最新浅谈构造法在中学数学解题中的应用上课讲义

最新浅谈构造法在中学数学解题中的应用上课讲义
最新浅谈构造法在中学数学解题中的应用上课讲义

浅谈构造法在中学数学解题中的应用

富源六中范文波

[摘要]:现代数学素质教育要求大力提高学生的数学素养,这不仅要使学生掌握数学知识,而且要使学生掌握渗透于数学知识中的数学思想方法,使他们能用数学知识和方法解决实际问题。构造法作为一种数学方法,不同于一般的逻辑方法,它是一步一步寻求必要条件,直至推导出结论,它属于非常规思维。其本质特征是“构造”,用构造法解题,无一定之规,表现出思维的试探性、不规则性和创造性。本文主要通过大量的例题说明构造法是广泛存在于解题过程中的,而且对于解某些问题是非常有用的.

[关键词]:构造法;创造性;构造;几何变换

1 前言

解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方向,换一个角度去思考从而找到一条绕过障碍的新途径。构造法就是这样的手段之一.

构造的数学思想提炼于数学各分支的研究方法之中,它融直观性、简单性、统一性、抽象性、相似性于一体,显示出简化与精密、直观与抽象的高度统一.

什么是构造法又怎样去构造呢?构造法是运用数学的基本思想经过认真的观察,深入的思考、分析,迁移联想,正确思维,巧妙地、合理地构造出某些元素、某种模式,使问题转化为新元素的问题,或转化为新元素之间的一种新的组织形式,从而使问题得以解决,这种方法称之为“构造法”.

构造法的内涵十分丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体的问题的特点而采取相应的解决办法,其基本的方法是:借用一类问题的性质,来研究另一类问题的思维方法.在解题过程中,若按习惯定势思维去探求解题途径比较困难时,我们可以根据题目特点,展开丰富的联想拓宽自己思维范围,运用构造法来解题也是培养我们创造意识和创新思维的手段之一,同时对提高我们的解题能力也有所帮助.

构造法包含的内容很多,在解题中的应用也千变万化,无一定规律可言,它需要更多的分析、类比、归纳、判断,同时能激发人们的直觉思维和发散思维.

如何借助构造的思想实现解题过程中的转化呢?关键是对题设条件进行逻辑处

理,通过一般化、特殊化的想象,巧妙地对问题进行分析与综合,构造出一种思

维的创造物和想象物.

构造法是数学解题方法中很重要的一种方法,在解题中被广泛应用.它之所

以重要,不仅因为它完善了我们的数学思维,开拓了我们的思路,加深了我们对

数学的理解,给人以一种美的享受.其妙处在于不是直接去解决所给的问题,而

是去构造一个与原问题有关的辅助新问题,这里引出新问题并非为了它本身,而

是希望通过它的解决来帮助解决新问题.如果新问题比原问题更简单,更直观,

那么这种思考问题的方法就会成功.

2 应用构造法解题

构造法是数学解题中的一种重要思维方法,不仅可以拓宽思路,创造一些新

的情境,提高分析问题解决问题的能力,而且富有巧妙、新颖、独特的功效.有

些问题用别的方法束手无策,可一旦用了构造法就豁然开朗了.

2.1构造函数法

对于某些代数式的证明问题,可以把其中一个元素看成是另一个元素的函

数,或者把一个代数式看成一个函数,或者根据题目结构特点,巧妙地构造一个

函数,从而站在函数的角度,研究这个函数的性质,达到解决问题的目的.

例1 求函数y =

分析:由根号下的式子看出11x+-x=且01x ≤≤

故可联想到三角函数关系式并构造2sin x θ= (0)2πθ≤≤

所以 sin cos )4

y x x πθ=+=+

当4πθ=即12

x =时,max y =2.2 构造方程法

若不等式的证明问题正面思维遇阻,可以改为逆向思维,从结论考虑,沟通

条件和结论的关系,构造出与结论有关的方程,以便利用方程理论迅速解决问题.

有些数学题,经过观察可以构造一个方程,从而得到巧妙简捷的解答.

例2 已知实数,,a b c 满足0a b c ++=和2abc =.求证:,,a b c 中至少有一个不

小于2

分析:由条件得,b c a +=-,2bc a =

.所以,b c 是一元二次方程220x ax a

++=的两个根,故可构造方程来求解. 证明:由题设显然,,a b c 中必有一个正数,不妨设0a >.

则,2b c a bc a +=-???=??

即,b c 是二次方程022=++a ax x 的两实根.所以280a a ?=-≥. 故2a ≥.

2.3 构造几何图形

构造几何图形,就是将题中的元素用一些点或线来取代,使题中的各种关系

得以在图中表现出来,然后借助几何的直观寻求问题的解答,或借助几何知识对

问题进行推证.

例3若,,0x y z >,则zx x z yz z y xy y x ++>+++++222222.

分析:可以用两边同时平方来证此题,但是太繁.由22x y xy ++我们就会联

想到余弦定理,于是构造三角形用余弦定理来求证.

证明:如图2—2,作120AOB BOC COA ∠=∠=∠=,

设,,OA x OB y OC z ===.

由余弦定理AB =xy y x ++22, BC =yz z y ++22,CA =zx x z ++22.

因为AB BC CA +>, 图 2—1所以xy y x ++22 +yz z y ++22>zx x z ++22.

2.4 构造新数列求原数列通项

数列的通项公式是研究数列的关键,因而求数列的通项公式显得极为重要.

构造新数列求通项,既可以考察学生等价转换与化归的数学思想,又能反映我们

对等差、等比数列的理解深度.

2.4.1 形如n+1n a pa q =+,求通项公式,可构造新数列{}n a λ+

例4 已知数列{}n a 满足114,21n n a a a +==+,求数列{}n a 通项公式.

分析:这类题十分常见,它是有一般方法解的.即引入待定系数λ,拼凑

1()n n a p a λλ++=+,使得{}n a λ+成为等比数列.

