and technology combined with the medicine. Keywords: gene therapy gene-diagnosing recombinant DNA 1.引言 20世纪后半叶以来,由于分子生物学的崛起,人们进入了合成代谢与代谢调节的研究。这一阶段,细胞内两类重要的生物大分子---蛋白质与核酸,成为研究焦点。20世纪50年代初期发现了蛋白质的α螺旋的二级结构形式;更具里程碑意义的是1953年提出的DNA双螺旋结构模型,为揭示遗传信息传递规律奠定了基础,是生物化学发展进入分子生物学时期的重要标志。 20世纪70年代,重组DNA技术的建立不仅促进了对基因表达调控机制的研究,使基因操作无所不能,而且使人们主动改造生物体成为可能。基因诊断和基因治疗也是重组DNA技术在医学领域应用的重要方面。 随着对各种疑难疾病的深入研究,和分子生物学日新月异的发展,传统的诊断治疗手段无法解决的一些重要问题。通过对生物体在分子水平上的研究,基因诊断与治疗的作用逐渐显露出来,尤其是许多遗传疾病。

相关文档
最新文档