等参单元及其应用

等参单元及其应用
等参单元及其应用

有限单元法基本思想,原理,数值计算过程

有限单元法学习报告 在对力学问题分析求解过程中,方法可以概括为两种方法,一种为解析法,对具体问题具体分析,通过一定的推导用具体的表达式获得解答,由于实际工程中结构物的复杂性,此方法在处理工程问题是十分困难的;另一种是数值法,有限元法是其中一种方法,其数学逻辑严谨,物理概念清晰,又采用矩阵形式表达基本公式,便于计算机编程,因此在工程问题中获得广泛的应用。 有限元法基本原理是,将复杂的连续体划分为简单的单元体;将无限自由度问题化为有限自由度问题,因为单元体个数是有限的;将偏微分方程求解问题化为有限个代数方程组的求解问题。通常以位移为基本未知量,通过虚功原理和最小势能原理来求解。 基本思想是先化整为零,即离散化整体结构,把整体结构看作是由若干个通过结点相连的单元体组成的整体;再积零为整,通过结点的平衡来建立代数方程组,最后计算出结果。我将采用最简单的三结点三角形为基本单元体,解决弹性力学中的平面问题为例,解释有限单元法的基本原理、演示数值计算过程和一般性应用结论。 一、离散化 解决平面问题时,主要单元类型包括三角形单元(三结点、六结点)和四边形单元(四结点矩形、四结点四边形、八结点四边形)等。选用不同的单元会有不同的精度,划分的单元数越多,精度越高,但计算量也会越大。因此在边界曲折,应力集中处单元的尺寸要小些,但最大与最小单元的尺寸倍数不宜过大。在集中力作用点及分布力突变的点宜选为结点,不同厚度,不同材料不能划分在同一单元中。三角形单元以内角接近60°为最好。充分利用对称性与反对称性。 二、单元分析 将一个单元上的所有未知量用结点位移表示,并将分布在单元上的外力等效到结点上。 1、位移函数选取: 根据有限元法的基本思路,将连续体离散为有限的单元集合后,此时单元体满足连续性、均匀性、各向同性、完全线弹性假设。单元与单元之间通过结点连接并传递力,位移法(应用最广)以结点位移δi=(u i v i)T为基本未知量,以离散位移场代替连续位移场。单元体内的位移变化可以用位移函数(位移模式)来表示,因为有限元分析所得结果是近似结果,为了保证计算精度和收敛性,x位移函数应尽可能反应物体中的真实位移,即满足完备性和连续性的要求:

有限元法课后习题答案

1、有限元是近似求解一般连续场问题的数值方法 2、有限元法将连续的求解域离散为若干个子域,得到有限个单元,单元和单元之间用节点连接 3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个. 4、平面刚架结构在外力的作用下,横截面上的内力有轴力、剪力、弯矩. 5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角 6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角。 7、在弹性和小变形下,节点力和节点位移关系是线性关系。 8、弹性力学问题的方程个数有15个,未知量个数有15个。 9、弹性力学平面问题方程个数有8,未知数8个。 10、几何方程是研究应变和位移之间关系的方程 11、物理方程是描述应力和应变关系的方程 12、平衡方程反映了应力和体力之间关系的 13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态 14、9形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_ 15、形函数是_三角形_单元内部坐标的_线性_函数,他反映了单元的_位移_状态 16、在进行节点编号时,同一单元的相邻节点的号码差尽量小. 17、三角形单元的位移模式为_线性位移模式_- 18、矩形单元的位移模式为__双线性位移模式_

19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性 20、单元刚度矩阵描述了_节点力_和_节点位移之间的关系 21、矩形单元边界上位移是连续变化的 1.诉述有限元法的定义 答: 有限元法是近似求解一般连续场问题的数值方法 2.有限元法的基本思想是什么 答: 首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。 3.有限元法的分类和基本步骤有哪些 答: 分类: 位移法、力法、混合法;步骤: 结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。 4.有限元法有哪些优缺点 答: 优点:

有限元答案

1.1有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的连续介质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的? (1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。 (2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。 (3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。 1.3单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别? 单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。 整体刚度矩阵的性质:对称性、奇异性、稀疏性。 单元Kij物理意义Kij即单元节点位移向量中第j个自由度发生单位位移而其他位移分量为零时,在第j个自由度方向引起的节点力。 整体刚度矩阵K中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。 2.2什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件? (1)在外力作用下,物体内部将产生应力ζ和应变ε,外力所做的功将以变形能的形式储存起来,这种能量称为应变能。 (2)外力势能就是外力功的负值。 (3)势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件的位移使物体势能泛函取驻值,即势能的变分为零 δΠp=δUε+δV=0 此即变分方程。对于线性弹性体,势能取最小值,即 δ2ΠP=δ2Uε+δ2V≧0 此时的势能变分原理就是著名的最小势能原理。 势能变分原理代表平衡方程、本构方程和应力边界条件,其中附加了几何方程和位移边界条件。 2.3什么是强形式?什么是弱形式?两者有何区别?建立弱形式的关键步骤是什么? 等效积分形式通过分部积分,称式 ∫ΩC T(v)D(u)dΩ+∫ΓE T(v)F(u)dΓ为微分方程的弱形式,相对而言,定解问题的微分方程称为强形式。 区别:弱形式得不到解析解。 建立弱形式的关键步骤:对场函数要求较低阶的连续性。 2.4为了使计算结果能够收敛于精确解,位移函数需要满足哪些条件?为什么? 只要位移函数满足两个基本要求,即完备性和协调性,计算结果便收敛于精确解。 2.6为什么采用变分法求解通常只能得到近似解?变分法的应用常遇到什么困难?Ritz法收敛的条件是什么? (1)在Ritz 法中,N决定了试探函数的基本形态,待定参数使得场函数具有一定的任意性。如果真实场函数包含在试探函数之内,则变分法得到的解答是精确的;如果试探函数取自完全的函数序列,则当项数不断增加时,近似解将趋近于精确解。然而,通常情况下试探函数不会将真实场函数完全包含在内,实际计算时也不可能取无穷多项。因此,试探函数只能是真实场函数的近似。可见,变分法就是在某个假定的范围内找出最佳解答,近似性就源于此。 (2)采用变分法近似求解,要求在整个求解区域内预先给出满足边界条件的场函数。通常情况下这是不可能的,因而变分法的应用受到了限制。 (3)Ritz 法的收敛条件是要求试探函数具有完备性和连续性,也就是说,如果试探函数满足完备性和连续性的要求,当试探函数的项数趋近于无穷时,则Ritz 法的近似解将趋近于数学微分方程的精确解。 3.1构造单元形函数有哪些基本原则?形函数是定义于单元内坐标的连续函数。单元位移函数通常采用多项式,其中的待定常数应该与单元节点自由度数相等。为满足完备性要求,位移函数中必须包括常函数和一次式,即完全一次多项式。多项式的选取应由低阶到高阶,尽量选择完全多项式以提高单元的精度。若由于项数限制而不能选取完全多项式时,也应使完全多项式具有坐标的对称性,并且一个坐标方向的次数不应超过完全多项式的次数。有时为了使位移函数保持一定阶次的完全多项式,可在单元内部配置节点。然而,这种节点的存在将增加有限元格式和计算上的复杂性,除非不得已才加以采用。形函数应保证用它定义的位移函数满足收敛要求,即满足完备性要求和协调性条件。 3.1构造单元形函数有哪些基本原则?试采用构造单元的几何方法,构造T10 单元的形函数,并对其收敛性进行讨论。 通常单元位移函数采用多项式,其中的待定常数由节点位移参数确定,因此其个数应与单元节点自由度数相等。根据实体结构的几何方程,单元的应变是位移的一次导数。为了反映单元刚体位移和常应变即满足完备性要求,位移函数中必须包含常数项和一次项,即完全一次多项式。 3.3何谓面积坐标?其特点是什么?为什么称其为自然坐标或局部坐标? (1)三角形单元中,任一点P(x,y)与其3个角点相连形成3个子三角形,其位置可以用下述称为面积坐标的三个比值来确定: L1=A1/A L2=A2/A L3=A3/A 其中A1,A2,A3分别为P23,P31,P12的面积。 (2)面积坐标的特点: a T3单元的形函数Ni就是面积坐标Li b面积坐标与三角形在整体坐标系中的位置无关。 c三个节点的面积坐标分别为节点1(1, 0, 0)、节点2(0, 1, 0)、节点3(0, 0, 1),形心的面积坐标为(1/3, 1/3, 1/3)。 d单元边界方程为Li=0(i=1,2,3) e在平行于23边的一条直线上,所有点都有相同的面积坐标L1(L1对应的三角形具有相同的高和底边),而且L1就等于此直线至23边的距离与节点1至23边的距离之比值。