解:设1()n n a p a λλ++=+.整理得1n n a pa p λλ+=+-,与已知121n n a a +=+对

比系数得2, 1.p λ==于是11112(1)21

n n n n a a a a ++++=+=+即,所以数列{}1n a +是首项为115a +=,公比为2的等比数列.由1152n n a -+=?,得1521n n a -=?-.

2.4.2形如1n n n Aa a a B +=+,求通项公式,构造新数列1n a λ??+????

分析:两边同时取倒数得,1111n n B a A A a +=+?,令11

1n n b a ++=.得1n n b pb q +=+. 例5在数列{}n a 中,1122,,2n n n a a a a +==

+求数列{}n a 的通项公式. 解:由122n n n a a a +=+,两边取倒数得,1211122n n n n a a a a ++==+.

整理得11112n n a a +-=,故数列1n a ??????

是首项为12,公差为12的等差数列.于是,111111(1)(1)2222n n n n a a =+-?=+-?=.故2n a n =.

注:形如1n n n Aa B a Ca D

++=+,求数列的通项公式.该数列一般可引如参数,,t λμ,使得1()()n n n t a a a λλλμ+++=++,与已知对比后得系数,转化为新数列1n k a λ??+??+??.

2.4.3 构造与n S 有关的数列,再由n S 求n a

例6 已知数列{}n a 前n 项的和为n S ,12a =

,2n S =,求数列{}

n a

的通项公式.

解:由2

n

S

==

=

即数列

==

为公差的等差数列.

2(1)2n n S n -==即 .

当1n =时,112a S ==;

当2n ≥时,22122(1)42n n n a S S n n n -=-=--=-.

综上述,数列的通项公式是242n a n ?=?-?

(1)(2)n n =≥ .

2.5构造立体几何模型法

某些不等式的证明,可与立体几何的直观模型密切联系,从而利用立体几何

的有关知识给出不等式的一种有效证明.

例7已知:锐角,,

αβγ满足222cos cos cos 1αβγ++=

求证:(1

)4

ctg ctg ctg αβγ??≤, (2)cos cos cos αβγ++≤,

(3)222sec sec sec 9αβγ++≥.

证明:由条件222cos cos cos 1αβγ++= 图2—2

联想到构造立体几何模型——长方体, 于是构造长方体ABCD A B C D ''''--,如

图2—2所示,对角线长l ,对角线与三条棱的夹角分别为,,αβ

γ.设

,,AA a AB b B C c '''===

.

l =,所以有

ctg

ctg ctg

αβγ

??=

4=, 当且仅当a b c ==,即arccos 3

αβγ===时取等号.

(2)cos cos cos a b c l l l αβγ++=++3l ≤==

即:cos cos cos αβγ++≤.

(3)222

222sec sec sec ()()()l l l a b c αβγ++=++222222

22a b c a b c a b ++++=+ 222222222

22222223()()()a b c b a c b a c c a b b c c a

+++=++++++ 32229≥+++=. 所以222sec sec sec 9αβγ++≥.

结束语:

从上面的例子我们不难看出,构造法解题有着意想不到的功效,恰当应用构造法问题容易解决.构造法解题重在“构造”,它可以构造图形、方程、函数甚至其它构造,就会促使我们要熟悉几何、代数、三角等基本知识技能并多方设法加以综合利用,这对我们的多元思维培养,学习兴趣的提高以及钻研独创精神的发挥十分有利.因此,在解题时,我们要从多角度,多渠道进行广泛的联想才能得到许多构思巧妙,新颖独特,简捷有效的解题方法.而且还能加强我们对知识的理解,培养思维的灵活性,提高我们分析问题的创新能力.

构造法是一种创造性的解题方法,在数学解题中有着广泛的应用.构造法解题的导学功能既体现在思维功能上,也体现在发现、创新功能上,更体现在追求美妙、神奇的功能上.

在数学解题过程中,同样存在着“价值观念”问题,解题时要瞄准最终目标,用最小的“代价”来获取最大的“成果”.而利用构造法解题正是这一价值的具体体现,把握这一原则,在解题时就会产生很多巧思妙想,令人耳目一新.在解题过程中渗透这一原则,对提高我们分析和解决问题的能力是非常有益的.

应用构造的思想解题需要扎实的基础知识,由此及彼的丰富联想能力和较强的思维能力,在具体的解题过程中,需要仔细审题,弄清题意,借助联想,构造出新的数学形式,使所求的问题转化.

参考文献:

[1]刘绍学.数学通报[J].《数学通报》编辑部.2007.2

[2]中学数学教学参考[J].陕西师范大学出版社.2007.3

[3]李维华.中学数学教学[J].人大复印报刊资料.1995.3

[4]王培德.数学思想应用及探究——建构数学[M].人民教育出版社.2003.143—161.

[5]史久一、朱梧稼等.化归与归纳,类比,联想[M].江苏教育出版社,1988.62—87.

[6]王子兴.数学方法论——问题解决的理论[M].中南工业大学出版社,1995.92—101.

[7]李明振 .数学方法与解题研究(第二版)[M].上海科技教育出版社,2002.7

339—400

[8]贺金华. 数学教学中如何培养学生的思维品质[J].数学教学通讯2004.3 38—40

[9]刘朝斌. 解一元二次不等式的几点技巧[J].数学教学通讯2004.3 46—47

[10]王秀奎、李昆. 构造解析几何模型求函数值域[J].语数外2006.2 37—38

2010年经济师中级人力资源专业知识与实务试题及答案

一、单项选择题(共60题,每题1分。每题的备选项中,只有1个最符合题意)

