数值分析第四章林成森

数值分析第四章林成森
数值分析第四章林成森

数值分析第4章答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 01 1431313A h A h A h -?=?? ?=?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++= 故 101()()(0)()h h f x dx A f h A f A f h --=-++? 成立。 令4 ()f x x =,则

数值分析第四章数值积分与数值微分习题答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: 101210121 12120 (1)()()(0)(); (2)()()(0)(); (3)()[(1)2()3()]/3; (4)()[(0)()]/2[(0)()]; h h h h h f x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-?? ?? 解: 求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。 (1)若101(1) ()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1012h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 221123 h h A h A -=+ 从而解得 011431313A h A h A h -?=?? ? =?? ?=?? 令3 ()f x x =,则 3()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

令4()f x x =,则 455 1012()5 2 ()(0)()3 h h h h f x dx x dx h A f h A f A f h h ---== -++=? ? 故此时, 101()()(0)()h h f x dx A f h A f A f h --≠-++? 故 101()()(0)()h h f x dx A f h A f A f h --≈-++? 具有3次代数精度。 (2)若 21012()()(0)()h h f x dx A f h A f A f h --≈-++? 令()1f x =,则 1014h A A A -=++ 令()f x x =,则 110A h Ah -=-+ 令2 ()f x x =,则 3 2211163 h h A h A -=+ 从而解得 1143 8383A h A h A h -?=-?? ? =?? ?=?? 令3 ()f x x =,则 22322()0h h h h f x dx x dx --==? ? 101()(0)()0A f h A f A f h --++=

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字. 8. 当N 充分大时,怎样求 2 11N dx x +∞ +? ? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±秒的误差,证明当t 增加时S 的绝对误 差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算61)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 ln(ln(x x =- 计算,求对数时误差有多大?

(完整版)数值分析第7章答案

第七章非线性方程求根 一、重点内容提要 (一)问题简介 求单变量函数方程 ()0f x = (7.1) 的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为 函数()f x 的零点.若()f x 可以分解为 ()(*)()m f x x x g x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有 (1)() (*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法 设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在 (a,b)内仅有一个根.令00,a a b b ==,计算0001 ()2x a b =+和0()f x .若0()0f x =则*x x =,结束计算;若00()()0f a f x >,则令10,1a x b b ==,得新的有根区间11[,]a b ;若 00()()0 f a f x <,则令 10,10 a a b x ==,得新的有根区间 11[,]a b .0011[,][,]a b a b ?,11001()2b a b a -=-.再令1111 ()2x a b =+计算1()f x ,同上法得 出新的有根区间22[,] a b ,如此反复进行,可得一有根区间套 1100...[,][,]...[,] n n n n a b a b a b --????

数值计算第四章课后习题答案

()()()()()()()()()收敛较慢 代入上式得:将解: 收敛速度次并分析该迭代公式的迭代的根求方程 取试用迭代公式∴≠<<*'*+++-='∴+*+*=*∴=+?+?? ? ??===++= =∴++= ==-++=++=++014.01022220||10 2202613381013202132020 132010212010220. 2.0 20102110220 4.1222 222212012123021x x x x x x x x x x x x x x x x x x x x x x x x k k k k k k k ?????? )))()()()[]()()[])49998.0cos 215.0cos 2 1,022,00cos 2 102 12,0210,2,0.cos 2 10sin 2 11,cos 2 113cos 2 12; 1.0cos 2 12.4120101==== ==->-=<-=-=>+='-===-+x x x x x x x f f x x x f x x f x x x f x x x x k k 则 取上有一个根在所以上在为单调递增函数故则令解: 位有效数字求出这些根,精确到用迭代公式分析该方程有几个根给定方程ππππ

500 .0105.0102.0||3412≈*?

