韦达定理公式介绍及典型例题

韦达定理公式介绍及典型例题
韦达定理公式介绍及典型例题

韦达定理公式介绍及典型例题

韦达定理说明了一元n次方程中根和系数之间的关系。法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。

这里讲一元二次方程两根之间的关系。

一元二次方程aX+bX+C=0﹙a0﹚中,两根X1,X2有如下关系:X1+X2=-b/a,X1X2=c/a

【定理内容】

一元二次方程ax^2+bx+c=0 (a0 且△=b^2-4ac0)中,设两个根为x1,x2 则

X1+X2= -b/a

X1X2=c/a

1/X1+1/X2=X1+X2/X1X2

用韦达定理判断方程的根一元二次方程ax+bx+c=0 (a0)中,

若b-4ac0 则方程没有实数根

若b-4ac=0 则方程有两个相等的实数根

若b-4ac0 则方程有两个不相等的实数根

【定理拓展】

(1)若两根互为相反数,则b=0

(2)若两根互为倒数,则a=c

(3)若一根为0,则c=0

(4)若一根为1,则a+b+c=0

(5)若一根为-1,则a-b+c=0

(6)若a、c异号,方程一定有两个实数根

【例题】

已知p+q=198,求方程x^2+px+q=0的整数根. (94祖冲之杯数学邀请赛试题) 解:设方程的两整数根为x1、x2,不妨设x1x2.由韦达定理,得

x1+x2=-p,x1x2=q.

于是x1x2-(x1+x2)=p+q=198,

即x1x2-x1-x2+1=199.

运用提取公因式法(x1-1)(x2-1)=199.

注意到(x1-1)、(x2-1)均为整数,

解得x1=2,x2=200;x1=-198,x2=0.

韦达定理的运用

一元二次方程跟与系数关系(韦达定理)的应用 一 教材分析 本节教学内容为“韦达定理的应用”,此内容是学生学习“一元二次方的根与系数的关系”中解决一些简单问题的重要方法。韦达定理联系了方程根与系数的关系,是学生在解决应用问题中的重要工具,具有广泛的应用价值,根据教材内容,由学生已知的认知结构及原由的知识水平,制定如下教学目标: 二 教学目标 1、巩固上一节学习的韦达定理,并熟练掌握韦达定理的应用。 2、提高学生综合应用能力 三 教学重难点 重点:运用韦达定理解决方程中的问题 难点:如何运用韦达定理 四 教学过程 (一 ) 回顾旧知,探索新知 上节课我们学习了韦达定理,我们回忆一下什么是韦达定理? 如果)0(02 ≠=++a c bx ax 的两个根是21,x x 那么a c x x a b x x =?- =+2121, {老师:由韦达定理我们可知,韦达定理表示方程的根与系数的关系,如果在方 程中遇到需要求解根的情况,我们是否能用韦达定理来解决呢?今天我们将来探讨这个问题。) (二) 举例分析 例 已知方程0652 =-+kx x 的一根是2,求它的另一根及k 的值。 请同学们分析解题方法: 思路:应用解方程的方法,带入法 解法一:把X=2代入方程求的K=-7 把K=-7代入方程:06752 =--x x 运用求根公式公式解得5 3,221- ==∴x x 提问:同学们还有没有其它方法呢? 启发学生,我们已知方程一根,求另一根,我们否能用韦达定理建立一个关系,求解方程。

解法二:设方程的两根为21,x x ,则21,2x x =是未知数 用韦达定理建立关系式 5 3 ,5622 2-=∴-=x x 7 ,5 3 ,27 ,5 2212-=-==∴-=∴-=+k x x k k x 对比分析,第二种方法更加简单 总结:在解方程的根时,利用韦达定理会使求解过程更为简单,且不用解方程,直接求某 些代数式的值 例2 不解方程,求一元二次方程2x 2+3x -1=0两根的 (1)平方和;(2)倒数和 方法小结: (1)运用韦达定理求某些代数式的值,关键是将所求的代数式恒等变形为用2121,x x x x ?+的代数式表示。 (2)格式、步骤要求规范: ①将方程的两根设为。 ②求出2121,x x x x ?+的值 。 ③将所求代数式用2121,x x x x ?+的代数式表示 。 ④ 将2121,x x x x ?+的值代人并求值。 三 综合运用 巩固新知 1、求一个一元二次方程,使它的两根分别是 解 : 2、设 2 1,x x 是方程03422 =-+x x 的两根,利用根与系数的关系,求下列各式的值。

韦达定理公式介绍及典型例题

?韦达定理公式介绍及典型例题 ?韦达定理说明了一元n次方程中根和系数之间的关系。法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。 ?这里讲一元二次方程两根之间的关系。 ?一元二次方程aX+bX+C=0﹙a0﹚中,两根X1,X2有如下关系:X1+X2=-b/a,X1X2=c/a ?【定理内容】 一元二次方程ax^2+bx+c=0(a0 且△=b^2-4ac0)中,设两个根为x1,x2 则 ?X1+X2= -b/a ?X1X2=c/a 1/X1+1/X2=X1+X2/X1X2 ?用韦达定理判断方程的根一元二次方程ax+bx+c=0 (a0)中, 若b-4ac0则方程没有实数根 若b-4ac=0 则方程有两个相等的实数根 ?若b-4ac0 则方程有两个不相等的实数根 【定理拓展】 ?(1)若两根互为相反数,则b=0 (2)若两根互为倒数,则a=c ?(3)若一根为0,则c=0 (4)若一根为1,则a+b+c=0 ?(5)若一根为-1,则a-b+c=0 ?(6)若a、c异号,方程一定有两个实数根