1. 关于内源性动机和外源性动机的说法,错误的是()。

A.内源性动机是指人做出某种行为是为了获得行为带来的成就感

B.外源性动机是指人做出某种行为是为了获得物质或社会报酬

C.追求高社会地位属于内源性动机

D.谋求多拿奖金属于外源性动机

2. 关于成就需要的说法,错误的是()。

A.成就需要是指个体追求优越感的驱动力

B.成就需要高的人倾向选择适度的风险

C.成就需要高的人具有较强的责任心和进取意识

D.一般来说,成就需要高的人工作绩效较低

最新浅谈构造法在中学数学解题中的应用上课讲义

浅谈构造法在中学数学解题中的应用 富源六中范文波 [摘要]:现代数学素质教育要求大力提高学生的数学素养,这不仅要使学生掌握数学知识,而且要使学生掌握渗透于数学知识中的数学思想方法,使他们能用数学知识和方法解决实际问题。构造法作为一种数学方法,不同于一般的逻辑方法,它是一步一步寻求必要条件,直至推导出结论,它属于非常规思维。其本质特征是“构造”,用构造法解题,无一定之规,表现出思维的试探性、不规则性和创造性。本文主要通过大量的例题说明构造法是广泛存在于解题过程中的,而且对于解某些问题是非常有用的. [关键词]:构造法;创造性;构造;几何变换 1 前言 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方向,换一个角度去思考从而找到一条绕过障碍的新途径。构造法就是这样的手段之一. 构造的数学思想提炼于数学各分支的研究方法之中,它融直观性、简单性、统一性、抽象性、相似性于一体,显示出简化与精密、直观与抽象的高度统一. 什么是构造法又怎样去构造呢?构造法是运用数学的基本思想经过认真的观察,深入的思考、分析,迁移联想,正确思维,巧妙地、合理地构造出某些元素、某种模式,使问题转化为新元素的问题,或转化为新元素之间的一种新的组织形式,从而使问题得以解决,这种方法称之为“构造法”. 构造法的内涵十分丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体的问题的特点而采取相应的解决办法,其基本的方法是:借用一类问题的性质,来研究另一类问题的思维方法.在解题过程中,若按习惯定势思维去探求解题途径比较困难时,我们可以根据题目特点,展开丰富的联想拓宽自己思维范围,运用构造法来解题也是培养我们创造意识和创新思维的手段之一,同时对提高我们的解题能力也有所帮助. 构造法包含的内容很多,在解题中的应用也千变万化,无一定规律可言,它需要更多的分析、类比、归纳、判断,同时能激发人们的直觉思维和发散思维.

数学解题中的构造法思想

数学解题中的构造法思想 数学科 庞春英 我们首先从下面例题的解法开始讨论: 例:解方程组 ?? ???=++=++=++323232c z c cy x b z b by x a z a ay x 解法一:直接按照三元一次方程组的消元法解题 (略)。 解法二:把原方程组改写为?????=---=---=---0002323 23x cy z c c x by z b b x ay z a a 利用方程根的定义,我 们把a,b,c 看成关于t 的三次方程023=---x yt zt t 的三个根。根据韦达定理得: x abc y ac bc ab z c b a ==++=++,,,因此原方程组的解为:?? ? ??++=++==c b a z ca bc ab y abc x 。 比较例题的两种解法:解法一作为一般的方法,求解极为麻烦,运算量大;解法二则是构造一个满足问题条件的关于t 的三次方程,构造的元件是a,b,c ,构造的“支架”是原方程变形的关系式“023=---x yt zt t ”。在解法二中,以问题已知元素或条件为“元件”,数学中的某些关系式为“支架”,在思维中构造了一种新的“建筑物”这种方法有一定的普遍意义。 在解题过程中思维的创造活动的特点是“构造”,我们称之为构造性思维,运用构造性思维解题的方法称为构造法,即为了解决某个数学问题,我们通过联想和化归的思想,人为地构造辅助图形、模型、方程、函数以帮助解决原来的问题,这样的解题方法,可以看作是构造解题。 早在公元前三百年左右,欧几里德为了证明素数有无穷多个,假设只有有限个素数n p p p p 321,,,而构造一个新素数121+n p p p ,从而证明了原命题。另外,古希腊人为了证明毕达哥拉斯学派的信条“万物皆为(有理数)”是不对的,构造一个边长为1的正方形,则它的对角线竟不是一个“有理数”。上述这些大概是数学史上最早采用构造法解题的例子吧。 所谓构造法,其实质就是运用数学的基本思想,经过认真的观察,深入的思考,构造出解题的数学模型,从而使问题得以解决。构造法体现了数学发现的思想,因为解决问题同获得知识一样,首先需要感知它,要通过仔细地观察、分析,去发现问题的各个环节以及其中的联系,从而为寻求解法创造条件;构造法还体现了类比的思想,为了找出解题的途径,很自然地联系已有知识中与之类似的或与之相关的问题,从而为构造模型提供了参照对象;构造法还体现了化归的思想,把一个个零散的发现由表及里,由浅入深地集中和联系起来,通过恰当的方法加