东南大学_数值分析_第七章_偏微分方程数值解法

第七章 偏微分方程数值解法 ——Crank-Nicolson 格式 ****(学号) *****(姓名) 上机题目要求见教材P346,10题。 一、算法原理 本文研究下列定解问题(抛物型方程) 22(,) (0,0)(,0)() (0) (0,)(), (1,)() (0)u u a f x t x l t T t x u x x x l u t t u t t t T ?αβ???-=<<≤≤???? =≤≤??==<≤?? (1) 的有限差分法,其中a 为正常数,,,,f ?αβ为已知函数,且满足边界条件和初始条件。关于式(1)的求解,采用离散化方法,剖分网格,构造差分格式。其中,网格剖分是将区域{}0,0D x l t T =≤≤≤≤用两簇平行直线 (0) (0)i k x x ih i M t t k k N τ==≤≤?? ==≤≤? 分割成矩形网格,其中,l T h M N τ==分别为空间步长和时间步长。将式(1)中的偏导数使用不同的差商代替,将得到不同的差分格式,如古典显格式、古典隐格式、Crank-Nicolson 格式等。其中,Crank-Nicolson 格式具有更高的收敛阶数,应用更广泛,故本文采用Crank-Nicolson 格式求解抛物型方程。 Crank-Nicolson 格式推导:在节点(,)2 i k x t τ +处考虑式(1),有 22(,)(,)(,)222 i k i k i k u u x t a x t f x t t x τττ??+-+=+?? (2) 对偏导数 (,)2 i k u x t t τ ?+?用中心差分展开 []2311+13 1(,)(,)(,)(,) ()224k k i k i k i k i i k i k u u x t u x t u x t x t t t t ττηητ++??+=--<

数值分析第七章非线性方程求根习题答案

第七章非线性方程求根 (一)问题简介 求单变量函数方程 ()0f x = (7.1) 的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为函数() f x 的零点.若()f x 可以分解为 ()(*)()m f x x x g x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有 (1)() (*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法 设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在(a,b)内 仅有一个根.令00,a a b b ==,计算0001()2x a b =+和 0()f x .若0()0f x =则*x x =,结束计算;若 00()()0 f a f x >,则令 10,1a x b b ==,得新的有根区间 11[,] a b ;若 00()()0 f a f x <,则令 10,10a a b x ==,得新的有根区间11[,]a b .0011[,][,]a b a b ?,11001 () 2b a b a -=-.再令1111 ()2x a b =+计算1()f x ,同上法得出新的有根区间22[,]a b ,如此反复进行,可得一有根区 间套 1100...[,][,]...[,] n n n n a b a b a b --???? 且110011 *,0,1,2,...,()...() 22n n n n n n a x b n b a b a b a --<<=-=-==-. 故 1 lim()0,lim lim ()* 2n n n n n n n n b a x a b x →∞→∞→∞-==+=

数值计算方法第七章习题 2013

计算方法 第七章 习题 复习与思考题 1.设f ∈C [a , b ],写出三种常用范数2 1 f f 及∞ f 。 2.f , g ∈C [a , b ],它们的内积是什么?如何判断函数族{? 0, ? 1, …, ? n }∈C [a , b ]在[a ,b ]上线性无关? 3.什么是函数f ∈C [a , b ]在区[a , b ]上的n 次最佳一致逼近多项式? 4.什么是f 在[a , b ] 上的n 次最佳平方逼近多项式?什么是数据{}m i f 0的最小二乘曲 线拟合? 5.什么是[ a , b ]上带权ρ (x )的正交多项式?什么是[ -1, 1 ]上的勒让德多项式?它有什 么重要性质? 6.什么是切比雪夫多项式?它有什么重要性质? 7.用切比雪夫多项式零点做插值得到的插值多项式与拉格朗日插值有何不同? 8.什么是最小二乘拟合的法方程?用多项式做拟合曲线时,当次数n 较大时为什么不直接求解法方程? 9.哪种类型函数用三角插值比用多项式插值或分段多项式插值更合适? 10.判断下列命题是否正确? (1)任何f (x ) ∈C [a , b ]都能找到n 次多项式P n (x ) ∈ H n ,使| f (x ) - P n (x ) | ≤ ε ( ε 为任给的误差限)。 (2)n n H x P ∈)(* 是f (x )在[ a , b ]上的最佳一致逼近多项式,则)()(lim * x f x P n n =∞ →对 ],[b a x ∈?成立。 (3)f (x ) ∈C [a , b ]在[a , b ]上的最佳平方逼近多项式P n (x ) ∈ H n 则)()(lim x f x P n n =∞ →。 (4))(P ~ x n 是首项系数为1的勒让德多项式,Q n (x ) ∈ H n 是任一首项系数为1的多项式,则 ? ? --1 1 21 1 2d )(d )](P ~ [x x Q x x n n 。 (5))(T ~ x n 是[-1 , 1]上首项系数为1的切比雪夫多项式。Q n (x ) ∈ H n 是任一首项系数为1的多项式,则 .)(max )(~ max 1 11 1x Q x T n x n x ≤≤-≤≤-≤ (6)当数据量很大时用最小二乘拟合比用插值好。