等参单元

5.等参单元 本章包括以下内容: 5.1等参单元的基本概念 5.2四边形八节点等参单元 5.3等参单元的单元分析 5.4六面体等参单元 5.1等参单元的基本概念 在进行有限元分析时,单元离散化会带来计算误差,主要采用两种方法来降低单元离散 化产生的误差:1)提高单元划分的密度,被称为h 方法(h-method );2)提高单元位移函数多项式的阶次,被称为p 方法(p-method )。 在平面问题的有限单元中,我们可以选择四结点的矩形单元,如图5-1所示,该矩形单元在x 及y 方向的边长分别为2a 和2b 。 图5-1 四结点矩形单元 同第三章的方法类似,将单元的位移模式选为, xy a y a x a a u 4321+++= xy a y a x a a v 8765+++= (5-1) 可得到, p p m m j j i i u N u N u N u N u +++= p p m m j j i i v N v N v N v N v +++= (5-2) 形态函数为, )1)(1(41b y a x N i --= )1)(1(41b y a x N j - + =

)1)(1(41b y a x N m ++= )1)(1(4 1b y a x N p + - = (5-3) 上述单元位移模式满足位移模式选择的基本要求: 1)反映了单元的刚体位移和常应变, 2)单元在公共边界上位移连续。 在矩形单元的边界上,坐标x 和y 的其中一个取常量,因此在边界上位移是线性分布的,由两个结点上的位移确定。 与三结点三角形单元相比,四结点矩形单元的位移模式是坐标的二次函数,能够提高计 算精度,但也有显著的缺点,两种单元的比较如下。 表5-1 三结点三角形单元与四结点矩形单元比较 如果任意形状的四边形四结点单元采用矩形单元的位移模式,则在公共边界上不满足位移连续性条件。为了既能得到较高的计算精度,又能适应复杂的边界形状,可以采用坐标变换。 图5-2任意四结点四边形单元 图5-3四结点正方形单元 在图5-2所示的任意四边形单元上,用等分四条边的两族直线分割四边形,以两族直线 的中心为原点,建立局部坐标系),(ηξ,沿ξ及η增大的方向作为ξ轴和η轴,并令四条边上的ξ及η值分别为1±。为了求出位移模式,以及局部坐标与整体坐标之间的变换式,在局部坐标系中定义一个四结点正方形单元,如图5-3所示。 参照矩形单元,四结点正方形单元的位移模式为, 44332211u N u N u N u N u +++= 44332211v N v N v N v N v +++= (5-4)

