[高考数学]高考数学函数典型例题

[高考数学]高考数学函数典型例题
[高考数学]高考数学函数典型例题

?0

31.(本小题满分14分)

已知二次函数y=g(x)的导函数的图像与直线y=2x平行,且y=g(x)在x=-1处

取得极小值m-1(m≠0).设f(x)=g(x) x.

(1)若曲线y=f(x)上的点P到点Q(0,2)的距离的最小值为2,求m的值;(2)k(k∈R)如何取值时,函数y=f(x)-kx存在零点,并求出零点.

32.(20XX年高考福建卷理科10)对于具有相同定义域D的函数f(x)和g(x),若存在函数h(x)=kx+b(k,b为常数),对任给的正数m,存在相应的x∈D,使得当x∈D且x>x时,总有

00

?0

?,则称直线l:y=kx+b为曲线y=f(x)和y=g(x)的“分渐近线”.给出定义域均为D={x|x>1}的四组函数如下:

①f(x)=x2,g(x)=x;②f(x)=10-x+2,g(x)=2x-3 x;

③ f(x)= , g(x)= ; ④ f(x)= , g(x)=2(x-1-e -x ) .

年 高 考 江 苏 卷 试 题 11 ) 已 知 函 数 f ( x ) = ? x + 1, x ≥ 0 , 则 满 足 不 等 式 ) 剪成两块,其中一块是梯形,记 S = ,则 S 的最小值是____▲____。

2

x 2 +1 xlnx+1 2x 2

x lnx x+1

其中, 曲线 y=f(x) 和 y=g(x) 存在“分渐近线”的是(

)

A. ①④

B. ②③

C.②④

D.③④

33.

(20XX 年 高 考 天 津 卷 理 科 16) 设 函 数 f ( x ) = x 2 - 1 , 对 任

3 x

x ∈[ , +∞) , f ( ) - 4m 2 f ( x ) ≤ f ( x - 1) + 4 f (m )

2 m

恒成立,则实数 m 的取值范围是

34 .( 20XX

? 2

?1, x < 0

f (1- x 2 )> f ( 2x 的

x 的范围是__▲___。

35.(20XX 年高考江苏卷试题 14)将边长为 1m 正三角形薄片,沿一条平行于底边的直线

(梯形的周长) 梯形的面积

36 已知函数 f ( x ) = ( x + 1)ln x - x + 1 .

(Ⅰ)若 xf '(x) ≤ x 2 + ax + 1 ,求 a 的取值范围;

(Ⅱ)证明: ( x - 1) f ( x ) ≥ 0 .

(x ), f (x ) > f (x ) ? ?

37(20XX 年高考江苏卷试题 20)(本小题满分 16 分)

设 f ( x ) 是定义在区间 (1,+∞) 上的函数,其导函数为 f '( x ) 。如果存在实数 a 和函数

h ( x ) ,其中 h ( x ) 对任意的 x ∈ (1,+∞) 都有 h ( x ) >0,使得 f '( x ) = h( x )( x 2 - ax + 1) ,则称

函数 f ( x ) 具有性质 P(a) 。

(1)设函数 f ( x ) = ln x + b + 2

x + 1

( x > 1) ,其中 b 为实数。

(i)求证:函数 f ( x ) 具有性质 P(b ) ; (ii)求函数 f ( x ) 的单调区间。

(2)已知函数 g ( x ) 具有性质 P(2) 。给定 x , x ∈ (1,+∞), x < x , 设 m 为实数,

1 2

1

2

α = mx + (1 - m ) x , β = (1 - m ) x + mx ,且 α > 1, β > 1 ,

1 2

1

2

若| g (α ) - g (β ) |<| g ( x ) - g ( x ) |,求 m 的取值范围。

1 2

38. (20XX 年全国高考宁夏卷 21)(本小题满分 12 分)

设函数 f ( x ) = e x - 1 - x - ax 2 。

(1) 若 a = 0 ,求 f ( x ) 的单调区间;