数值分析习题第四章

第四章 习题 1.确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)()()()()? --++-≈h h h f A f A h f A dx x f 1010; (2)()()()()? --++-≈h h h f A f A h f A dx x f 221010; (3)()()()()[]3/3211 121?-++-≈x f x f f dx x f ; (4)()()()[]()()[]h f f ah h f f h dx x f h '0'2/020 +++≈? 解:(1)求积公式中含有三个待定参数,即101A A A ,,-,将()21x x x f ,,=分别代入求积公式,并令其左右相等,得 ()()??? ???? =+=+-=++---3 1121 110132 02h A A h A A h h A A A 解得h A h A A 34 31011===-,。 所求公式至少具有2次代数精度。又由于 ()() ()() 4 4 4 3 33 3 3 33h h h h dx x h h h h dx x h h h h ? ?--+ -≠ +-≈ 故()()()()? --++-≈h h h f A f A h f A dx x f 1010具有三次代数精度。 (2)求积公式中含有三个待定系数:101A A A ,,-,故令公式对()2 1x x x f ,,=准确成立,得()()??? ???? =+=+-=++---3 1121110131604h A A h A A h h A A A ,解得h h h A h A h A A 34 316424381011-=- =-===-, 故()()()[]()03 43 822hf h f h f h dx x f h h - +-≈ ? - 因()?-=h h dx x f 220 而 ()() []03 83 3 =+-h h h 又[ ]4 45 5 6224 3 83 165 2h h h h h dx x h h += ≠= ? -

数值分析第七章上机题

数值分析第七章计算机实习题 写一程序实现下面问题的牛顿算法——求解方程组: ?? ???=--=-+.0)1sin(,18)7)(3(12321x e x x x 源程序如下: function [x,it,hist] = newton2(x0,f,g,maxit,tol) % Newton method for eqation systerm % INPUTS: % x0 initial point % f function % g gradient % maxit maximum iteration % tol tolerance for convergence % OUTPUTS: % x solution % it iteration % hist history of iteration format long ; if nargin<5, tol = 1e-7; if nargin<4, maxit = 100; if nargin<3, error('too few input!!'); end end end flag = 1; x0 = [0;0]; x = x0; hist = x; it = 0; for k = 1:maxit, x = x0 - feval(g,x0(1),x0(2))\feval(f,x0(1),x0(2)); if norm(x0-x)>=tol, x0 = x; else fprintf('\nNewton Iteration successes!!\n') return end it = it + 1;

hist = [hist x]; end flag = 0; fprintf('\nNewton Iteration fails!!\n'); 在命令窗口输入: >>f = inline('[(x1+3)*(x2^3-7)+18;sin(x2*exp(x1)-1)]','x1','x2'); >>g = inline ('[x2^3-7,3*x2^2*(x1+3);x2*exp(x1)*cos(x2*exp(x1)-1),exp(x1)*cos(x2*exp(x1)-1)]','x1','x2'); >> [x,it,hist] = newton2([0;0],f,g) 得到如下运行结果: >> [x,it,hist] = newton2([0;0],f,g) Newton Iteration successes!! x = -0.000000000000000 1.000000000000000 it = 5 hist = 0 -0.428571428571429 -0.141348392468100 -0.002875590925150 0.000000056935424 -0.000000000000101 0 1.557407724654902 1.087738055836075 1.001269946612821 1.000000431005363 1.000000000000127 由以上运行结果可知: 该方程组采用牛顿迭代法迭代5步可到足够精度,解为??? ? ??=10x .