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限单元法部分课后题答案汇编

-----好资料学习有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的 连续介1.1 质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的?)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并1(数的节在其上设定有限 个节点;用这些单元组成的单元集合体代替原来的连续体,而场函点值将成为问题的基本未知量。)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即2(无限自通过插值以单元节点位移表示单元内任意点的位移。因节点位移个数是有限的,故由度问题被转变成了有限自由度问题。)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。(3 ?单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别1.3 整体刚度矩阵的性单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。个自 j Kij 即单元节点位移向量中第稀疏性。单元 Kij 物理意义质:对称性、奇异性、整体刚度 j 个自由度方向引起的节点力。由度发生单位位移而其他位移分量为零时,在第中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其 K 矩阵他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述2.2 问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件?,外力所做的功将以变形能的形式储存εσ和应变(1)在外力作用下,物体内部将产生应力起来,这种能量称为应变能。 (2)外力势能就是外力功的负值。势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件(3) 的位移使物体势能泛函取驻值,即势能的变分为零V=0 +δp=δ Uεδ∏此即变分方程。对于线性弹性体,势能取最小值,即0 2V≥ε+δδ2∏P=δ2U 此时的势能变分原理就是著名的最小势能原理。其中附加了几何方程和位移边界条本构方程和应力边界条件,势能变分原理代表平衡方程、件。什么是强形式?什么是弱形式?两者有何区别?建立弱形式的关键步骤是什么?2.3 等效积分形式通过分部积分,称式ΓΓET(v)F(u)d+∫ΩCT(v)D(u)dΩ∫为微分方程的弱形式,相对而言,定解问题的微分方程称为强形式。建立弱形式的关键步骤:对场函数要求较低阶的连续性。区别:弱形式得不到解析解。 为了使计算结果能够收敛于精确解,位移函数需要满足哪些条件?为什么?2.4 只要位移函数满足两个基本要求,即完备性和协调性,计算结果便收敛于精确解。Ritz 2.6 为什么采用变分法求解通常只能得到近似解?变分法的应用常遇到什么困难?法收敛的条件是 什么?决定了试探函数的基本形态,待定参数使得场函数具有一定的任意法中,N (1)在 Ritz 探函数性。如果真实场函数包含在试探函数之内,则变分法得到的解答是精确的;如果试 然而,通常情况下试近似解将趋近于精确解。取自完全的函数序列,则当项数不断增加时,因此,试探函探函数不会将真实场函数完全包含在内,实际计算时也不可能取无穷多项。近似性变分法就是在某个假定的范围内找出最佳解答,数只能是真实场函数的近似。可见,就源于此。)采用变分法近似求解,要求在整个求解区域内预先给出满足边界条件的场函数。通常2(情况下这是不可能的,因而变分法的应用受到了限制。如果试探函数满法的收敛条件是要求试探函数具有完备性和连续性,也就是说,(3)Ritz 趋近足完备性和连续性的要求,当试探函数的项数趋近于无穷时,则 Ritz 法的近似解将于数学微分方程的精确解。构造单元形函数有哪些基本原则?3.1 其中的待定常数应形函数是定义于单元内坐标的连续函数。单元位移函数通常采用多项式,要求,位移函数中必须包括常函数和一次式,该与单元节点自由度数相等。为满足完备性尽量选择完全多项式以提高单元的精度。即完全一次多项式。多项式的选取应由低阶到高阶,项式时,也应

平面四节点等参单元matlab实现

计算力学报告平面四节点等参单元 学生姓名:朱彬 学号:20100311

一、问题描述及分析 在无限大平面内有一个小圆孔。孔内有一集中力p,试求用有限元法编程和用ANSYS软件求出各点应力分量和位移分量,并比较二者结果。 根据圣维南原理建立半径为10mm的大圆,设小圆孔的半径a=0.5mm,在远离大圆边界的地方模型是比较精确的。由于作用在小圆孔上的力引起的位移随距离的衰减非常快,所以可以把大圆边界条件设为位移为零。 二、有限元划分描述 在划分单元时,单元数量比较多,于是我采取了使用ansys软件建模自动划分单元网格的方法。具体操作如下: 打开ansys,在单元类型中选择solid->Quad 4 node 182单元;建立类半径为0.5外半径为10的圆环;使用mashtool中的智能划分和将单元退化成三角形单元;使用工具栏中List中的Nodes和Elements 选项将节点和单元数据导出并导入Excle中,总共得到了207个单元和229个节点。如下图:

图1 三、有限元程序及求解 程序求解使用了matlab语言。具体如下: 程序: clc clear E=2e11; %弹性模量 NU=0.3; %泊松比 t=0.1; %厚度 X=xlsread('D:\data','nodes'); %读取节点坐标 elem=xlsread('D:\data','elements'); %读取单元编号 w=[1,2,3,4,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]; %有位移

约束的节点 n=size(X,1); %节点数 m=size(elem,1); %单元数 K=zeros(2*n); %初始总体刚度矩阵 for i=1:m syms Ks Et x y I1 I2 a b B; %定义可能存在的变量 e=[1,1;-1,1;-1,-1;1,-1]; for j=1:4 %形函数 N(j)=0.25*(1+e(j,1)*Ks)*(1+e(j,2)*Et); end x=0;y=0; for j=1:4 %标准母单元映射到真实单元x=x+N(j)*X(elem(i,j),1); y=y+N(j)*X(elem(i,j),2); end J1=jacobian([x;y],[Ks;Et]); %雅克比矩阵及其转置 J=J1'; for j=1:4 I1=diff(N(j),Ks); %形函数分别对Ks和Et的偏导数 I2=diff(N(j),Et); C=(J^-1)*[I1;I2]; a=C(1); %形函数对x,y的偏导数 b=C(2); B(1,2*j-1)=a; %组成B阵 B(1,2*j)=0; B(2,2*j-1)=0; B(2,2*j)=b; B(3,2*j-1)=b; B(3,2*j)=a; end D=(E/(1-NU*NU))*[1,NU,0;NU,1,0;0,0,(1-NU)/2]; %D阵 k=zeros(8,8); Kss=[-0.906179,-0.538469,0,0.538469,0.906179]; %5*5高斯积分点 Ett=[-0.906179,-0.538469,0,0.538469,0.906179]; H=[0.236926,0.478628,0.568888,0.478628,0.236926];%高斯积分权系数 for j=1:5 %高斯积分求单元刚度阵 for l=1:5 Ks=Kss(j);Et=Ett(l); B=subs(B); J=subs(J);