(2) 若当 x ≥ 0 时 f ( x ) ≥ 0 ,求 a 的取值范围

39.(江苏卷 20)若 f (x ) = 3

x - p 1

1

(x ), f (x ) ≤ f (x ) (x ) = ?? f 1

且 f

1 2 ? f 2

1

2

, f

2

(x ) = 2 3 x - p 2

, x ∈ R, p , p 为常数,

1 2

(Ⅰ)求 f (x ) = f 1

(x ) 对所有实数成立的充要条件(用 p , p 1

2 表示);

(Ⅱ)设 a, b 为两实数, a < b 且 p , p

1

2

(a, b ),若 f (a ) = f (b )

已知函数 f (x ) =

1

) (Ⅱ)设 x 为 f ( x ) 的一个极值点,证明[ f ( x )]2

=

x

1 + x

2 < a

求证: f (x )在区间 [a, b ]上的单调增区间的长度和为 b - a

(闭区间 [m , n ]的长度定义为

2

n - m ).

40.(江西卷 22 .(本

小题满分 14 分)

1

ax + +

1 + x 1 + a

ax + 8

, x ∈ (0, + ∞ ).

(1) .当 a = 8 时,求 f (x )的单调区间;

(2) .对任意正数 a ,证明:1 < f (x ) < 2 .

41.(天津)设函数 f ( x ) = x sin x ( x ∈ R) .

(Ⅰ)证明 f ( x + 2k π ) - f ( x ) = 2k π sin x ,其中为 k 为整数;

0 4 0

2

(Ⅲ)设 f ( x ) 在(0,+∞)内的全部极值点按从小到大的顺序排列a , a , , a , , 1 2 n

证明

π

n +1

- a < π (n = 1,2, ) 。 n

(2)已知: n ∈ N 且n ≥ 2 ,求证: + + + < ln n < 1 + + + 。

(1)已知: x ∈ (0 + ∞) ,求证 1 x + 1 1

< ln < ;

x + 1 x x

1 1 1 1 1

2 3 n 2 n - 1

1 1

(1)令1 + = t ,由 x>0,∴t>1, x =

x t - 1

1

原不等式等价于1 - < ln t < t - 1

t

令 f(t)=t-1-lnt ,

1 ∵ f '(t ) = 1 - 当 t ∈ (1,+∞) 时,有 f '(t ) > 0 ,∴函数 f(t)在 t ∈ (1,+∞) 递增

t

∴f(t)>f(1)

即 t-1

另令 g (t ) = ln t - 1 + 1 ,则有 g '(t ) = t

t - 1

t 2 > 0

∴g(t)在 (1,+∞) 上递增,∴g(t)>g(1)=0

∴ ln t > 1 -

1

t

综上得 1 x + 1 1

< ln <

x + 1 x x

(2)由(1)令 x=1,2,……(n-1)并相加得

1 1 1

2

3 n 1 1 + + + < ln + ln + + ln < 1 + + + 2 3 n 1 2 n - 1 2 n - 1

1 1 1 1 1

即得 + + + < ln < 1 + + +

2 3 n 2 n - 1

利用导数求和

42 利用导数求和:

(1) ;

(2)

单调区间讨论

43 设 a > 0 ,求函数 f ( x ) =

x - ln( x + a)( x ∈ (0,+∞) 的单调区间.

分析:本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运

算能力.

t (

44 已知函数 f ( x ) = x - 2 x

+ a(2 - ln x),( a > 0) ,讨论 f ( x ) 的单调性.

分离常数

45 已知函数 f ( x ) = x ln x .(Ⅰ)求 f ( x ) 的最小值;(Ⅱ)若对所有 x ≥ 1 都有 f ( x ) ≥ ax - 1 ,

求实数 a 的取值范围.

46 已知 f (x ) = x ln x, g (x ) = x 3 + ax 2 - x + 2

(Ⅰ)求函数 f (x )的单调区间;

(Ⅱ)求函数 f (x )在 [ , t + 2] t > 0)上的最小值;

(Ⅲ)对一切的 x ∈ (0,+∞ ), 2 f (x ) ≤ g ' (x )+ 2 恒成立,求实数 a 的取值范围.