数值分析第四章学习小结

第四章学习小结 本章为非线性方程与非线性方程组的迭代解法,由此可分为两大节4.1非线性方程的迭代解法和4.2非线性方程组的迭代解法。本章以人口增长模型为引言,由于在实际应用中只有很少类型的非线性方程能解出根的解析表达式,对于大多数非线性方程,只能用数值法求出它的根的近似值,本章将要介绍几种常用的有效的数值求根方法,它们都属于迭代法,因而还要讨论这些方法的收敛性和收敛速度。 4.1.1对分法 (1)基本思想: ①确定方程有根的区间; ②将区间逐次分半缩小,得到一个区间长度以1/2的比例减小的含根区间序列{}k x ,在给定根的误差界时,利用长度趋于零的特点,可得到在某个区间中满足要求的近似根。收敛速度与公比为12 的等比数列的收敛速度相同。 (2)迭代终止条件 或者 (3)二分法的优缺点: 优点:程序简单,总能求出近似根,对()f x 要求不高。 缺点:收敛速度慢,只能求单根和奇数重根,不能求偶重根,复根。二分法一般用于对根求近似根。 4.1.2简单迭代法及其收敛性 迭代法的基本思想: 迭代法是一种逐次逼近法,用某个固定公式反复校正根的近似值,使 12 a b x +=2k k b a ε-<2 k k k b a x s ε--≤

之逐步精确化,最后得到满足精度要求的解。 迭代法的基本思想是将隐式方程()x x ?=的求根问题归结为计算一组显式公式1()k k x x ?+=,逐步过程实际上是一个逐步显示化的过程。 收敛性:若由迭代公式1().1,2,3...k k x x k ?+==产生的序列{}k x 收敛于x *,则x *是原方程的根。 收敛条件: a .非局部收敛性定理:设函数()[,]x C a b ?∈,在(a ,b )内可导,且满足两个条件: (1)当[,]x a b ∈时,()[,]x a b ?∈;(2)当[,]x a b ∈时,'()1x L ?≤<,其中L 为一常数。则有如下结论: (1)方程()x x ?=在[,]a b 上有唯一的根s ; (2)对任取的0[,]x a b ∈,简单迭代法1()k k x x ?+=产生的序列{}[,]k x a b ?且收敛于s ; (3)成立误差估计式101k k L s x x x L -≤--或11k k k L s x x x L --≤-- 这种形式的收敛定理称为大范围收敛性定理,但当条件不够充分时,预先指定一个区间常常是不可能的。 b .局部收敛性定理 设'(),()s s x ??=在包含s 的某个开区间内连续。如果'()1s ?<,则存在0δ>当0[,]x s s δδ∈-+时,由简单迭代法1()k k x x ?+=产生的序列 {}[,]k x s s δδ?-+且收敛于s 。 4.1.3简单迭代法的收敛速度

数值分析第四章习题

第四章 习题 1. 采用数值计算方法,画出dt t t x y x ?= 0sin )(在]10 ,0[区间曲线,并计算)5.4(y 。 〖答案〗 1.6541 2. 求函数 x e x f 3sin )(=的数值积分?=π 0 )(dx x f s ,并请采用符号计算尝试复算。 〖答案〗 s = 5.1354 Warning: Explicit integral could not be found. > In sym.int at 58 s = int(exp(sin(x)^3),x = 0 .. pi) 3. 用quad 求取dx x e x sin 7.15? --ππ的数值积分,并保证积分的绝对精度为910-。 〖答案〗 1.08784943754779 4. 求函数 5.08.12cos 5.1)5(sin )(20 6.02++-=t t t e t t f t 在区间]5,5[-中的最小值点。 〖答案〗

最小值点是 -1.28498111480531 相应目标值是 -0.18604801006545 5. 设 0)0(,1)0(,1)(2)(3)(22===+-dt dy y t y dt t dy dt t y d ,用数值法和符号法求5.0)(=t t y 。 〖答案〗 数值解 y_05 = 0.78958020790127 符号解 ys = 1/2-1/2*exp(2*t)+exp(t) ys_05 = .78958035647060552916850705213780 6. 求矩阵b Ax =的解,A 为3阶魔方阵,b 是)13(?的全1列向量。 〖答案〗 x = 0.0667 0.0667 0.0667 7. 求矩阵b Ax =的解,A 为4阶魔方阵,b 是)14(?的全1列向量。 〖答案〗 解不唯一 x = -0.0074 -0.0809 0.1397 0.0662 0.0588 0.1176 -0.0588