浅谈高中数学解题策略实践方法

浅谈高中数学解题策略实践方法 发表时间:2019-08-22T15:51:57.230Z 来源:《教育学文摘》2019年9月总第313期作者:张春香 [导读] 使学生掌握解决数学问题的方法作为高中数学教育的生命力所在,对于学生的数学学习有着重要的意义。云南省迪庆州藏文中学674400 摘要:随着高中数学课程改革的进行,培养学生们的自主学习能力和知识转移应用能力已成为高中数学的重要教育目标。在高中数学的教学实践中,我们发现,对于高中学生而言,他们当前学习的数学知识是复杂抽象的,导致学生在学习过程中往往畏难不前。因此,本文将对高中数学解题的教育战略进行深入研究,以期提高学生的学习效率,培养学生的解决问题的能力,这对教师来说是具有重要意义的。 关键词:高中数学解题策略实践方法教学建议 使学生掌握解决数学问题的方法作为高中数学教育的生命力所在,对于学生的数学学习有着重要的意义。在传统的高中数学课上,教师们尽管传授了数学知识和基本的解题方法,并通过大量的题海战法,提高了学生解决数学问题的速度,但是从长期来看,学生的数学学习热情将会在无聊的题海实践中逐渐消失。 作为数学教师,我希望以个人在教育实践中学习到和总结的经验,启发各位教育同仁的高中数学解题策略的实践教学。 一、加强数学教材的应用 高中数学教师上课时教授的数学知识来自于教材的应用价值。在教学过程中,教师应当注重教材的价值,充分发挥教材的重要作用,探索其中蕴含的数学思想,用适当的教学方法教给学生数学知识。 教师们首先要创造民主、和谐的授课氛围,培养学生们的创意性思考。提高高中数学解题教学效率的需要要求教师优化教学结构,建立和谐的师生关系。在日常生活中,教师可以与学生以平等的态度交流教学的有效方法,了解学生喜欢的解题教学模式和数学学习中的瓶颈,这有利于教师们转换教育战略,优化教育设计,提高教育效率性。 其次,教师能够通过创建课堂环境而激发学生对学习的兴趣。 最后,是教师应当提高自己的专业解题能力,这要求高中数学教师要对教育方法进行革新,改变传统的“全面”授课模式,摸索自主合作探究解题模式的实施。例如,当我们进入到“三角函数”的授课时,可以以提问的方式引导学生自主地探究学习三角函数的题目,在共同探究中教学了学生类比、变换、数形组合的数学解题思想。 二、引导学生了解题目条件 解决数学问题的开始在于认真审视题目。在教授数学解题的课上,教师们通过培养学生的阅读能力和根据学生的实际情况,可以示范性地将题目的文本词汇转换成数学语言的能力,帮助学生快速地提取出题目中的关键词和关键数据。在高中数学解题策略的实际教育中,由于许多学生的疏忽和对问题审视不清楚、不仔细,造成了对题目的误读和误解,因此,教师应该整理学生对问题的看法,帮助他们挖掘数学题目中的重要条件。厘清数学解题过程,应该对所有问题确立明确的审视标准。 我们引入一个高中数学题目来探析函数图像和题目所给条件之间的关系:“第一个选项是A同学刚离开家没多久,就想起来家里的钥匙没有带,落在桌子上了,于是原路折返。第二个选项是A同学以正常速度开车,在回家路上遭遇了严重的交通堵塞。第三个选项是由于时间有限,A同学提高了行驶速度。”为了找出符合函数图像的条件,学生们首先可以通过A同学的活动过程中涉及的关键词找到明确的线索,引导学生们整理出A 同学“出门—折返——堵塞—加速”的行动过程,然后对函数图像中的x轴与y轴代表的意思进行探析,构建时间和速度的分段函数图像。教师要在学生掌握基础知识的过程中树立明确的数形结合解题理念,提高学生的题目阅读和解读能力,真正提高学生的数学解题技巧。 三、综合多种多样的题目解法 高中数学教师要想真正提高学生数学的解题能力,不能只交给学生题目的答案,更重要的是要传授学生各种不同的数学解题思维。在抽象性、平面化的高中数学课上,教师很难仅仅教授基础知识就让学生拥有解决问题的能力。为了在解决问题的过程中,学生可以灵活运用所学的知识,通过消化知识进行数学问题分析,教师的教学内容应该从基础知识扩散到解决问题的智慧,教师们必须重视学生们的数学素养。 从“数列”知识的情况来看,这一部分的知识点在高考数学分值中占很大比重。因此,教师在讲授这一课题的时,要将讲课过程设计得非常细致,并可以用一个课时的时间向学生详细说明这一类题型的多种解题方法,以此来作为教授的方法。举例来说,如果已知数列{an}中a1=2,an=4an-1-3(n≥2),求{an}的通项公式。在解决这一道数学题时,数学教师可以引导学生通过等比数列来获得{an}。求数列前n项和的方法,也可以依照题目的含义通过倒序相加法、公式法、裂项相消法、错位相减法、并项求和及分组求和法算出最后答案。以此类推,在解决其他的数列与函数计算及不等式综合题,高中教师也可以花一个课时的时间来分析典型例题的不同做法,让学生对这些题型的解题策略有更深的理解和掌握。 参考文献 [1]张文尼数学思维能力在高中数学教学中的培养探究[J].新教育时代电子杂志(学生版),2017年15期。 [2]蒋晓军现代信息技术条件下的教育创新研究[J].语数外学习(高中数学教学),2014年4期。

初中数学竞赛常用解题方法(代数)

初中数学竞赛常用解题方法(代数) 一、 配方法 例1练习:若2 ()4()()0x z x y y z ----=,试求x+z 与y 的关系。 二、 非负数法 例21 ()2 x y z =++. 三、 构造法 (1)构造多项式 例3、三个整数a 、b 、c 的和是6 的倍数.,那么它们的立方和被6除,得到的余数是( ) (A) 0 (B) 2 (C) 3 (D) 不确定的 (2)构造有理化因式 例4、 已知(2002x y =. 则2 2 346658x xy y x y ----+=___ ___。 (3)构造对偶式 例5、 已知αβ、是方程2 10x x --= 的两根,则4 3αβ+的值是___ ___。 (4)构造递推式 例6、 实数a 、b 、x 、y 满足3ax by +=,2 2 7ax by +=,3 3 16ax by +=,4 4 42ax by +=.求5 5 ax by +的值___ ___。 (5)构造几何图形 例7、(构造对称图形)已知a 、b 是正数,且a + b = 2. 求u =___ ___。 练习:(构造矩形)若a ,b 形的三条边的长,那么这个三角形的面积等于___________。 四、 合成法 例8、若12345,,,x x x x x 和满足方程组