47 已知函数 f ( x ) = ln x , g ( x ) =

调区间;

a x

(a > 0) ,设 F ( x ) = f ( x ) + g ( x ) (Ⅰ)求函数 F ( x ) 的单

(Ⅱ)若以函数 y = F ( x )( x ∈ (0,3]) 图像上任意一点 P( x , y ) 为切点的切线的斜率 k ≤

0 0

恒成立,求实数 a 的最小值;

1

2

48 设函数 f ( x ) = x 2 + b ln( x + 1) ,其中 b ≠ 0 ;

(Ⅰ)若 b = -12 ,求 f ( x ) 在 [1,3]的最小值;

(Ⅱ)如果 f ( x ) 在定义域内既有极大值又有极小值,求实数b 的取值范围;

(Ⅲ)是否存在最小的正整数 N ,使得当 n ≥ N 时,不等式 ln n + 1 n - 1 >

n n 3

恒成

立.

0 50 设函数 f ( x ) = x 3

- x 2

+ 6 x - a .

(1)对于任意实数 x , f '( x ) ≥ m 恒成立,求 m 的最

49 设函数 f ( x ) = - x ( x - a)2 ( x ∈ R )

,其中 a ∈ R .

(Ⅰ)当 a = 1 时,求曲线 y = f ( x ) 在点 (2,f (2)) 处的切线方程;

(Ⅱ)当 a ≠ 0 时,求函数 f ( x ) 的极大值和极小值;

(Ⅲ)当 a > 3 时,证明存在 k ∈ [-1,],使得不等式 f (k - cos x) ≥ f (k 2 - cos 2 x) 对

任意的 x ∈ R 恒成立.

9 2

大值;(2)若方程 f ( x ) = 0 有且仅有一个实根,求 a 的取值范围.

f '(a )

a - a

x

51 已知函数 f ( x ) = x 2 + x - 1 , α , β 是方程 f (x)=0 的两个根 (α > β ) , f '(x) 是 f (x)的导数;设

a = 1 , a

1

n +1 = a - f (a n )

(n=1,2,……)

n n

(1)求 α , β 的值;

(2)证明:对任意的正整数 n ,都有 a >a ; n

(3)记 b = ln a n

-β n

n

(n=1,2,……),求数列{b n }的前 n 项和 S n 。

52 设 二 次 函 数 f ( x ) = x 2 + ax + a , 方 程 f ( x)- = 0的 两 根 x 和 x 满 足

1

2

0 < x < x < 1 .

1

2

(I )求实数 a 的取值范围;

(II )试比较 f (0) f (1)- f (0) 与 1 16

的大小.并说明理由.

53 设 f ( x ) 的 定 义 域 为 (0, + ∞) , f ( x ) 的 导 函 数 为 f '( x ) , 且 对 任 意 正 数 x 均 有

f '( x ) > f ( x)

x

(Ⅰ) 判断函数 F ( x ) =

f ( x )

x

在 (0, + ∞) 上的单调性;

(Ⅱ) 设 x , x ∈ (0, + ∞) ,比较 f ( x ) + f ( x ) 与 f ( x + x ) 的大小,并证明你的结论;

1

2 1 2 1 2

(Ⅲ )设 x , x ,

x ∈ (0, + ∞) , 若 n ≥ 2 ,比较 f ( x ) + f ( x ) +

+ f ( x ) 与

1

2

n

1 2

n

f ( x + x +

+ x ) 的大小,并证明你的结论.

1

2

n

54已知函数f(x)=1

x2+ln x. 2

(I)求函数f(x)在[1,e]上的最大、最小值;

(II)求证:在区间[1,+∞)上,函数f(x)的图象在函数g(x)=(III)求证:[f'(x)]n-f'(x n)≥2n-2(n∈N*).2

x3的图象的下方;3

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

小升初数学训练典型例题分析-找规律篇

名校真题 测试卷 找规律篇 时间:15分钟 满分5分 姓名_________ 测试成绩_________ 1 (12年清华附中考题) 如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么? 2 (13年三帆中学考题) 观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式,找出规律, 然后填写20012+( )=20022 3 (12年西城实验考题) 一串分数:12123412345612812,,,,,,,,,,,,.....,,,......,33,55557777779991111 其中的第2000个分数是 . 4 (12年东城二中考题) 在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少? 2......7......5......8 (3) 5 (04年人大附中考题) 请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。为了达到这些目的。