有限单元法

有限单元法 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。 对于有限元方法,其基本思路和解题步骤可归纳为 (1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。 (2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。 (3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。 (4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。 (5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

有限单元法参考答案

有限单元试题参考答案 一、问答题(50分) 1.(5分)有限单元位移法求解弹性力学问题的基本步骤有哪些? 1)选择适当的单元类型将弹性体离散化 2)建立单元体的位移插值函数 3)推导单元刚度矩阵 4)将单元刚度矩阵组装成整体刚度矩阵 5)代入边界条件和求解 2.(5分)有限元法在单元划分的时候应注意哪些问题? 1)集中载荷的作用点、分布载荷的突变点和约束的支撑点都应取为结点 2)在应力变化激烈的区域,单元划分得细一些,其它应力平缓的区域划分得粗一些 3)为了避免在计算中产生过大的误差,单元的长细比最好不要大于2 3.(5分)有限元法中建立位移函数一般有广义坐标法和插值函数法,我们经常用插值函数的哪些性质来直接建立位移函数? 1)形函数与位移插值函数是相同次数的多项式 2)形函数N i 在结点i 处等于1,在其它结点上的值等于0 3)在单元任意一点,三个形函数之和为1 4.(10分)在有限元法中,单元刚度矩阵和整体刚度矩阵具有哪些性质? 1)单元刚度矩阵每一列元素表示一组平衡力系,对于平面问题每列元素之和为零 2)单元刚度矩阵对角线元素总为正 3)单元刚度矩阵为对称矩阵 4)单元刚度矩阵为奇异矩阵 整体刚度矩阵前三条性质和单元刚度矩阵一样。另外: 1) 整体刚度矩阵为奇异矩阵,排除刚体位移后为正定矩阵 2)整体刚度矩阵是带状矩阵 5.(5分)什么是等参数单元?它与三角形单元和矩形单元相比有哪些优势? 1)在建立局部坐标系下的形状规则的标准单元与整体坐标系下形状复杂的实际单元之间的变换时,如果坐标变换函数中的形函数及插值结点与描述单元位移函数的形函数及插值结点完全相同,则这种变换我们成为等参数变换,当中的实际单元单元称为等参数单元。(其它描述意思一样也可) 2)三角形单元和矩形单元不能适应复杂的曲线边界,等参数单元可以。 6.(10分)平面三角形单元与轴对称问题的三角形截面单元的不同之处在哪里?轴对称问题三角形截面单元刚度方程的推导当中,为了简化计算和消除在对称轴上r=0引起的麻烦,可怎样处理? 1)平面三角形单元的三个应力分量xy y x τσσ和三个应变分量