【例题】 已知p+q=198,求方程x^2+px+q=0的整数根.(94祖冲之杯数学邀请赛试题) 解:设方程的两整数根为x1、x2,不妨设x1x2.由韦达定理,得?x1+x2=-p,x1x2=q. 于是x1x2-(x1+x2)=p+q=198, ?即x1x2-x1-x2+1=199. ?运用提取公因式法(x1-1)(x2-1)=199. 注意到(x1-1)、(x2-1)均为整数, ?解得x1=2,x2=200;x1=-198,x2=0.

韦达定理经典例题复习课程

一元二次方程根与系数的关系培优训练 例1.已知1x 、2x 是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实数根,问:1x 与2x 能否同号?若能同号请求出相应的m 的取值范围;若不能同号,请说明理由。 例2.已知1x 、2x 是一元二次方程01442=++-k kx kx 的两个实数根。 (1)是否存在实数k ,使23)2)(2(2121- =--x x x x 成立?若存在,求出k 的值;若不存在,请说明理由。 (2)求使 21221-+x x x x 的值为整数的实数k 的整数值。 例3.已知关于x 的一元二次方程 有两个相等的实数根。求证:(1)方程 有两个不相等的实数根; (2)设方程 的两个实数根为 ,若 ,则 .

例4.在等腰三角形ABC 中,∠A、∠B、∠C的对边分别为a、b、c,已知a=3,b和c是关于x的方程的两个实数根,求△ABC的周长. 例5.在解方程x2+px+q=0时,小张看错了p,解得方程的根为1与-3;小王看错了q,解得方程的根为4与-2。这个方程的根应该是什么? 例6.已知x1,x2是关于x的方程x2+px+q=0的两根,x1+1、x2+1是关于x的方程x2+qx+p=0的两根,求常数p、q的值。

练习:1.先阅读下列第(1)题的解法,再解答第(2)题. (1)若α、β是方程x2-3x-5=0的两个实数根,求α2+2β2-3β的值; 解:∵α、β是方程x2-3x-5=0的两个实根, ∴α2-3α-5=0,β2-3β-5=0,且α+β=3. ∴α2=3α+5,β2=3β+5 ∴α2+2β2-3β=3α+5+2(3β+5)-3β=3α+3β+15=3(α+β)+15=24. (2)已知x 1、x 2 是方程x2+x-7=0的两个实数根,不解方程求的值. 2.已知关于X的一元二次方程m2x2+2(3-m)x+1=0的两实数根为α,β, 若s=1 α + 1 β ,求s的取值范围。 3.如果关于x的实系数一元二次方程x2+2(m+3)x+m2+3=0有两个实数根α、β,那么(α-1)2+(β-1)2的最小值是多少? 4.已知关于x的方程x2-(2a-1)x+4(a-1)=0的两个根是斜边长为5的直角三角形的两条直角边的长,求这个直角三角形的面积。

高中数学_方程的根与函数的零点教学设计学情分析教材分析课后反思

§3.1.1 方程的根与函数的零点 一、导入新课(直接导入) 教师直接点出课题:上一章我们研究函数的图象性质,这一节我们讨论函数的应用,方程的根与函数的零点。 1、先观察下列三个一元二次方程的根与其相应的函数的图象: ①方程2 230x x --=与函数2 23y x x =--; ②方程2 210x x -+=与函数2 21y x x =-+; ③方程2 230x x -+=与函数2 23y x x =-+; 教师引导学生解方程,画函数图象(教师在黑板画出第一个函数图象),并引导学生发现方程的根与函数图象和x 轴交点坐标的关系。 容易知道,①中方程的两个根为121;3x x =-=,函数图象与x 轴有两个交点(-1,0),(3,0), ②中方程的两个实数根为121x x ==,函数图象与x 轴有一个交点(1,0),③中方程无实数根,函数图象与x 轴无交点。 在上面的三个例子中,我们发现: 方程有根,函数图象与x 轴就有交点,并且方程的根与函数图象与x 轴的交点横坐标相等。 2、那这个结论对一般的一元二次方程及其相应的函数也成立吗?(学生同桌之间交流完成下表) 0>V 0=V 0