第四章导热题的数值解法

第四章导热问题的数值解法 1 、重点内容:①掌握导热问题数值解法的基本思路; ②利用热平衡法和泰勒级数展开法建立节点的离散方程。 2 、掌握内容:数值解法的实质。 3 、了解内容:了解非稳态导热问题的两种差分格式及其稳定性。 §4—1导热问题数值求解的基本思想及内节点方程的建立由前述 3 可知,求解导热问题实际上就是对导热微分方程在定解条件下的积分求解,从而获得分析解。但是,对于工程中几何形状及定解条件比较复杂的导热问题,从数学上目前无法得出其分析解。随着计算机技术的迅速发展,对物理问题进行离散求解的数值方法发展得十分迅速,并得到广泛应用,并形成为传热学的一个分支——计算传热学(数值传热学),这些数值解法主要有以下几种: (1)有限差分法( 2 )有限元方法( 3 )边界元方法 数值解法能解决的问题原则上是一切导热问题,特别是分析解方法无法解决的问题。如:几何形状、边界条件复杂、物性不均、多维导热问题。 一.分析解法与数值解法的异同点: ?相同点:根本目的是相同的,即确定① t=f(x , y , z) ;② 。 ?不同点:数值解法求解的是区域或时间空间坐标系中离散点的温度分布代替连续的温度场;分析解法求解的是连续的温度场的分布特征,而不是分散点的数值。 数值求解的基本思路及稳态导热内节点离散方程的建立 二.解法的基本概念 ?实质 对物理问题进行数值解法的基本思路可以概括为:把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。该方法称为数值解法。 这些离散点上被求物理量值的集合称为该物理量的数值解。 2 、基本思路:数值解法的求解过程可用框图 4-1 表示。 由此可见: 1 )物理模型简化成数学模型是基础; 2 )建立节点离散方程是关键; 3 )一般情况微分方程中,某一变量在某一坐标方向所需边界条件的个数等于该变量在该坐标方向最高阶导数的阶数。 ?数值求解的步骤 如图 4-2 ( a ),二维矩形域内无内热源、稳态、常物性的导热问题采用数值解法的步骤如下:(1)建立控制方程及定解条件 控制方程:是指描写物理问题的微分方程 针对图示的导热问题,它的控制方程(即导热微分方程)为:( a ) 边界条件: x=0 时, x=H 时, 当 y=0 时,

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

数值分析第四章小结

第四章 非线性方程与非线性方程组的迭代解法 --------学习小结 姓名 马赫 班级 环境科学与工程 学号 S2******* 一、 本章学习体会 通过本章知识的学习,了解了怎么样求出非线性方程和非线性方程组的根,但是只有很少类型的非线性方程能解出根的解析表达式,而对于绝大数的非线性方程,我们只能用数值方法求出其根的近似值。在本章的学习中,学会了一些常用的有效数值迭代方法去求方程的根。 同时在本章中主要是掌握了求解非线性方程的各种迭代方法,而对于求解非线性方程组的迭代方法只需要了解即可。 求解非线性方程解的迭代法有如下几种方法:对分法;简单迭代法;Steffensen 迭代法;Newton 法;求m 重根的Newton 法;割线法以及单点割线法等。我们在运用这些方法求根是应到注意到其迭代公式必须收敛才有可能解出根,同时针对不同类型的非线性方程求解,还须注意用哪种迭代方法更适合求解,不能盲目地随意使用其中一种迭代方法,而是要通过比较选出恰当的方法求解。比如求方程m 重根的Newton 法不知道重根数会导致计算量较大,但是其收敛速度较快。 此外,本章知识应当以掌握求解非线性方程的迭代方法为主,并配合适当的实验以及习题加深对知识的理解。 二、 本章知识梳理 第四章 非线性方程与非线性方程组的迭代解法……理解并掌握 4.1非线性方程的迭代解法……重点掌握 4.1.1对分法……定义:将含根区间逐次分半缩小,得到一个区间长 度以1/2的比例减小的含根区间序列,在给定根的误差界时,利用长 度趋于零的特点,可得到在某个区间中满足要求的近似根。优点:程 序简单,总能求得近似根,对f(x)的要求不高;缺点:收敛速度慢, 不能求偶重根,复根。对分法一般用于求根的近似值。 4.1.2简单迭代法及其收敛性……定义:是一种逐次逼近法,用某个 固定公式反复校正根的近似值,使之逐步精确化,最后得到满足精度 要求的解。一般形式: 其中 为迭代函数。 收敛性:若由迭代公式 产生的序列{x k }收敛于 x *,则x *为原方程的根。 4.1.3简单迭代法的收敛速度……r 阶收敛速度的定义:设序列{x k } 收敛于s ,并且e k =s-x k ≠0(k=0,1,2,…),如果存在常数r ≥1和常 数c >0,使得极限c e e r k k k =+∞→1 lim 成立,或者使得当k ≥K (某个正整 Λ,2,1,0),(1==+k x x k k ?)(x ? Λ,2,1,0),(1==+k x x k k ?