有限单元法部分课后题答案

1.1 有限单元法中“离散”的含义是什么?有限单元法是如何将具有无限自由度的连续介质问题转变成有限自由度问题的?位移有限元法的标准化程式是怎样的? (1)离散的含义即将结构离散化,即用假想的线或面将连续体分割成数目有限的单元,并在其上设定有限个节点;用这些单元组成的单元集合体代替原来的连续体,而场函数的节点值将成为问题的基本未知量。 (2)给每个单元选择合适的位移函数或称位移模式来近似地表示单元内位移分布规律,即通过插值以单元节点位移表示单元内任意点的位移。因节点位移个数是有限的,故无限自由度问题被转变成了有限自由度问题。 (3)有限元法的标准化程式:结构或区域离散,单元分析,整体分析,数值求解。 1.3 单元刚度矩阵和整体刚度矩阵各有哪些性质?各自的物理意义是什么?两者有何区别?单元刚度矩阵的性质:对称性、奇异性(单元刚度矩阵的行列式为零)。整体刚度矩阵的性质:对称性、奇异性、稀疏性。单元 Kij 物理意义 Kij 即单元节点位移向量中第 j 个自由度发生单位位移而其他位移分量为零时,在第 j 个自由度方向引起的节点力。整体刚度矩阵 K 中每一列元素的物理意义是:要迫使结构的某节点位移自由度发生单位位移,而其他节点位移都保持为零的变形状态,在所有个节点上需要施加的节点荷载。 2.2 什么叫应变能?什么叫外力势能?试叙述势能变分原理和最小势能原理,并回答下述问题:势能变分原理代表什么控制方程和边界条件?其中附加了哪些条件? (1)在外力作用下,物体内部将产生应力σ和应变ε,外力所做的功将以变形能的形式储存起来,这种能量称为应变能。 (2)外力势能就是外力功的负值。 (3)势能变分原理可叙述如下:在所有满足边界条件的协调位移中,那些满足静力平衡条件的位移使物体势能泛函取驻值,即势能的变分为零 δ∏p=δ Uε+δV=0 此即变分方程。对于线性弹性体,势能取最小值,即 δ2∏P=δ2Uε+δ2V≥0 此时的势能变分原理就是著名的最小势能原理。 势能变分原理代表平衡方程、本构方程和应力边界条件,其中附加了几何方程和位移边界条件。 2.3 什么是强形式?什么是弱形式?两者有何区别?建立弱形式的关键步骤是什么? 等效积分形式通过分部积分,称式 ∫ΩCT(v)D(u)dΩ+∫ΓET(v)F(u)dΓ 为微分方程的弱形式,相对而言,定解问题的微分方程称为强形式。 区别:弱形式得不到解析解。建立弱形式的关键步骤:对场函数要求较低阶的连续性。2.4 为了使计算结果能够收敛于精确解,位移函数需要满足哪些条件?为什么? 只要位移函数满足两个基本要求,即完备性和协调性,计算结果便收敛于精确解。 2.6 为什么采用变分法求解通常只能得到近似解?变分法的应用常遇到什么困难?Ritz 法收敛的条件是什么? (1)在 Ritz 法中,N 决定了试探函数的基本形态,待定参数使得场函数具有一定的任意性。如果真实场函数包含在试探函数之内,则变分法得到的解答是精确的;如果试探函数取自完全的函数序列,则当项数不断增加时,近似解将趋近于精确解。然而,通常情况下试探函数不会将真实场函数完全包含在内,实际计算时也不可能取无穷多项。因此,试探函数只能是真实场函数的近似。可见,变分法就是在某个假定的范围内找出最佳解答,近似性就源于此。 (2)采用变分法近似求解,要求在整个求解区域内预先给出满足边界条件的场函数。通常情况下这是不可能的,因而变分法的应用受到了限制。 (3)Ritz 法的收敛条件是要求试探函数具有完备性和连续性,也就是说,如果试探函数满足完备性和连续性的要求,当试探函数的项数趋近于无穷时,则 Ritz 法的近似解将趋近于数学微分方程的精确解。 3.1 构造单元形函数有哪些基本原则? 形函数是定义于单元内坐标的连续函数。单元位移函数通常采用多项式,其中的待定常数应该与单元节点自由度数相等。为满足完备性要求,位移函数中必须包括常函数和一次式,即完全一次多项式。多项式的选取应由低阶到高阶,尽量选择完全多项式以提高单元的精度。若由于项数限制而不能选取完全多项式时,也应使完全多项式具有坐标的对称性,并且一

