浅谈构造法在解题中的应用

浅谈构造法在解题中的应用
浅谈构造法在解题中的应用

摘要

构造法作为数学解题中的一种重要的思想方法,它是根据题设条件和结论的特殊性,构造出一些新的数学形式,并借助它来认识与解决原问题的一种方法.构造法的内涵十分丰富并且没有完全固定的模式可以套用,它是以广泛的普遍性和特殊的实际问题为基础,针对一些数学问题的特点而采用相应的解决办法.合理运用构造法不仅可以提高解题效率,而且也能够发展学生的思维能力和创新意识.鉴于此,本文的重点主要体现在构造法在解题中的应用.具体来说,本文主要基于构造法的理论简介,探讨它在不等式、函数、以及其他特例中等问题的相关应用.

关键词:构造法,解题,应用

Analysis to application of structured method in

solving problems

Abstract

Structured method as an important method of thinking in mathematics problem solving, it is based on the special question condition and conclusion, constructs some new mathematical forms, and with the help of a method to recognize and solve the original problem. The content of structured method is very rich and has no completely fixed models to be applied to practical problems, It is based on a wide range of practical problems of universality and particularity, for some of the features of mathematical problems and solutions using the corresponding method. Proper and rational use of the structured method can not only improve the efficiency of solving the problems, but also develop the students' t thinking ability and sense of innovation. In view of this, the focus of this paper is mainly reflected in construction method in solving the problem. Specifically, This paper is mainly based on the theory of structured method, explores it in the inequality, function, and other special medium problems in related practical applications.

Keywords: structured method, problem solving, application

目录

一、引言 (1)

二、构造法的理论简介 (1)

(一)构造法 (1)

(二)构造法的历史过程 (2)

1.构造法与构造主义 (2)

2.直觉数学阶段 (2)

3.算法数学阶段 (2)

4.现代构造数学阶段 (3)

(三)构造法的特征 (3)

三、构造法在解题中的应用 (3)

(一)构造法在不等式中的应用 (3)

1.构造函数 (4)

2.构造向量 (5)

3.构造数列 (5)

4.构造几何模型 (6)

(二)构造法在函数中应用 (7)

1.构造函数 (7)

2.构造方程 (8)

3.构造复数 (10)

4.构造级数 (10)

5.构造辅助命题 (11)

(三)构造法在其他特例中的应用 (12)

1.构造新的数学命题 (12)

2.构造递推关系 (13)

3.构造反例 (14)

4.构造实际模型 (14)

四、结束语 (15)

参考文献 (16)

致谢 (16)

一、引言

数学的学习过程离不开解题,美国数学家哈尔莫斯也曾说过“数学真正的组成部分应该是问题和解,问题才是数学的心脏”.一个好的问题解决方式往往有多种.而数学思维方法是解数学题的灵魂,构造法作为一种传统的数学思想方法,在数学产生时就存在.历史上有不少数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾用构造法解决过数学上的很多问题.

数学蕴含着丰富的美,构造法则起到了锦上添花的作用.近几年来,构造法在中学数学中也有了很高的地位.利用造法解题需要有扎实的基础知识、较强的观察能力、创造思维和综合运用能力等.

构造法反映了数学发现的创造性思维特点,我们所学的“构造”并不是“胡思乱想”,不是随便“编造”出来的,而是以我们所掌握的知识为背景,以具备扎实的能力为基础,通过仔细观察,认真分析去发现问题的每一个环节以及它们的联系,进而为寻求解题方法创造条件.在运用构造法解题的步骤中,不仅可以巩固学生的基本知识,还能培养学生观察、分析、联想、猜测等数学能力,激发学生的创造性思维.所以在数学教学中,应注重对学生在日常训练中运用构造法解题,使学生体会数学知识间的内在联系和相互转化,能创造性的构造数学模型,巧妙的解决问题,从而获得学习的轻松感和愉悦感,培养与增强了学生学习数学的积极性,提高他们的解题能力.构造法作为一种重要的化归手段,在数学解题中有着重要的作用.本文从构造函数、构造方程等常见构造及特殊构造出发,浅谈构造法在数学解题中的应用.