123451234512345123451234520212 224248296 x x x x x x x x x x x x x x x x x x x x x x x x x ++++=++++=++++=++++=++++= 确定4532x x +的值。 五、 比较法(差值比较法、比值比较法、恒等比较法) 例9、71427和19的积被7除,余数是几? 练习:设0a b c >>>,求证:222a b c b c c a a b a b c a b c +++>. 六、 因式分解法(提取公因式法、公式法、十字相乘法) 1221()(...)n n n n n n a b a b a a b ab b -----=-++++ 1221()(...)n n n n n n a b a b a a b ab b ----+=+-+-+ 例10、设n 是整数,证明数3 231 22 M n n n =++为整数,且它是3的倍数。 练习:证明993 991993 991+能被1984整除。 七、 换元法(用新的变量代换原来的变量) 例11、解方程2 9(87)(43)(1)2 x x x +++= 练习:解方程 11 (1) 11 (1x) x =. 八、 过度参数法(常用于列方程解应用题) 例12、一商人进货价便宜8%,售价保持不变,那么他的利润(按进货价而定)可由目前的 %x 增加到(10)%x +,x 等于多少? 九、 判别式法(24b ac ?=-判定一元二次方程20ax bx c ++=的根的性质) 例13、求使2224 33 x x A x x -+=-+为整数的一切实数x. 练习:已知,,x y z 是实数,且 2 2 2 212 x y z a x y z a ++=++=

中考数学构造法解题技巧

构造法在初中数学中的应用 所谓构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面介绍几种数学中的构造法: 一、构造方程 构造方程是初中数学的基本方法之一。在解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。 1、某些题目根据条件、仔细观察其特点,构造一个"一元一次方程" 求解,从而获得问题解决。 例1:如果关于x的方程ax+b=2(2x+7)+1有无数多个解,那么a、b的值分别是多少? 解:原方程整理得(a-4)x=15-b ∵此方程有无数多解,∴a-4=0且15-b=0 分别解得a=4,b=15 2、有些问题,直接求解比较困难,但如果根据问题的特征,通过转化,构造"一元二次方程",再用根与系数的关系求解,使问题得到解决。此方法简明、功能独特,应用比较广泛,特别在数学竞赛中的应用。

3、有时可根据题目的条件和结论的特征,构造出方程组,从而可找到解题途径。 例3:已知3,5,2x,3y的平均数是4。 20,18,5x,-6y的平均数是1。求 的值。 分析:这道题考查了平均数概念,根据题目的特征构造二元一次方程组,从而解出x、y的值,再求出的值。 二、构造几何图形 1、对于条件和结论之间联系较隐蔽问题,要善于发掘题设条件中的几何意义,可以通过构造适当的图形把其两者联系起来,从而构造出几何图形,把代数问题转化为几何问题来解决.增强问题的直观性,使问题的解答事半功倍。 例4:已知,则x 的取值范围是()

(完整版)浅谈数形结合在中学数学解题中的应用毕业论文

本科生毕业论文(设计) 题目:浅谈数形结合在中学数学解题中的应 用 姓名:任城勇 学号: 2 0 0 7 0 2 0 1 4 0 4 1 系别:数学与计算机科学系 年级: 2 0 0 7 专业:数学与应用数学 指导教师庄中文职称:副教授 指导教师武慧虹职称:讲师

2011年3月10日 安顺学院毕业论文任务书 数学与计算机科学系数学与应用数学专业 2007 年级学生姓名任城勇 毕业论文题目:浅析数形结合在中学数学解题中的应用 任务下达日期:2010年9月18 日 毕业论文写作日期: 2010年 9月 18日至2011年 4月20日学生签字:指导教师签字: 摘要 数形结合思想即借助数的精确性阐明图形的某种属性。利用图形的直观性阐明数与数之间的关系,这是沟通数形之间的联系、并通过这种联系产生感知或认知、形成数学概念或寻找解决数学问题途径的思维方式。数形结合是解决数学问题的一个有力工具,也是中学数学中极为重要的基本方法之一,通过数形结合可将抽象的数学语言与直观图形相结合,使抽象思维与形象思维相结合,缩短了思维链,简化了思维过程。数形结合中的数应广义地理解为解析式、函数、复数等;其中的形,可以是点集空间图形,进而使数形结合的思想方法焕发生机和活力,使应用的范围不断拓宽和深化。因此,由此可见,数形结合对发展学生由抽象到直观,再由直观到抽象的思维是非常重要。本文重点阐述了如何在具体的问题中进行形与数、数与形的转化,以及在数学例题中去培养学生数形结合的解题能力。从而

达到锻炼学生思维的灵活性与广泛性,提高学生解决问题的能力。 关键词:数形结合;参数方程;复数;不等式 Abstract The Combination of thinking that help to clarify the accuracy of a few graphics as an attribute. Clarify the use of intuitive graphical relationship between the number and the number, which is the number of communication links between form and produced through this link or cognitive perception, the formation of mathematical concepts to solve mathematical problems or to find ways of thinking. The Combination of mathematical problems to solve a powerful tool, is also extremely important in middle school mathematics one of the basic methods, by The Combination of mathematical language can be abstract and intuitive graphics combine to make the abstract thinking and thinking in images combine to shorten the the thought chain, simplifying the process of thinking. The Combination of the number should be broadly understood as analytic, functions, complex numbers, etc.; one of the form, can be a point of space graphics, and then radiate the way of thinking Shuxingjiege vigor and vitality, so that applications continue to broaden the scope and deepened. Therefore, we can see, The Combination of students from the abstract to the development of intuitive, then to the abstract visual thinking is very important. This article focuses on how specific issues in the shape and number, number and shape of the transformation, and examples in mathematics to students in problem-solving ability Shuxingjiege. Training students to achieve the flexibility and breadth of thinking to improve their ability to solve problems.