函数 (2b a -+V ,0) ( 2b a --V ,0) (2b a -,0) 无交点 学生自行验证上述结论,结论成立。 3、这个结论对一般的方程及其相应的函数也成立吗? 函数y=f(x)与x 轴的交点在x 轴上,交点的纵坐标为0,那么,横坐标就是0= f(x)的解,也就是方程f(x)= 0的根。若方程有根,则说明所求的横坐标存在,即函数图象与x 轴的交点存在,且方程的根与函数图象与x 轴的交点横坐标相等。结论依然成立。 二、构建概念 由上述结论可知,函数图象与x 轴的交点可以把函数图象和方程联系起来,这样的点他还有一个特别的名字:零点。那么,怎样用数学语言来描述零点呢? 请看课本第87页的定义: 定义(教师板书):对于函数y=f(x),我们把使f(x)= 0的实数x 叫做函数y=f(x)的零点。 说明:1、零点不是点,而是实数; 2、零点就是方程的根。 我们结合所学的零点一起来描述一下刚刚的结论: 方程f(x)= 0有根 ?函数y=f(x)图象与x 轴有交点 ?函数y=f(x)有零点 三、例题演练 求下列方程的零点 3 2)3()4)(3)(2)(1()2(8 )1(23+-=----=-=x x y x x x x y x y 四、诱导启发 1、通过上面的学习,同学们都有哪些求函数零点的方法呢? (①求相应方程的根,②利用函数图象求交点) 2、若一个函数图象不能直接画出,它相应的方程也不易求根,我们又有什么方法来求得它的零点呢? 请同学们看课本例二。 例2、求函数f (x)=ln 26x x +-的零点的个数。(不易求根,不易画图) 学生会觉得非常困难,激发学生的好奇心和好胜心,并加以引导。 同学们,我们先把这个题目放在一边,来观察函数2 23y x x =--的图象(之前已在黑板上画出)。我们发现2 23y x x =--在区间[-2,1]上有零点,计算f (-2)·f (1)在区间[2,4]上呢?

韦达定理公式

韦达定理公式: 一元二次方程ax^2+bx+c (a不为0)中 设两个根为x和y 则x+y=-b/a xy=c/a 韦达定理在更高次方程中也是可以使用的。一般的,对一个n次方程AiX^i=0 它的根记作X1,X2,Xn 我们有 Xi=(-1)^1*A(n-1)/A(n) XiXj=(-1)^2*A(n-2)/A(n) Xi=(-1)^n*A(0)/A(n) 其中是求和,是求积。 如果一元二次方程 在复数集中的根是,那么 法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达的16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。 由代数基本定理可推得:任何一元 n 次方程 在复数集中必有根。因此,该方程的左端可以在复数范围内分解成一次因式的乘积: 其中是该方程的个根。两端比较系数即得韦达定理。 韦达定理在方程论中有着广泛的应用。 定理的证明 设mathx_1/math,mathx_2/math是一元二次方程mathax^2+bx+c=0/math的两个解,且不妨令mathx_1 ge x_2/math。根据求根公式,有

mathx_1=frac{-b + sqrt {b^2-4ac}}/math,mathx_2=frac{-b - sqrt {b^2-4ac}}/math 所以 mathx_1+x_2=frac{-b + sqrt {b^2-4ac} + left (-b ight) - sqrt {b^2-4ac}} =-frac/math, mathx_1x_2=frac{ left (-b + sqrt {b^2-4ac} ight) left (-b - sqrt {b^2-4ac} ight)}{left (2a ight)^2} =frac/math

公式法与韦达定理

解一元二次方程(3) 公式法解一元二次方程推导 ax 2+bx+c=0 x 2+x a b +a c =0 x 2+x a b =-a c 2 +x a b +2 2?? ? ??a b =-a c +2 2??? ??a b (x+a b 2)2 =2 244a ac b - x= a b a a c b 2242--± x = 根的判别式(b 2-4ac) 240b ac ->?方程有两个不相等的实数根. 240b ac -=?方程有两个相等的实数根(或说方程有一个实数根). 240b ac -

解:21,2(1),1a b k c k ==-+=- []2 2 2 42(1)41(1)88b ac k k k ∴-=-+-??-=+ 因为方程有实数根,240b ac ∴-≥ 即:880k +≥ 1k ∴≥- 220x x -+=的根的情况是( ). A 、只有一个实数根. B 、有两个相等的实数根. C 、有两个不相等的实数根. D 、没有实数根 m 为何值时,方程x 2-(2m+2)x+m 2+5=0(20分) (1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根 公式法解一元二次方程 例:解方程:2273x x -= 公式法解一元二次方程的步骤: 解: 22730x x --= ①、把一元二次方程化为一般形式: 20ax bx c ++=(0a ≠) 2,7,3a b c ∴==-=- ②、确定,,a b c 的值. 224(7)42(3)73b ac ∴-=--??-=>0 ③、求出24b ac -的值. (7)7224 x --±±∴= =? ④、若240b ac -≥,则把,,a b c 及24b ac -的值 代入

充分条件与必要条件·典型例题

充分条件与必要条件·典型例题 能力素养 例1 已知p:x1,x2是方程x2+5x-6=0的两根,q:x 1+x2=-5,则p是q的 [ ] A.充分但不必要条件B.必要但不充分条件 C.充要条件D.既不充分也不必要条件 分析利用韦达定理转换. 解∵x1,x2是方程x2+5x-6=0的两根, ∴x1,x2的值分不为1,-6, ∴x1+x2=1-6=-5. 因此选A. 讲明:判定命题为假命题能够通过举反例. 例2 p是q的充要条件的是 [ ] A.p:3x+2>5,q:-2x-3>-5 B.p:a>2,b<2,q:a>b C.p:四边形的两条对角线互相垂直平分,q:四边形是正方形 D.p:a≠0,q:关于x的方程ax=1有惟一解 分析逐个验证命题是否等价.