二、构造法的理论简介

(一)构造法

构造法是数学中的一种基本方法,它是指当某些数学问题使用通常办法或按定势思维去解决很难奏效时,根据问题的条件和结论特征,从新的角度,新的观点观察、分析、解释对象,抓住反映问题的条件和结论之间的内在联系,把握问题的数量、结构等关系的特征,构造出满足条件或结论的新的对象,或构造出一种新的问题形式,使原问题中隐晦不清的关系和性质在新构造的数学对象(或问题形式)中清楚地展现出来,从而借助该数学对象(或问题形式)简捷的解决问题的方法.

构造法是解决各类数学题常用而且重要的方法之一,它在解决不同题目时的思考方式灵活多样,构造的形式也不尽相同,如何系统的理解和掌握

构造及其构造的思路对数学学习就显得十分必要和重要.本文结合数学实际阐述了构造法在数学解题中的重要性和必要性.

我们在解题过程中出于某种需要,要么把题设条件中的关系构造出来,要么将关系设想在某个模型上得以展现,要么将已知条件经过适当的逻辑组合而构造出一种新的形式,从而使问题得以解决.在这种思维过程中,对已有的知识和方法采取分解、组合、变换、类比限定、推广等手段进行思维的再创造,构造新的式子或图形来帮助解题.

所谓“构造法”即是在解题中利用已知条件和数学知识所具备的典型特征,用已知条件中的元素为“元件”,用已知的数学关系为“支架”,在思维中构造出一种相关的数学对象,一种新的数学形式;或者利用具体问题的特殊性,为解决的问题设计一个合理的框架,从而使问题转化并得到解决.总之用构造法解题的关键就是搞清对什么进行构造,构造成什么,以及如何构造的问题.

(二)构造法的历史过程

1.构造法与构造主义

从数学产生的那天起,数学中构造性的方法也就伴随着产生了.但是构造性方法这个术语的提出,直接把这个方法推向极端,并致力于这个方法的研究,与数学基础的直觉派是密切相关的.直觉派出于对数学“可信性”的考虑,提出了一个著名的口号:“存在必须是被构造的”.这就是构造主义.

2.直觉数学阶段

直觉派的先驱者是19世纪末德国的克隆尼克,他明确提出并强调了能行性,主张没有能行性就不得承认它的存在性.他认为数学的出发点不是集合论,而是自然数论,并且批判传统数学缺乏构造性,创立具有构造性的“直觉数学”.

3.算法数学阶段

“发现集合论悖论以后,有些数学家认定了解决这些悖论所引起的问题的唯一彻底的方法就是把所有的一般集合论概念都从数学中排除,只限于研究那些可以能行的定义或构造的对象”,这就是布劳威创立直觉数学的想法.由于马尔科夫的工作,使构造性方法进入了“算法数学”的阶段.

4.现代构造数学阶段

1967年比肖泊的书出版以后,宣告了构造法进入“现代构造数学”阶段.他通过重建现代分析的一个重要组成部分,重新激发了构造法的活力.

实际上,构造法在古代数学的建立与发展中也起着重要的作用.以西方的《几何原本》和中国的《九章算术》为例,尽管两者在逻辑推理方式上迥异,但在运用构造性方法方面却有着一些共同之处.我国古代数学所采用的构造方法,注重问题解决的能行性,数学家吴文俊曾指出,《九章算术》中的开方术经过一千多年发展到宋代的增开方与正负开方术的求方程根的数值解法是中国古代数学构造性与机械性思想方面的代表性成就.

由此可知,在数学发展之初,大量的直观经验需要加以总结和提高,构造方法此时就体现出极强的应用价值,所以在中西方古代数学中产生了深远的影响.