浅谈高中数学解题策略 张忠传

浅谈高中数学解题策略张忠传 发表时间:2018-11-07T10:05:53.660Z 来源:《教育学》2018年10月总第157期作者:张忠传 [导读] 只有将知识的学习与解题技巧相互结合,才能够在考试中更好地解决问题,学习的效率才会大大提高。安徽省金寨第一中学237322 摘要:在教学过程中,教师要注重对学生解题思维的教授与培养,引导学生在解题的过程中不断总结方法与规律,提高学生解题时的准确率与效率,从而减轻学生学习的压力,在解题方面能够更加自如。只有将知识的学习与解题技巧相互结合,才能够在考试中更好地解决问题,学习的效率才会大大提高。 关键词:高中数学解题策略有效性 一、多元方程的问题——逆向思维解题策略 在解决多元方程的问题中,最为常用的就是逆向思维的方法。在多元方程的解题中,如果仅仅是通过题目条件,正常地进行问题的分析与解决,就会遇到许多新的不必要的麻烦,导致问题不能及时地解决;并且多元方程的解决要求学生思维的转变,这对于很多同学来说存在一定的困难,因为惯性思维会阻碍其纵深发展。因此,在对多元方程的解决中就应该有意识地采取逆向思维的方法。新课改要求的过程和方法,需要让同学们打破常规,积极改变自己的思维模式,思维也要有所突破,老师在教学引导中应该鼓励同学们用逆向思维去解答。 例1:实数l,m,n,满足m-n=8,且mn+l2+16=0。求证:m+n+l=0。 分析:用顺推法直接求得l、m、n的值,运算量很大且容易出现运算错误。简单的方法是用韦达定理的逆定理,从题目中的两个条件来结合进行计算,求出m、n的关系,然后进行关系的转换,将其转变为x的关系,再带入到原式中进行求解。 证明:由m-n=8可以得到m+(-n)=8,由mn+l2+16=0得到m(-n)=l2+16,那么根据m和n的关系就能够将两者通过一个新的未知数x来代替,则m、-n即为一元二次方程x2-8x+l2+16=0的两个根。又因为m、-n为实数,所以,△=(-8)2-4(l2+16)≥0,解得4l2≥0,所以l=0,则m,-n即为一元二次方程x2-8x+16=0的两个根,解得m=-n=4,则有m+n+l=0成立。 以上就是通过逆向思维的方法,由此也能够看出在面对这种多元函数的证明问题时,通过逆向思维就能够有效地解决。 二、函数与方程问题——分类讨论解题策略 1.在解方程中的应用。 在高中初级阶段解方程中最为常见的就是所给的未知数或者条件有着两方面的情况,此时就需要借助分类讨论的方法对每一个未知的情况分几个方面进行讨论求解。 2.在函数题目中的应用。 例2:当m=____时,函数y=(m+5)x2m-1+7x-3(x≠0)是一个一次函数。 解:当(m+5)x2m-1是一次项时,2m-1=1,m=1,整理为y=13x-3。当(m+5)x2m-1是常数项时,2m-1=0,m=1/2,整理为y=7x+5/2。m+5=0,m=-5,整理为y=7x-3。 在讨论(m+5)x2m-1的情况时,就需要分为两种情况,第一种就是为一次项,第二种就是结果为常数。而通过不同的m值也就能够得到不同的解果,最终进行整理就能够得出正确的答案。 三、不等式证明问题——构造函数解题策略 在解决不等式问题时最为适合采用构造函数的解题策略。通过构造函数的方法,能够将不等式的问题转化为函数方程的问题,并根据题目中的信息,来求出相应方程的单调性、值域、定义域,从而结合多种条件来证明不等式的正确。 例3:如已知a、b、c∈R,|a|<1,|b|<1,|c|<1,证明ab+bc+ca+1>0。 对于该不等式的解题过程:构造函数f(x)=(b+c)x+bc+1,证明x(-1,1)时函数f(x)>0恒成立。当b+c=0时,f(x)=1-b2>0恒成立。当b+c≠0时,函数f(x)=(b+c)x+bc+1在区间(-1,1)上是单调的。由于f(1)=bc+b+c+1=(b+1)(c+1)>0,f(-1)=bc-(b+c)+1=(1-b)(1-c)>0,因此f(x)=(b+c)x+bc+1在区间(-1,1)上恒大于零。 综上可知,当|a|<1、|b|<1、|c|<1时,ab+bc+ca+1>0恒成立。 所以,通过以上的解题,就能将一些不等式的问题通过函数的方法来解决,更加有效。 总之,高中数学对于学生的逻辑思维方面有着更高的要求,高中数学的学习阶段也要更加重视对学生数学思维以及解题思维的培养,培养学生做题时的应变性以及灵活性,从而提高解题的效率。教师在教学过程中也要不时地将自己多年解题经验中得来的解题方法教授给学生,渗透学习思维。数学题目的形式千变万化,但是核心不会改变,只要学生能够熟练地掌握解题技巧,并且灵活地运用,相信不管遇到什么问题都能迎刃而解,更好地达到学习的目标。 参考文献 [1]梅松竹冷平王燕荣城乡数学教师对新课程的解题教学的研究——函数解题技巧[J].教育与教学研究,2010,(08)。 [2]马玉武探究数形结合思想在高中数学教学中的应用[J].中国校外教育(下旬刊),2012,(12)。 [3]李文婕解题思维在高中数学教学中的应用探析[J].中华少年教育论坛,2017,(03)。 [4]吴冬香探究高中数学解题教学方法的应用研究[J].中国考试教育周刊(上、下旬),2017,(12)。

初中数学十大常见解题方法

初中数学十大常见解题方法 1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,

而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的重要方法之一。 6、构造法:在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。 7、反证法:反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的

浅谈初中生数学解题不规范性现象与思考

浅谈初中数学解题不规范 现象与思考 单位:惠东县黄埠中学 作者:邱际林 时间:2017年4月10日

浅谈初中数学解题不规范性现象与思考 惠东县黄埠中学 邱际林 【摘要】数学是一门非常严谨的学科,很多学生一看到题目就明白解题的思路,当自己写起来时就是漏洞百出,这通常是解题的过程中不够细心造成的。解题是深化知识、发展智力和提高能力的重要手段。规范的解题能够帮助学生养成良好的学习习惯,提高思维水平,从而少丢分。 【关键词】 数学解题 规范性 思考 尝试 正文 在日常教学中,常常听到很多学生抱怨,拿到一道题虽然知道解题思路是什么,但就是不知道如何把自己所想的用数学的要求格式写完整。在批改作业和试卷时常常发现一种现象,只要解题结果正确,学生经常轻视甚至忽略解题中出现的这样或那样的不规范性问题,知识上的错误纠正往往比解题规范性的强调反馈得及时。从检测结果可以看到一种趋势,同一检测卷,学生由于解题不规范导致得分差距越来越大。下面我就谈谈我在教学中发现的一些常见的解题不规范性现象与思考。 一、解题不规范现象: 1、最后答案不是最简——化简的数学思想渗透不够。 例如:在新人教版九年级数学上册《第21章一元二次方程》的教学过程中,学生在解方程:(402)(252)450x x --=时,都习惯于如下: 解:去括号移项得:2100805044500x x x --+-=……① 合并同类项得:241303500x x --=……② 解得:125,27.5x x ==……③ 以上解答过程中的②就不是最简,实际上很多学生觉得一点也不会影响结果,不应该“小题大做”,事实上它影响着我们解题的正确性和速度。 =28a ,=结果就不单单是不是最简的问题,而是错误了。