数值分析第四版习题及答案

数值分析第四版习题及答案

第四版 数值分析习题 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****1 2 3 4 5 1.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234 ,,,x x x x 均为第3题所给 的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设0 28,Y =按递推公式 11 783100 n n Y Y -=( n=1,2,…) 计算到100Y .若取78327.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字78327.982). 8. 当N 充分大时,怎样求2 11N dx x +∞ +?? 9. 正方形的边长大约为100㎝,应怎样测量才能

使其面积误差不超过1㎝2 ? 10. 设212 S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1 101n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 21)f =,取2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 63 22)70 2. (21)(322)--++ 13. 2 ()ln(1)f x x x =-,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 2 2 ln(1)ln(1)x x x x -=-+ 计算,求对数时误差有多大? 14. 试用消元法解方程组 {101012121010;2. x x x x +=+=假定只用 三位数计算,问结果是否可靠? 15. 已知三角形面积 1 sin ,2 s ab c = 其中c 为弧 度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证明面积的误差s ?满足 .s a b c s a b c ????≤++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

《数值分析》第四章答案

习题4 1. 给定x x f =)(在144,121,100=x 3点处的值,试以这3点建立)(x f 的2次(抛物)插值公式,利用插值公式115求的近似值并估计误差。再给13169=建立3次插值公式,给出相应的结果。 解:x x f =)( 2 12 1)(- = 'x x f ,2 34 1 )(- -=''x x f ,2 58 3)(- = '''x x f , 2 7) 4(16 15)(- - =x x f ,72380529.10)115(=f 1000=x , 121 1=x , 144 2=x , 1693=x 10 0=y , 111=y , 12 2=y , 13 3=y ) )(())(() )(())(() )(())(()(1202102 2101201 2010210 2x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----= ) 121144)(100144()121115)(100115(12) 144121)(100121()144115)(100115(11) 144100)(121100()144115)(121115(10)115(2----? +----? +----? =L =23 44)6(1512) 23(21)29(1511) 44)(21()29)(6(10?-?? +-?-?? +----? 72276.1006719.190683.988312.1=-+= ))()((!3)()()(2102x x x x x x f x L x f ---'''= -ξ ,144100<<ξ ) 44115()121115()100115()(max 61 )115()115(1441002-?-?-?'''≤ -≤≤x f L f x 2961510 83615 ?????≤ - 001631 .010 1631.02 =?=- 实际误差 22101045.0)115()115(-?=-L f

数值分析习题集及答案

数值分析习题集 适合课程《数值方法 A 》和《数值方法B》) 长沙理工大学 第一章绪论 1. 设 x>0, x 的相对误差为δ, 求的误差. 2. 设 x 的相对误差为2%, 求的相对误差. 3. 下列各数都是经过四舍五入得到的近似数, 即误差限不超过最后一位的半个单位, 试指出 它们是几位有效数字: 4. 利用公式求下列各近似值的误差限: 其中均为第 3 题所给的数. 5. 计算球体积要使相对误差限为1%, 问度量半径 R时允许的相对误差限是多少? 6. 设按递推公式 ( n=1,2, ?) 计算到. 若取≈( 五位有效数字), 试问计算将有多大误差? 7. 求方程的两个根, 使它至少具有四位有效数字( ≈. 8. 当 N 充分大时, 怎样求? 9. 正方形的边长大约为100 ㎝, 应怎样测量才能使其面积误差不超过 1 ㎝? 10. 设假定 g 是准确的,而对 t 的测量有±秒的误差, 证明当 t 增加时 S的绝对误差增加, 而相对误差却减小. 11. 序列满足递推关系(n=1,2, ?), 若(三位有效数字), 计算到时误差有多大?这个计算过程 稳定吗? 12. 计算,取, 利用下列等式计算, 哪一个得到的结果最好? 13. ,求f (30) 的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算, 求对数时误差有多大? 14. 试用消元法解方程组假定只用三位数计算, 问结果是否可靠? 15. 已知三角形面积其中 c 为弧度,, 且测量 a , b , c 的误差分别为证明面积的误差满足 第二章插值法 1. 根据定义的范德蒙行列式, 令 证明是 n次多项式,它的根是,且 2. 当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 , 求 f ( x)的二次插值多项式

相关文档
最新文档