解对A.p:x>1,q:x<1,因此,p是q的既不充分也不必要条件; 对B.p q但q p,p是q的充分非必要条件; 对C.p q且q p,p是q的必要非充分条件; D p q q p p q p q D ??? 对.且,即,是的充要条件.选. 讲明:当a=0时,ax=0有许多个解. 例3 若A是B成立的充分条件,D是C成立的必要条件,C是B成立的充要条件,则D是A成立的 [ ] A.充分条件B.必要条件 C.充要条件D.既不充分也不必要条件 分析通过B、C作为桥梁联系A、D. 解∵A是B的充分条件,∴A B① ∵D是C成立的必要条件,∴C D② ? ∵是成立的充要条件,∴③ C B C B 由①③得A C④ 由②④得A D. ∴D是A成立的必要条件.选B. 讲明:要注意利用推出符号的传递性. 例4 设命题甲为:0<x<5,命题乙为|x-2|<3,那么甲是乙的 [ ] A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件

2021年韦达定理经典例题

一元二次方程根与系数的关系 培优训练 欧阳光明(2021.03.07) 例1.已知1x 、2x 是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实数根,问:1x 与2x 能否同号?若能同号请求出相应的 m 的取值范围;若不能同号,请说明理由。 例2.已知1x 、2x 是一元二次方程01442=++-k kx kx 的两个实数根。 (1)是否存在实数k ,使23)2)(2(2121-=--x x x x 成立?若存在,求出k 的值;若不存在,请说明理由。 (2)求使21221-+x x x x 的值为整数的实数k 的整数值。 例3.已知关于x 的一元二次方程 有两个相等的实数根。求证:(1)方程 有两个不相等的实数根; (2)设方程 的两个实数根为 ,若 ,则 . 例4.在等腰三角形ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,已知a=3,b 和c 是关于x 的方程 的两个实数根,求△ABC 的周长.

例5.在解方程x2+px+q=0时,小张看错了p,解得方程的根为1与-3;小王看错了q,解得方程的根为4与-2。这个方程的根应该是什么? 例6.已知x1,x2是关于x的方程x2+px+q=0的两根,x1+1、x2+1是关于x的方程x2+qx+p=0的两根,求常数p、q的值。 练习:1.先阅读下列第(1)题的解法,再解答第(2)题. (1)若α、β是方程x2-3x-5=0的两个实数根,求α2+2β2-3β的值; 解:∵α、β是方程x2-3x-5=0的两个实根, ∴α2-3α-5=0,β2-3β-5=0,且α+β=3. ∴α2=3α+5,β2=3β+5 ∴α2+2β2-3β=3α+5+2(3β+5)- 3β=3α+3β+15=3(α+β)+15=24. (2)已知x1、x2是方程x2+x-7=0的两个实数根,不解方程求 的值. 2.已知关于X的一元二次方程m2x2+2(3-m)x+1=0的两 实数根为α,β,若s=1 α + 1 β ,求s的取值范围。 3.如果关于x的实系数一元二次方程x2+2(m+3)x+m2+3=0有两个实数根α、β,那么(α-1)2+(β-1)2的最小值是多少? 4.已知关于x的方程x2-(2a-1)x+4(a-1)=0的两个根是斜边长为5的直角三角形的两条直角边的长,求这个直角三角形的面 积。

韦达定理应用资料资料全

韦达定理的应用 一、典型例题 例1:已知关于x的方程2x-(m+1)x+1-m=0的一个根为4,求另一个根。 解:设另一个根为x1,则相加,得x 例2:已知方程x-5x+8=0的两根为x1,x2,求作一个新的一元二次方程,使它的两根分别为和. 解:∵又 ∴代入得,∴新方程为 例3:判断是不是方程9x-10x-2=0的一个实数根? 解:∵二次实数方程实根共轭,∴若是,则另一根为 ∴,。 ∴以为根的一元二次方程即为.

例4:解方程组 解:设∴. ∴A=5. ∴x-y=5 又xy=-6. ∴解方程组∴可解得 例5:已知Rt ABC中,两直角边长为方程x-(2m+7)x+4m(m-2)=0的两根,且斜边长为13,求S的值 解:不妨设斜边为C=13,两条直角边为a,b,则2。又a,b为方程两根。∴ab=4m(m-2)∴S但a,b为实数且 ∴∴ ∴m=5或6 当m=6时,∴m=5 ∴S. 例6:M为何值时,方程8x-(m-1)x+m-7=0的两根 ①均为正数②均为负数③一个正数,一个负数④一根为零⑤互为倒数 解:①∵∴m>7

②∵ ∴不存在这样的情况。 ③ ∴m<7 ④ ∴m=7 ⑤ ∴m=15.但使 ∴不存在这种情况 【模拟试题】(答题时间:30分钟) 1. 设n为方程x+mx+n=0(n≠0)的一个根,则m+n等于 2. 已知方程x+px-q=0的一个根为-2+,可求得p= ,q= 3. 若方程x+mx+4=0的两根之差的平方为48,则m的值为() A.±8 B.8 C.-8 D.±4 4. 已知两个数的和比a少5,这两个数的积比a多3,则a为何值时,这两个数相等? 5. 已知方程(a+3)x+1=ax有负数根,求a的取值围。