(1)请你说明:11这个数必须选出来; (2)请你说明:37和73这两个数当中至少要选出一个; (3)你能选出55个数满足要求吗? 【附答案】 1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、 143。 2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……, 所以下面括号中填的数字为奇数列中的第2001个,即4003。 3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8… 88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。 4 【解】:第一次写后和增加5,第二次写后的和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,…… 它们的差依次为5、15、45、135、405……为等比数列,公比为3。 它们的和为5+15+45+135+405+1215=1820,所以第六次后,和为1820+2+3=1825。 5 【解】 (1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。 (2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必 须选出一个来。 (3),同37的例子, 01和10必选其一,02和20必选其一,……09和90必选其一,选出9个 12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。 23和32必选其一,24和42必选其一,……29和92必选其一,选出7个。 ……… 89和98必选其一,选出1个。

[高考数学]高考数学函数典型例题

?0x时,总有 00 ?01}的四组函数如下: ①f(x)=x2,g(x)=x;②f(x)=10-x+2,g(x)=2x-3 x;

③ f(x)= , g(x)= ; ④ f(x)= , g(x)=2(x-1-e -x ) . 年 高 考 江 苏 卷 试 题 11 ) 已 知 函 数 f ( x ) = ? x + 1, x ≥ 0 , 则 满 足 不 等 式 ) 剪成两块,其中一块是梯形,记 S = ,则 S 的最小值是____▲____。 2 x 2 +1 xlnx+1 2x 2 x lnx x+1 其中, 曲线 y=f(x) 和 y=g(x) 存在“分渐近线”的是( ) A. ①④ B. ②③ C.②④ D.③④ 33. (20XX 年 高 考 天 津 卷 理 科 16) 设 函 数 f ( x ) = x 2 - 1 , 对 任 意 3 x x ∈[ , +∞) , f ( ) - 4m 2 f ( x ) ≤ f ( x - 1) + 4 f (m ) 2 m 恒成立,则实数 m 的取值范围是 。 34 .( 20XX ? 2 ?1, x < 0 f (1- x 2 )> f ( 2x 的 x 的范围是__▲___。 35.(20XX 年高考江苏卷试题 14)将边长为 1m 正三角形薄片,沿一条平行于底边的直线 (梯形的周长) 梯形的面积 36 已知函数 f ( x ) = ( x + 1)ln x - x + 1 . (Ⅰ)若 xf '(x) ≤ x 2 + ax + 1 ,求 a 的取值范围; (Ⅱ)证明: ( x - 1) f ( x ) ≥ 0 .

高考数学大题经典习题

1. 对于函数()3 2 1(2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -+t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()3 2 1 (2)(2)3 f x a x bx a x =-+-+-,则()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02 (2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3 )((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B 分别为函数)(x f 的极大值点和极小值点,且|AB|=2,αββα-=-)()(f f .

小升初数学测试题经典十套题及答案

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* (人教版)小升初入学考试数学试卷(一) 班级______姓名______得分______ 一、选择题:(每小题4分,共16分) 1、在比例尺是1:4000000的地图上,量得A、B两港距离为9厘米,一艘货轮于上午6时以每小时24千米的速度从A开向B港,到达B港的时间是()。 A、15点 B、17点 C、19点 D、21点 2、将一根木棒锯成4段需要6分钟,则将这根木棒锯成7段需要()分钟。 A、10 B、12 C、14 D、16 3、一个车间改革后,人员减少了20%,产量比原来增加了20%,则工作效率()。 A、提高了50% B、提高40% C、提高了30% D、与原来一样 4、A、B、C、D四人一起完成一件工作,D做了一天就因病请假了,A结果做了6天,B做了5天,C做了4天,D作为休息的代价,拿出48元给A、B、C三人作为报酬,若按天数计算劳务费,则这48元中A就分()元。 A、18 B、19.2 C、20 D、32 二、填空题:(每小题4分,共32分) 1、学校开展植树活动,成活了100棵,25棵没活,则成活率是()。 2、甲乙两桶油重量差为9千克,甲桶油重量的1/5等于乙桶油重量的1/2,则乙桶油重()千克。 3、两个自然数的差是5,它们的最小公倍数与最大公约数的差是203,则这两个数的和是()。 4、一个圆锥与一个圆柱的底面积相等,已知圆锥与圆柱的体积比是1:6,圆锥的高是4.8厘米,则圆柱的高是()厘米。