浅谈构造法解题在高中数学竞赛中的应用

学好构造法 妙解竞赛题 在数学竞赛辅导过程中,需要长期给学生进行有针对性的数学思想方法的训练。其中构造法解题的思想,就是一种值得推广的解题思想方法。通过构造,可以建立起各种数学知识之间的联系与相互转化,让学生在熟练掌握各种数学知识的前提下交互使用,融会贯通。 一、构造几何模型,使代数问题几何化。 代数运算虽然直接,但有时会比较抽象且运算复杂,构造合乎要求的几何图形,可以是所求解的问题变得直观明朗,从而找到一个全新的接替办法。 例一,设a 为实数,证明:以1,1,34222+++-+a a a a a 为边长可以构成一个三角形,且三角形的面积为定值。 分析:从题目给出的三个根式我们知道,当实数a 去互为相反的两数时,只是其中两式角色互换,实质一样,故只需争对非负实数a 展开讨论即可。 ()( ) ? ???-+=++????-+=+-+= +120cos 121160cos 12113 2342222222 22a a a a a a a a a a 构造合乎要求的几何图形如图所示: ? =∠?=∠======120601CBE DAB CD BE AB a BC DF AD 于是:()( ) 343 2,3,222 2+=+= = =a a EF AE a AF 1 120cos 121,1,160cos 121,1,2 2 2 222++=????-+===+-=????-+====a a a a CE BE a BC a a a a DB FC AB a AD 所以:以1,1,34222+++-+a a a a a 为边长可以构成一个三角形,即ECF ?。 则:AEF AECF ECF S S S ??-= ?60 F E D C B A ?30 ? 120a a a 1 1 1

浅谈中学数学中若干变形技巧

浅谈中学数学中的若干变形技巧-中学数学论文 浅谈中学数学中的若干变形技巧 江苏高邮市三垛中学赵静 变形是数学解题的基石,变形能力的强弱直接制约着解题能力的高低。变形是为了达到某种目的而采用的“手段”,是化归、转化的准备阶段。本文旨在通过探讨变形技巧在数列问题、不等式问题、因式分解等问题中的若干应用,来揭示中学数学常见的一些变形技巧,帮助学生掌握变形的一般规律与特点,培养良好的发散性思维与创新精神。 一、掌握变形技巧的意义 在代数运算中变形是用来帮助解答疑难问题时,在原代数式基础之上进行转换的方法。我们在解题时,由于条件不充分或者不明显,常常需要求助于变形做适当的转换。变形的意义在于把题目中的已知与求解的有关性质联系起来,从而使题目中分散的元素集中,把问题转化为另一种形式,便于利用有关的定义、公理、定理等达到解题的目的;当题中的条件与结论之间的关系不够明确时,变形还可以把所需的关系揭露出来,使隐蔽的条件显现,把复杂的问题化简,从而找到解决问题的途径。 二、变形技巧在数列中的应用 (一)给定初始条件,数列的递推方程为:an+1=pan+q(p≠1)型

等形式的变形,在不等式中还可以通过变元与消元、增、减项变成“积”一定以及放缩法等形式来变形,在因式分解中还可以通过主元变形等,这里就不再一一叙述。总之变形是为了便于利用某些理论进行运算架设的桥梁,是把代数式中固有的但不很明显的性质得以明确地显示出来的催化剂。变形的用途很广,虽然题目千差万别,解题方法多种多样,变形也因题而异.只要我们大胆探索,深入

研究,就会找到其内在的规律。 参考文献: [1]马永传.递推数列通项公式求法及技巧[J].六安师专学报,1999. [2]郭立军.运用基本不等式的变形技巧[J].数学学习与研究(教研版),2008. [3]候有歧.运用均值不等式解题的变形技巧[J].中学数学杂志,2007. [4]李开丁.在证明不等式中几种常用的等价变形形式[J].高等数学研究,2004. [5]郭茂华.因式分解中常用的几类变形技巧[J].时代数学学习,1998.

初中数学常用的10种解题方法.doc

初中数学常用的10种解题方法 来源: e度教育社区 数学的解题方法是随着对数学对象的研究的深入而发展起来的.教师钻研习题、精通解题方法,可以促进教师进一步熟练地掌握中学数学教材,练好解题的基本功,提高解题技巧,积累教学资料,提高业务水平和教学能力。 下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式.配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式.因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法.我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程20(a、b、c属于R,a≠0)根的判别,△2—4,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,

浅谈如何培养中学生的数学解题能力

浅谈如何培养中学生的数学解题能力 摘要 在中学数学教学中,要提高中学生的解题能力,除了抓好基础知识、基本能力的学习外,更重要的是培养学生的审题习惯和提高学生的审题能力,熟练的、灵活的运用知识的能力,引导学生探索正确的解题路径,提高分析能力和培养学生对知识的回顾意识。从而使学生在亲自参与的解题实践过程中,学会解题,从中获得能力。 关键词:中学生解题能力审题能力知识能力分析能力回顾意识