韦达定理全面练习题及答案 (1)

1、韦达定理(根与系数的关系) 韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么 说明:定理成立的条件0?≥ 练习题 一、填空: 1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = . 2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = . 4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = . 6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 . 7、以13+,13-为根的一元二次方程是 . 8、若两数和为3,两数积为-4,则这两数分别为 . 9、以23+和23-为根的一元二次方程是 . 10、若两数和为4,两数积为3,则这两数分别为 . 11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += . 12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 . 13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 . 二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:

韦达定理推广的证明.doc

韦达定理推广的证明

证明: 当=b^2- 4ac≥0时 ,方程 ax^2+bx+c=0(a≠ 0) 有两个实根 ,设为 x1,x2. 由求根公式 x =(- b±√Δ )/2a,不妨取 x1 =(-b-√Δ)/2a,x2=(- b+ √Δ)/2a, 则: x1+x2 =(-b-√Δ)/2a+(-b+ √Δ)/2a =-2b/2a =-b/a, x1*x2=[(-b-√Δ)/2a][(- b+ √Δ)/2a] =[(-b)^2-]/4a^2 =4ac/4a^2 =c/a. 综上 ,x1+x2=-b/a,x1*x2=c/a. 烽火 TA000DA 2014-11-04 若 b^2-4ac=0则方程有两个相等的实数根 若 b^2-4ac<0则方程没有实数解韦达定理的推广

韦达定理在更高次方程中也是可以使用 的。一般的,对一个一元n 次方程∑AiX^i=0 它的根记作X1,X2?,Xn 我们有 ∑Xi=(-1)^1*A(n-1)/A(n) ∑XiXj=( -1)^2*A(n-2)/A(n) ? ΠXi=(-1)^n*A(0)/A(n) 其中∑是求和,Π是求积。 如果一元二次方程 在复数集中的根是,那么 由代数基本定理可推得:任何一元n 次方程 在复数集中必有根。因此,该方程的左端 可以在复数范围内分解成一次因式的乘积: 其中是该方程的个根。两端比较系数即得 韦达定理。 法国数学家韦达最早发现代数方程的根与 系数之间有这种关系,因此,人们把这个关 系称为韦达定理。历史是有趣的,韦达的 16 世纪就得出这个定理,证明这个定理要依靠代

数基本定理,而代数基本定理却是在 1799 年才由高斯作出第一个实质性的论性。 (3)以 x1 ,x2 为根的一元二次方程 (二次项系数为 1) 是 x2-(x1+x2)x+x1x2=0. 3.二次三项式的因式分解(公式法 ) 在分解二次三项式 ax^2+bx+c 的因式时,如果可用公式求出方程 ax2+bx+c=0 的两个 根是 X1,x2 ,那么 ax2+bx+c=a(x-x1)(x-x2).另外这与射影定理是初中必须 射影定理图 掌握的 . 韦达定理推广的证明 设 x1 ,x2 ,??, xn 是一元 n 次方程∑AiX^i=0 的 n 个解。

韦达定理 经典习题

韦达定理经典习题 一.选择题(共16小题) 1.若方程x2﹣(m2﹣4)x+m=0的两个根互为相反数,则m等于() A.﹣2B.2C.±2D.4 2.若关于x的方程x2+3x+a=0有一个根为1,则另一个根为() A.﹣4B.2C.4D.﹣3 3.设a,b是方程x2+x﹣2017=0的两个实数根,则a2+2a+b的值为() A.2014B.2015C.2016D.2017 4.一元二次方程ax2+bx+c=0中,若a>0,b<0,c<0,则这个方程根的情况是() A.有两个正根 B.有两个负根 C.有一正根一负根且正根绝对值大 D.有一正根一负根且负根绝对值大 5.已知m、n是方程x2+3x﹣2=0的两个实数根,则m2+4m+n+2mn的值为() A.1B.3C.﹣5D.﹣9 6.已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2B.﹣4,﹣2C.4,2D.﹣4,2 7.一元二次方程x2+x﹣1=0的两根分别为x1,x2,则+=() A.B.1C.D. 8.关于x的方程x2+2(k+2)x+k2=0的两实根之和大于﹣4,则k的取值范围是() A.k>﹣1B.k<0C.﹣1<k<0D.﹣1≤k< 9.已知a、b是一元二次方程x2﹣3x﹣2=0的两根,那么+的值为() A.B.C.﹣D.﹣ 10.已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是() A.x2﹣7x+12=0B.x2+7x+12=0C.x2+7x﹣12=0D.x2﹣7x﹣12=0 11.设a、b是方程x2+x﹣2014=0的两个实数根,则a2+2a+b的值为() A.2014B.2015C.2012D.2013 二.填空题(共30小题) 12.已知:一元二次方程x2﹣6x+c=0有一个根为2,则另一根为. 13.一元二次方程x2+x﹣2=0的两根之积是. 14.若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=. 15.一元二次方程x2+mx+2m=0的两个实根分别为x1,x2,若x1+x2=1,则x1x2=. 16.已知m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为. 17.已知a,b是方程x2﹣x﹣3=0的两个根,则代数式a2+b+3的值为. 18.已知关于x的方程x2﹣2ax+a2﹣2a+2=0的两个实数根x1,x2,满足x12+x22=2,则a的值是.19.方程x2﹣3x+1=0中的两根分别为a、b,则代数式a2﹣4a﹣b的值为.