有限元法基础试题

有限元法基础试题(A ) 一、填空题(5×2分) 1.1单元刚度矩阵e T k B DBd Ω = Ω? 中,矩阵B 为__________,矩阵D 为___________。 1.2边界条件通常有两类。通常发生在位置完全固定不能转动的情况为_______边界,具体指定有限的非零值位移的情况,如支撑的下沉,称为_______边界。 1.3内部微元体上外力总虚功: ()(),,,,e x x xy y bx xy x y y by d W F u F v dxdy δστδτσδ??=+++++??+(),,,,x x y y xy y x u v u u dxdy σδσδτδδ??+++??的表达式中,第一项为____________________的虚功,第二项为____________________的虚功。 1.4弹簧单元的位移函数1N +2N =_________。 1.5 ij k 数学表达式:令j d =_____,k d =_____,k j ≠,则力i ij F k =。 二、判断题(5×2分) 2.1位移函数的假设合理与否将直接影响到有限元分析的计算精度、效率和可靠性。( ) 2.2变形体虚功原理适用于一切结构(一维杆系、二维板、三位块体)、适用于任何力学行为的材料(线性和非线性),是变形体力学的普遍原理。 ( ) 2.3变形体虚功原理要求力系平衡,要求虚位移协调,是在“平衡、协调”前提下功的恒等关系。 ( ) 2.4常应变三角单元中变形矩阵是x 或y 的函数。 ( ) 2.5 对称单元中变形矩阵是x 或y 的函数。 ( ) 三、简答题(26分) 3.1列举有限元法的优点。(8分) 3.2写出有限单元法的分析过程。(8分) 3.3列出3种普通的有限元单元类型。(6分) 3.4简要阐述变形体虚位移原理。(4分) 四、计算题(54分) 4.1对于下图所示的弹簧组合,单元①的弹簧常数为10000N/m ,单元②的弹簧常数为20000N/m ,单元③的弹簧常数为10000N/m ,确定各节点位移、反力以及单元②的单元力。(10分) 4.2对于如图所示的杆组装,弹性模量E 为10GPa ,杆单元长L 均为2m ,横截面面积A 均为2×10-4m 2,弹簧常数为2000kN/m ,所受荷载如图。采用直接刚度法确定节点位移、作用力和单元②的应力。(10分)

平面四节点等参单元分析程序

变分原理与有限元大作业 平面四节点等参单元分析程序; 姓名:潘清 【 学号:SQ 完成时间:2011-4-26 | 一、概述

! 通常情况下的有限元分析过程是运用可视化分析软件(如ANSYS、ABAQUS、SAP等)进行前处理和后处理,而中间的计算部分一般采用自己编制的程序来运算。具有较强数值计算和处理能力的Fortran语言是传统有限元计算的首选语言。随着有限元技术的逐步成熟,它被应用在越来越复杂的问题处理中,但在实际应用中也暴露出一些问题。有时网格离散化的区域较大,而又限于研究精度的要求,使得划分的网格数目极其庞大,结点数可多达数万个,从而造成计算中要运算的数据量巨大,程序运行的时间较长的弊端,这就延长了问题解决的时间,使得求解效率降低。因为运行周期长,不利于程序的调试,特别是对于要计算多种运行工况时的情况;同时大数据量处理对计算机的内存和CPU 提出了更高的要求,而在实际应用中,单靠计算机硬件水平的提高来解决问题的能力是有限的。因此,必须寻找新的编程语言。 随着有限元前后处理的不断发展和完善,以及大型工程分析软件对有限元接口的要求,有限元分析程序不应只满足解题功能,它还应满足软件工程所要求的结构化程序设计条件,能够对存储进行动态分配,以充分利用计算机资源,它还应很容易地与其它软件如CAD 的实体造型,优化设计等接口。现在可编写工程应用软件的计算机语言较多,其中C语言是一个较为优秀的语言,很容易满足现在有限元分析程序编程的要求。 C语言最初是为操作系统、编译器以及文字处理等编程而发明的。随着不断完善,它已应用到其它领域,包括工程应用软件的编程。近年来,C语言已经成为计算机领域最普及的一个编程语言,几乎世界上所有的计算机都装有C的编译器,从PC机到巨型机到超巨型的并行机,C与所有的硬件和操作系统联系在一起。用C 编写的程序,可移植性极好,几乎不用作多少修改,就可在任何一台装有ANSI、C编译器的计算机上运行。C既是高级语言,也是低级语言,也就是说,可用它作数值计算,也可用它对计算机存储进行操作。 二、编程思想 ; 本程序采用C语言编程,编制平面四边形四节点等参元程序,用以求解平面结构问题。程序采用二维等带宽存储整体刚度矩阵,乘大数法引入约束,等带宽高斯消去法求解位移,然后求中间高斯点的应力,最后用绕节点平均法讲单元应力等效到节点上,再将结果写到tecplot文件中。 在有限元程序中,变量数据需赋值的可分为节点信息,单元信息,载荷信息等。对于一个节点来说,需以下信息:节点编号(整型),节点坐标(实型),节点已知位移(实型),节点载荷(实型),边界条件(实型)等。同样,对于一个单元来说,需以下信息:单元的