5、如图,电车从A站经过B站到达C站,然后返回。去时B站停车,而返回时不停,去时的车速为每小时48千米,返回时的车速是每小时()千米。 6、扑克牌游戏,小明背对小亮,让小亮按下列四个步骤操作: 第一步,分发左中右三堆牌,每堆牌不少于两张,且各堆牌的张数相同; 第二步,从左边一堆拿出两张,放入中间一堆; 第三步,从右边一堆拿出一张,放入中间一堆; 第四步,左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆。 这时小明准确说出了中间一堆牌现有的张数,你认为中间一堆牌现有的张数是()。 7、前30个数的和为()。 8、如图已知直角三角形的面积是12平方厘米,则阴影部分的面积是()。 三、计算:(每小题5分,共10分)

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)1 (≠ > =a a a y x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 的图象. 我们观察y=x2,y= x ? ? ? ? ? 2 1 ,y=x 10,y= x ? ? ? ? ? 10 1 图象特征,就可以得到)1 (≠ > =a a a y x且的图象和性质。 a>10

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ??+ ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数y = 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则y =, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

通用版小升初数学专项训练+典型例题分析-找规律篇(含答案)

测试卷 找规律篇 时间:15分钟 满分5分 姓名_________ 测试成绩_________ 1 (12年清华附中考题) 如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么? 2 (13年三帆中学考题) 观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式, 找出规律, 然后填写20012+( )=20022 3 (12年西城实验考题) 一串分数:12123412345612812 , ,,,,,,,,,,,.....,,,......,33,55557777779991111 其中的第2000个分数 是 . 4 (12年东城二中考题) 在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少? 2......7......5......8 (3) 5 (04年人大附中考题) 请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。为了达到这些目的。

(1)请你说明:11这个数必须选出来; (2)请你说明:37和73这两个数当中至少要选出一个; (3)你能选出55个数满足要求吗? 【附答案】 1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、 143。 2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……, 所以下面括号中填的数字为奇数列中的第2001个,即4003。 3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8… 88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。 4 【解】:第一次写后和增加5,第二次写后的和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,…… 它们的差依次为5、15、45、135、405……为等比数列,公比为3。 它们的和为5+15+45+135+405+1215=1820,所以第六次后,和为1820+2+3=1825。 5 【解】 (1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。 (2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必 须选出一个来。 (3),同37的例子, 01和10必选其一,02和20必选其一,……09和90必选其一,选出9个 12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。 23和32必选其一,24和42必选其一,……29和92必选其一,选出7个。 ……… 89和98必选其一,选出1个。

高考数学-对数函数图像和性质及经典例题

对数函数图像和性质及经典例题 第一部分:回顾基础知识点 对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数其中x 是自变量,函数的定义域是(0,+∞). 对数函数的图象和性质 ○ 1 在同一坐标系中画出下列对数函数的图象; (1) x y 2log = (2) x y 2 1log = (3) x y 3log = (4) x y 3 1log = ○ 2 对数函数的性质如下: 图象特征 函数性质 1a > 1a 0<< 1a > 1a 0<< 函数图象都在y 轴右侧 函数的定义域为(0,+∞) 图象关于原点和y 轴不对称 非奇非偶函数 向y 轴正负方向无限延伸 函数的值域为R 函数图象都过定点(1,1) 11=α 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 0log ,1>>x x a 0log ,10><x x a ○ 3 底数a 是如何影响函数x y a log =的. 规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.