直线与圆锥曲线位置关系之韦达定理的使用

直线与圆锥曲线位置关系之韦达定理的使用 【例1】已知椭圆22+197x y =的长轴两端点为双曲线E 的焦点,且双曲线E 的离心率为32 . (1)求双曲线E 的标准方程; (2)若斜率为1的直线l 交双曲线E 于,A B 两点,线段AB 的中点的横坐标为线l 的方程. 【例2】已知双曲线C : 22 221x y a b -=(0,0a b >>4. (1)求双曲线的标准方程; (2)过点()0,1,倾斜角为045的直线l 与双曲线C 相交于,A B 两点, O 为坐标原点,求

【例3】已知椭圆C:()22 2210x y a b a b +=>>的左右焦点分别为12,F F ,离心率为; 圆M :2220x y Dx +--=过椭圆C 的三个顶点.过点2F 且斜率不为0的直线与椭圆C 交于P ,Q 两点. (Ⅰ)求椭圆的标准方程; ,使得AP AQ 为定值;并求出该定点的坐标 . 【例4】的椭圆C 的一个焦点坐标为() . (1)求椭圆C 的标准方程; (2)过点() 0,2P 的直线l 与轨迹C 交于不同的两点E F 、,求PE PF ?的取值范围.

【例5】已知抛物线2:2C y x =和直线:1l y kx =+, O 为坐标原点. (1)求证: l 与C 必有两交点; OA 和OB 斜率之和为1,求k 的值. 【例6】已知椭圆C : 22221(0,0)x y a b a b +=>>,右焦点为,0). (1)求椭圆C 的方程; ,与椭圆交于A ,B 两点,求证:点O 到直线AB 的距离为)

【例7】已知椭圆()22 22:10x y C a b a b +=>> ,且椭圆上任意一点到左焦点的最大距离为1 1. (1)求椭圆的方程; (2)过点10,3S ??- ??? 的动直线l 交椭圆C 于,A B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以线段AB 为直径的圆恒过点Q ?若存在,求出点Q 的

韦达定理(常见经典题型)

韦达定理(常见经典题型)

一元二次方程知识网络结构图 1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的方程叫做一元二次方程。 通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。 2. 一元二次方程的解法: (1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平 方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解。 (2)配方法:用配方法解一元二次方程()02 ≠=++a o c bx ax 的一般步骤是: ①化二次项系数为 ,即方程两边同时除以二次项系数; ②移项,使方程左边为 项和 项,右边为 项; ③配方,即方程两边都加上 的平方; ④化原方程为2 ()x m n +=的形式, 如果n 是非负数,即0n ≥,就可以用 法求出方程的解。 如果n <0,则原方程 。 (3)公式法: 方程20(0)ax bx c a ++=≠,当24b ac -_______ 0时,x = ________ (4)因式分解法:用因式分解法解一元二次方程的一般步骤是: 一元二次 定义:等号两边都是整式,只 含有一个未知数(一 解法直接开平方法 因式分解法 配方法 公式 法 22 240404b ac b ac b ac ?-??-???-?? >方程有两个不相等的实数根=方程有两个相等的实数根<方程无实数根应用一元二次方程解决实际 问题?? ? 步骤 实际问题的答案

①将方程的右边化为 ; ②将方程的左边化成两个 的乘积; ③令每个因式都等于 ,得到两个 方程; ④解这两个方程,它们的解就是原方程的解。 3、韦达定理 一、 一元二次方程的基本概念及解法 1、已知关于x 的方程x 2+bx +a =0有一个根是-a(a≠0),则a -b 的 值为 A .-1 B .0 C .1 D .2 2、 程时。 、当方程为一元二次方程时;、当方程为一元一次方的取值范围。 满足下列条件时,当方程21m 05)3()3(1 =+-++-x m x m m 3、一元二次方程x (x -2)=2-x 的根是( ) A .-1 B .2 C .1和2 D .-1和2 二 一元二次方程根的判别式 4、关于x 的方程2210x kx k ++-=的根的情况描述正确的是( ). A .k 为任何实数.方程都没有实数根 B ,k 为任何实数.方程都有两个不相等的实数根 C .k 为任何实数.方程都有两个相等的实数根 D .根据k 的取值不同.方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种 5、已知关于x 的一元二次方程(a ﹣l )x 2﹣2x+l =0有两个不相等的实

解析几何中的算法与算理

解析几何中的算法与算理——一堂研究课的听课观察记录与感悟 2.分析:求直线AB的方程,关键是确定求直线AB的斜率;而k AB可以由点A(或点B)的位置的确定而确定——引入点参;k AB也可以由直线P A(或直线PB)、直线AB的位置的确定而确定——引入k参、写方程;…… 用思维导图表达研究过程的思路、方法,使思维“视觉化”,进而帮助学生捋顺思路:结论:

3.板书计划: 4.学生展示、观摩、小组交流、评价: 学生甲的思路(1—1)的解法:由题意 F (1,0).因为直线AB 不经过点P ,故直线AB 的斜 率必存在. 可设AB :y =k (x -1) 由? ??=+-=1243)1(2 2y x x k y 消去y ,整理得 1248)34(2 222=-+-+k x k x k 设点)()(2211,,,y x B y x A . 由根与系数的关系,得??? ?? ? ??? +-= ?+=+>?34124348022212 221k k x x k k x x 由k P A +k PB =0得 01 23 1232211=--+-- x y x y , 所以, 01 23 )1(123)1(2211=---+-- -x x k x x k , 所以,0)2(2 3 )1)(1(22121=-+- --x x x x k

即0)2(2 3 ]1)([2212121=-+- ++-x x x x x x k 消去x 1和x 2,得)23 48(23)134834124( 222 2222-+=++-+-k k k k k k k 化简,得2 1 12= ?=k k . 所以,所求的直线AB 的方程为:.012)1(2 1 =--?-= y x x y 师问:本题消去x ,行吗?消去哪个更好? 于是,引导学生继续探究: 思路(1—2)的解法:将算法“局部优化”为:由k P A +k PB =0得 01 23 1232211=--+-- x y x y , 由?? ?=+-=12 43)1(2 2 y x x k y 消去x ,得 096)34(1243 2222222 =-++?=++k ky y k k y k k y )( 设点)()(2211,,,y x B y x A . 由根与系数的关系,得??? ? ? ? ??? +-=?+=+>?34934602 2212 21k k y y k k y y 由k P A +k PB =0得 01 231232211=--+-- x y x y , 所以,)(2320123 12321212211y y y y y k y y k y +=??=-+- , 故2 1 34623349222 2=?+?=+-?k k k k k . 所以,所求的直线AB 的方程为:.012)1(2 1 =--?-= y x x y 学生丁的思路(1—3)的解法:由题意,直线AB 的斜率必存在且不等于0.

韦达定理经典例题

韦达定理经典例题 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一元二次方程根与系数的关系培优训练 例1.已知1x 、2x 是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实数根,问:1x 与2x 能否同号?若能同号请求出相应的m 的取值范围;若不能同号,请说明理由。 例2.已知1x 、2x 是一元二次方程01442=++-k kx kx 的两个实数根。 (1)是否存在实数k ,使2 3)2)(2(2121-=--x x x x 成立?若存在,求出k 的值;若不存在,请说明理由。 (2)求使21221-+x x x x 的值为整数的实数k 的整数值。 例3.已知关于x 的一元二次方程 有两个相等的实数根。求 证:(1)方程有两个不相等的实数根; (2)设方程的两个实数根为,若,则. 例4.在等腰三角形ABC 中,∠A、∠B、∠C 的对边分别为a 、b 、c ,已知a=3,b 和c 是关于x 的方程的两个实数根,求△ABC 的周长. 例5.在解方程x 2+px+q=0时,小张看错了p ,解得方程的根为1与-3;小王看错了 q ,解得方程的根为4与-2。这个方程的根应该是什么 例6.已知x 1,x 2是关于x 的方程x 2+px+q=0的两根,x 1+1、x 2+1是关于x 的方程 x 2+qx+p=0的两根,求常数p 、q 的值。 练习:1.先阅读下列第(1)题的解法,再解答第(2)题. (1)若α、β是方程x 2-3x-5=0的两个实数根,求α2+2β2-3β的值;

解:∵α、β是方程x 2-3x-5=0的两个实根, ∴α2-3α-5=0,β2 -3β-5=0,且α+β=3. ∴α2=3α+5,β2=3β+5 ∴α2+2β2-3β=3α+5+2(3β+5)-3β=3α+3β+15=3(α+β)+15=24. (2)已知x 1、x 2是方程x 2+x-7=0的两个实数根,不解方程求的值. 2.已知关于X 的一元二次方程m2x2+2(3-m)x+1=0的两实数根为α,β,若s=+,求s的取值范围。 3.如果关于x 的实系数一元二次方程x 2+2(m+3)x+m 2+3=0有两个实数根α、β,那 么(α-1)2+(β-1)2的最小值是多少 4.已知关于x 的方程x 2-(2a -1)x+4(a -1)=0的两个根是斜边长为5的直角三角形 的两条直角边的长,求这个直角三角形的面积。 5.已知x 1、x 2是关于x 的方程x 2+m 2x+n=0的两个实数根;y 1、y 2是关于y 的方程 y 2+5my+7=0的两个实数根,且x 1-y 1=2,x 2-y 2=2,求m 、n 的值。 6.已知关于x 的一元二次方程ax 2+bx+c=0的两根为α、β,且两个关于x 的方程 x 2+(α+1)x+β2=0与x 2+(β+1)x+α2=0有唯一的公共根,求a 、b 、c 的关系式。

韦达定理常见经典题型)