引言 学生牢固掌握基础知识、基本技能,是提高解题能力的根本,如何使学生融会贯通,灵活运用基础知识和基本技能来解决复杂问题,提高他们解题能力呢?在实际教学中,本人认为通过以下几点能有效地提高学生的解题能力。 一、养成仔细、认真地审查题意的习惯,提高审题能力 仔细、认真地审题,提高审题能力是解题的首要前提。因为审题为探索解途径提供方向,为选择解法提供决策的依据。因此,教学中要求学生养成仔细、认真的审题习惯,就是要对问题的条件、目标及有关的全部情况进行整体认识,充分理解题意,把握本质和联系,不断提高审题能力。具体地说,就是要做到以下三项要求: 1.了解题目的文字叙述,清楚地理解全部条件和目标,并能准确地复述问题、画出必要的准确图形或示意图 在审题中要能了解题目的文字,尤其是重要字眼,并且要理解已知条件。在几何中就需要画出草图。这是审题基本。 例如:已知 a, b, c 都是实数,且|c|>b>|a|,ab<0,bc<0,求证:b>a>c 这个题目只要求学生了解题目的文字叙述,清楚地理解全部条件即可。 证明: |c|>b>|a| 0b ∴>, 又ab<0,bc<0 即a<0,c<0,a>c 所以b>a>c 2.挖掘题设条件的内涵、沟通联系、审清问题的结构特征。并发现比较隐蔽的条件 这个要求是比较高的,主要是要能审出题目的条件之间的联系与条件的内涵或比较隐蔽的条件,从而推测这个问题结构特征。 例: 在实数范围内解方程:|x-2|+x -1=3 审查题意就要从题目的特征“含有绝对值和算术根符号”中,善于发现隐含条件。即 ∵1-x ≥0, ∴x ≤1. 有了这一条件,就可以将原方程转化为: 2-x+x -1=3, 即x -1=x+1. 解得x=0或x=-3 3.判明题型,预见解题的策略原则 这个问题又在高一层次的要求,他需要学生在审题的过程中能通过已知条件与结论能去判明这道题的题型,再然后有了解题的策略。 例:试比较3x-1与5-2x 的大小 解:∵3x-1-(5-2x )

数列的几种构造法解题

数列几种构造法解题 数列的构造法,我这里仅仅表示的是n 1a 与+n a 之间的常见关系,还有很多需要补充的。 以下主要是以例题为主,表示不同类型的构造方法。 1-n 1-n 1n n 1n 2q a a 等比数列,a 2a ,1例=?==+. 1 -n 2d )1n (a a 等差数列,2a 2.a 例1n n 1n =-+=+=+ 1 2a 化简可得2)1a (1a 所以整体是等比数列1a ,所以1x 展开解得)x a (2x a 构造等比数列1 a 2a 。3例n n 1 -n 1n n n 1n n 1n -=+=++=+=++=++ 1-n n 011-n 1-n n n 1n n n n 1n n n n 110111 1n 1n n n n 1n n n n n 1 -n 1n n n n 1n 1n n n 1n 2n a 所以n 1)1-n (2a 2a 可以得到 12a 2a 得到 2同除以22a a )22-3a 化简即可得3 2)32()33a (33a 即整体是等比数列33a 。所以3x 展开解得)3a (32x 3a 构造13a 23a 可以得到 3首先同除以,间接构造 2解2-3a 所以2)3-a (3-a 所以1 x 展开解得) 3x a (23x a 构造,直接构造法: 1解32a a )1,4例n ?==?+==-+==-=-=---=+=++==?=-=+=++=++-----+++++n n n n n n n n n x

3n 327an 所以2)33a (33n a 即是等比数列, 3n 3a 所以3 t ,3m 展开解得), t mn a (2t )1n (m a 构造 n 3+2a =a ,5例1-n 1 -n 1n n n 1n n 1+n --?=?++=++++==++=+++?+ 综合例6的通项公式。a ,试求n 3a 2a ,2a 已知n n n 1n 1++==+ 1n -23a 所以22 )113-a (1n 3a 所以1y ,1x ,1m 展开化简依次可以解得)y xn 3m a (2y )1n (x 3m a 解:构造1n n n 1n 1n 11n n n n 1n 1n -+==?++=++-==-=+++=++++---++

浅谈中学数学解题方法(论文) 精品

本科生毕业论文(设计)册 学院数学与信息科学学院 专业数学与应用数学 班级 2006级A班 学生孔祥东 指导教师麻常利

河北师范大学本科毕业论文(设计)任务书 编号:数信学院2010届613 论文(设计)题目:浅谈中学数学解题方法 院系:数信与信息科学学院专业:数学与应用数学班级: 06A班 学生姓名:孔祥东学号: 2006012613 指导教师:职称: 1、论文(设计)研究目标及主要任务 深入研究中学(特别是高中)的数学问题,探寻用更短的时间解决更多的中学数学问题,以及掌握处理大多数中学数学问题的通法通解。 2、论文(设计)的主要内容 本文针对中学的几种典型的数学方法进行了研究和总结,并以示范性典例和再现性典例的形式加以归纳和再现,以典型题来阐述各数学方法的精妙。 3、论文(设计)的基础条件及研究路线 半年来对中学数学试题的广泛研究,尤其是北京地区高考题的研究,加之对众多教辅资料的研读与分析,结合自己的心得和体会加以研究和归纳。 4、主要参考文献 [1] 郑毓信、肖柏荣、熊萍数学思维与数学方法论 [M]. 成都:四川教育出版社 [2] 陆书环、傅海伦数学教学论[M]. 北京:科学出版社 [3] 张雄、李得虎数学方法论与解题研究 [M]. 北京:高等教育出版社 [4] 周房安.数学选择题解答策略[J].广东教育,2006,(04).62~63. [5] 傅钦志.高考解题中的优先策略[J].高中数理化,2004,(02).1~2. 指导教师签名:系主任(教研室主任)签名: 年月日年月日 学院审查意见:教学院长签名:年月日

河北师范大学本科生毕业论文(设计)开题报告书数学与信息科学学院数学与应用数学专业 2010 届

第13讲 函数的零点个数问题的求解方法-高中数学常见题型解法归纳反馈训练及详细解析

【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(

相关文档
最新文档