第二部分:对数函数图像及性质应用 例1.如图,A ,B ,C 为函数x y 2 1log =的图象上的三点,它们的横坐标分别是t , t +2, t +4(t ≥1). (1)设?ABC 的面积为S 。求S=f (t ) ; (2)判断函数S=f (t )的单调性; (3) 求S=f (t)的最大值 . 解:(1)过A,B,C,分别作AA 1,BB 1,CC 1垂直于x 轴,垂足为A 1,B 1,C 1, 则S=S 梯形AA 1B 1B +S 梯形BB 1C 1C -S 梯形AA 1C 1C . )44 1(log )2(4log 2 3223 1t t t t t ++=++= (2)因为v =t t 42+在),1[+∞上是增函数,且v ≥5, [)∞++=.541在v v 上是减函数,且1

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

小升初数学经典题型汇总

小升初数学:应用题综合训练1 1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地? 总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵 需要种的天数是2150÷86=25天 甲25天完成24×25=600棵 那么乙就要完成900-600=300棵之后,才去帮丙 即做了300÷30=10天之后即第11天从A地转到B地。 2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天? 这是一道牛吃草问题,是比较复杂的牛吃草问题。 把每头牛每天吃的草看作1份。 因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份 所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份 因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份

所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份 所以45-30=15天,每亩面积长84-60=24份 所以,每亩面积每天长24÷15=份 所以,每亩原有草量60-30×=12份 第三块地面积是24亩,所以每天要长×24=份,原有草就有24×12=288份 新生长的每天就要用头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=头牛 所以,一共需要+=42头牛来吃。 两种解法: 解法一: 设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=每亩原有草量为*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24**80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头) 解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头

高中数学_经典函数试题及答案

经典函数测试题及答案 (满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

小升初数学典型题

升中典型题 1、一种商品按定价的75折出售,仍可获利20%,若按定价出售可获利()%。 2、圆柱体和圆锥体的底面半径的比是2:3,高的比是4:3,则圆柱与圆锥的体积比是(): ()。 3、有一个长方体,它的正面和上面的面积之和是209,如果它是长、宽、高都是质数,那么 这个长方体的体积是()。 4、小芳骑车从甲地到乙地每小时行30千米,然后按原路返回,若想往返的平均速度为40千 米,则返回时每小时应行()千米。 5、一个半圆形,半径是r,它的周长是()。 6﹑水结成冰后体积增了1 11 , 冰融化成水后,体积减少( ) 7.冰化成水后,体积比原来减少1 12,水结成冰后,体积比原来增加了(). 8、甲数为a,比乙数的3 4多b,表示乙数的式子是()。 9、一个圆柱和一个圆锥的体积相等。已知圆柱的高是圆锥高的 2 3,圆柱的底面积和圆锥底 面积的比是() .10、甲种商品降价20%后与乙商品涨价20%后的价格相等,甲乙两种商品的原价的比是()。 11.甲数比乙数少20%,乙数比甲数多()%。 12.甲乙两个数最大公因数是3,最小公倍数是45,若甲数是9,那么乙数是()。 13. 相同的小正方形拼成一个大正方形,至少要()个。相同的小正方体拼成一个大正方体,至少要()个。 二、解决问题。 1﹑用同一种方砖铺一间长8米,宽6米的乒乓球室的地板,先用200块方砖就铺了32平方米,余下的还要多少方砖(用比例解) 2﹑小明读一本书,第一天读了这本书的1 4 多6页,第二天读了这本书的 2 5 少2页,第三天读完剩 下的17页,这本书共有多少页 3、一筐梨,先拿走30kg,又拿出余下的70%,这时剩下的梨正好是原来的1 10。这筐梨原来 多少kg

高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 2. 已知).(323 2)(23R a x ax x x f ∈--= (1)当41||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ) . (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈ 有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2g x f x '= . (1)证明:当t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明: 3()2 f x ≥. 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 题型三:利用导数研究方程的根 例4:已知函数a x ax x f 313)(23-+-=. (I)讨论函数)(x f 的单调性; (Ⅱ)若曲线()f x 上两点A 、B 处的切线都与y 轴垂直,且线段AB 与x 轴有公共点,求实 数a 的取值范围.

高考数学大题经典习题

1. 对于函数()32 1(2)(2)3 f x a x bx a x =- +-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 2 2sin cos t t t -+ t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()32 1(2)(2)3 f x a x bx a x =- +-+-,则 ()2 '(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02(2)323(2)0 a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-+ ∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -+ ≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得22 4a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3)((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

相关文档
最新文档