一元二次方程知识网络结构图 1.方程中只含有 个未知数,并且整理后未知数的最高次数是 ,这样的方程叫做一元二次方程。 通常可写成如下的一般形式 ( a 、b 、c 、为常数,a )。 2. 一元二次方程的解法: (1)直接开平方法:当一元二次方程的一边是一个含有未知数的 的平方,而另一边是一个 时,可以根据 的意义,通过开平方法求出这个方程的解。 (2)配方法:用配方法解一元二次方程()02≠=++a o c bx ax 的一般步骤是: ①化二次项系数为 ,即方程两边同时除以二次项系数; ②移项,使方程左边为 项和 项,右边为 项; ③配方,即方程两边都加上 的平方; ④化原方程为2 ()x m n +=的形式, 如果n 是非负数,即0n ≥,就可以用 法求出方程的解。 如果n <0,则原方程 。 (3)公式法: 方程20(0)ax bx c a ++=≠,当24b ac -_______ 0时,x = ________ (4)因式分解法:用因式分解法解一元二次方程的一般步骤是: ①将方程的右边化为 ; ②将方程的左边化成两个 的乘积; ③令每个因式都等于 ,得到两个 方程; ④解这两个方程,它们的解就是原方程的解。 3、韦达定理 一元二次 方程 定义:等号两边都是整式,只含有一个未知数(一元),未 知数的最高次数是2(二次)的方程为一元二次方程 解法(降次) 直接开平方法 因式分解法 配方法 公式法22240404b ac b ac b ac ?-??-???-??>方程有两个不相等的实数根=方程有两个相等的实数根<方程无实数根 应用一元二次方程解决实际问题??? 步骤实际问题的答案

[极力推荐]运用韦达定理证明卡尔丹公式

运用韦达定理证明卡尔丹公式之探讨 范盛金 在数学史上,解三次代数方程是较有名的问题。十六世纪意大利学者卡尔丹(Cardano)提出了三次方程X3+pX+q=0的求根公式,在这个公式中,卡尔丹是第一个把负数写在二次根号内的数学家,并由此引进了虚数的概念,后来经过许多数学家的努力发展成了复数的理论。 下面运用复数域中的高次方程韦达定理证明卡尔丹公式,高中学生很容易掌握这种方法。 卡尔丹公式的证明:

这就是伟大的卡尔丹公式...没明白 还有啊ax3+bx2+cx+d=0 怎么能转化成x3+px+q=0 呢??好像要除以一个y=什么什么+什么什么/3 ...天啊. 类别:杂| 添加到搜藏| 浏览(3273) | 评论 (8)

上一篇:我的《国家地理》下一篇:三次方程新解法——盛金公式解题...最近读者: 登录 后, 您就 出现 在这 里。 a_a111111下一个 24号 清灵 2010 魅丶依 然 371173145wbwyq菸庭新空x 网友评论: 1网友:芝 生 2007年10月07日星期日07:39 | 回复 注意:ω不要放在根号里面。 2网友:芝 生 2007年10月07日星期日07:53 | 回复 运用韦达定理证明卡尔丹公式之探讨范盛金卡尔丹公式的证明:一元三 次方程(1) X3+pX+q=0 (p、q∈R) 当P=0时,易推导出(1)的求根公式如 下:(2) X3+q=0 → X3+(3√q)3=0 → (X+3√q)(X2-3√q+3√q2)=0,解之, 得(3) X1=3√(-q);X2=3√(-q)(-1+√3i)/2;X3=3√(-q)(-1-√3i)/2,令 ω=(-1+3√3i)/2;则ω2=(-1-3√3i)/2,故(2)可写成(4) X1=3√Y; X2=3√Yω;X3=3√Yω2,其中Y=-q。(3)就是p=0时(1)的求根公式。为 了研究方便起见,当p≠0时,根据(3)的情形,则可假设(1)的根具有形式 X1=3√Y1+3√Y2;X2=3√Y1ω+3√Y2ω2;X3=3√Y1ω2+3√Y2ω。显然,(4) 的表达式把较复杂的的问题变成了较简单的问题来解决。现只要求出(4)中 Y1与Y2的p、q表达式,则(1)的公式即得到证明。根椐韦达定理,有(5) 0=-(X1+X2+X3);p=X1X2+X1X3+X2X3;q=-X1(X2X3),为了简化 运算过程,注意ω+ω2=-1,ω3=1。由(4)、(5)有(6)p=-3(3√(Y1Y2)); q=-(Y1+Y2) → Y1+Y2=-q;Y1Y2=-(p/3)3,由(6)得方程Y2+qY- (p/3)3=0,解之,得Y1,2=-(q/2)±((q/2)2+√(p/3)3)。综上情况,就是一 元三次方程X3+pX+q=0 3网友:芝 生 2007年10月07日星期日07:58 | 回复 注意:3√Y1中的3是根指数。 4网友:芝 生 2007年10月07日星期日08:03 | 回复 运用韦达定理证明卡尔丹公式之探讨范盛金卡尔丹公式的证明:一元三 次方程(1) X^3+pX+q=0 (p、q∈R) 当P=0时,易推导出(1)的求根公 式如下:X^3+q=0,→ X^3+(q^(1/3))^3=0,→ (X+q^(1/3))(X^2 -q^(1/3)+q^(2/3))=0,解之,得(2) X1= (-q)^(1/3);X2= (-q)^ (1/3)(-1+3^(1/2)*i)/2;X3=(-q)^(1/3)(-1-3^(1/2)*i)/2,令ω==(-1 +3^(1/2)*i)/2;则ω^2=(-1-3^(1/2)*i)/2,故(2)可写成(3) X1=Y^

相关文档
最新文档