有限元法的基本思想及计算步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列阵(δ)e表示: {δ}e=[u i v i u j v j u m v m]T 同样,可把作用于结点处的六个结点力用列阵{F}e表示: {F}e=[F ix F iy F jx F jy F mx F my]T 应用弹性力学理论和虚功原理可得出结点位移与结点力之间的关系

最新平面四边形4结点等参有限单元法

有限元程序设计

平面四边形4结点等参有限单元法 程序设计 1、程序功能及特点 a.该程序采用四边形4节点等参单元,能解决弹性力学的平面应力应变问题。 b.前处理采用网格自动划分技术,自动生成单元及结点信息。 b.能计算受集中力、自重体力、分布面力和静水压力的作用。 c.计算结点的位移和单元中心点的应力分量及其主应力。 d.后处理采取整体应力磨平求得各个结点的应力分量。 e.算例计算结果与ANSYS计算结果比较,并给出误差分析。 f.程序采用Visual Fortran 5.0编制而成。 2、程序流程及图框 图2-1程序流程图

图2-2子程序框图 其中,各子程序的主要功能为: INPUT――输入原始数据 HUAFEN――自动网格划分,形成COOR(2,NP),X,Y的坐标值与单元信息CBAND――形成主元素序号指示矩阵MA(*) SKO――形成整体刚度矩阵[K] CONCR――计算集中力引起的等效结点荷载{R}e BODYR――计算自重体力引起的等效结点荷载{R}e FACER――计算分布面力引起的等效结点荷载{R}e DECOP――支配方程LU三角分解 FOBA――LU分解直接解法中的回代过程 OUTDISP――输出结点位移分量 STRESS――计算单元应力分量 OUTSTRE――输出单元应力分量 STIF――计算单元刚度矩阵 FDNX――计算形函数对整体坐标的导数 T i i y N x N ? ? ? ? ? ? ? ? ? ? ,= i1,2,3,4。 FUN8――计算形函数及雅可比矩阵[J] SFUN ――应力磨平-单元下的‘K’=NCN‘ SCN――应力磨平-单元下的右端项系数‘CN‘SUMSKN――应力磨平-单元下的右端项集成到总体的‘P‘

平面四边形四节点等参单元Fortran源程序

C ************************************************ C * FINITE ELEMENT PROGRAM * C * FOR Two DIMENSIONAL ELASticity PROBLEM * C * WITH 4 NODE * C ************************************************ PROGRAM ELASTICITY character*32 dat,cch DIMENSION SK(80000),COOR(2,300),AE(4,11),MEL(5,200), & WG(4),JR(2,300),MA(600),R(600),iew(30),STRE(3,200) COMMON /CMN1/ NP,NE,NM,NR COMMON /CMN2/ N,MX,NH COMMON /CMN3/ RF(8),SKE(8,8),NN(8) WRITE(*,*)'PLEASE ENTER INPUT FILE NAME' READ(*,'(A)')DAT OPEN(4,FILE=dat,STATUS='OLD') OPEN(7,FILE='OUT',STATUS='UNKNOWN') READ(4,*)NP,NE,NM,NR WRITE(7,'(A,I6)')'NUMBER OF NODE---------------------NP=',np WRITE(7,'(A,I6)')'NUMBER OF ELEMENT------------------NE=',ne WRITE(7,'(A,I6)')'NUMBER OF MATERIAL-----------------NM=',nm WRITE(7,'(A,I6)')'NUMBER OF surporting---------------NC=',Nr CALL INPUT (JR,COOR,AE,MEL) CALL CBAND (MA,JR,MEL) DO I=1,NH SK(I)= enddo CALL SK0(SK,MEL,COOR,JR,MA,AE) do I=1,N R(I)= enddo pause 'aaa' stop READ(4,*)NCP,NBE,iz WRITE(*,'(5i8)')NCP,NBE,iz WRITE(7,'(5i8)')NCP,NBE,iz IF CONCR(NCP,R,JR) IF CALL BODYR(NBE,R,MEL,COOR,JR,AE) IF do jj=1,iz READ (4,*)Js,nse,(WG(I),I=1,4) read(4,*)(iew(m),m=1,nse) CALL FACER(iew,NSE,R,MEL,COOR,JR,WG) enddo endif CALL DECOP (SK,MA)

相关文档
最新文档