(三)构造法的特征

一般来说,构造法具有如下两个基本特征:

1.对所讨论的对象能有较为直观的描述.

2.不仅能判明某种数学结论的存在,而且能够实现运演操作并求出表述的结果,利用构造法证明某个问题,具有简捷易懂,说服力强的特点.

当我们遇到复杂的问题或实际问题而无从下手解决时,如果我们恰到好处的构造出一个数学模型来,便会有种“山重水复疑无路,柳暗花明又一村”的感觉.

三、构造法在解题中的应用

理解和掌握构造思想方法有助于实现数学从常量到变量的这个认识上的飞跃,构造法的前提和基础是熟悉相关的概念,很多数学问题繁冗复杂,难寻入口,若巧妙运用构造思想,能使解答别具一格,耐人寻味. (一)构造法在不等式中的应用

不等式是研究数的性质、方程函数等的重要工具之一,在函数的单调性和极值问题中,不等式的应用非常重要.但在不等式的证明中,掌握有一定的难度,而构造法是一种极具创造性的解题方法,体现了各种数学解题方法.下面谈谈怎么用构造法解决在不等式中的相关应用.

函数是数学知识的中心之一, 方程可以看作是函数值为零的情况,不等式可以看作是两个函数之间的不等关系,因此方程和不等式都是函数的特殊表现形式.利用函数的性质来解决不等式问题也是一种行之有效的办法.

例1.已知R e d c b a ∈,,,,,且满

8a b c d e ++++=,2222216a b c d e ++++=,

试确定e 的最大值.(美国第七届中学数学竞赛题)

分析:根据222228,16a b c d e a b c d e +++=-+++=-这两个式子构造 以d c b a ,,,为系数的二次函数作为辅助工具手段,从中转化出e 的不等式.

解:由于222228,16a b c d e a b c d e +++=-+++=-,

构造二次函数:

()()()2222242f x x a b c d x a b c d =++++++++

()()()()

2222x a x b x c x d =+++++++

0≥. 由已知条件得:()()2

2481616e e -≤-, 解得:1605

e ≤≤

当d c b a ===时,有=max e 165. 例2.已知(),,1,1a b c ∈-,求证2abc a b c +>++. 分析:因为()()()212abc a b c bc a b c +-++=-+--,

所以构造一次函数y kx b =+的形式,根据k 的正负来判断函数的单调性.

解:∵()()212abc a b c bc a b c +-++=-+--,

∴可构造函数()()(1)2,1,1f x bc x b c x =-+--∈-,

∵(),1,1b c ∈- 所以1

∴ ()f x 在R 上是单调减函数,

∵()1,1a ∈-,

∴()()()()11110f a f b c bc b c >=--+=-->,

即()120bc a b c -+-->.

平面向量是数学教学中非常重要的教学工具,它不仅反应数量关系,而且体现位置关系,所以充分利用向量模型可以解决、几何及三角等数学问题,实现数形之间的转化,其解题思路简单,尤其是对几何问题,效果更显著.

例3.已知1,0,=+>b a b a ,≤

分析: 观察此题的结构,左边是和的形式,右边是常数,对左边的式子稍加变形就能表示出两个向量的坐标,然后计算出两个向量的模,再结合数量积和模的关系就构造了一个不等式,从而结论得证.

证明:设()1,1=m ,()

12,12++=b a n 则有,

1212+++=?b a n m , 与

2=m ,21212=+++=b a n , 因为n m n m ≤?,

所以≤解后反思 :本例通过构造二维向量,利用向量数量积的定义及性质来求最大值,大大降低了本题求最大值的难度,在求最值中,巧妙构造适当的向量,会收到直观明快,出奇制胜的效果,同时也体现了向量解决问题的优越性.

例4.已知a ,b ,c 均为正数,求函数y =值.

解:构造向量()a x ,=α , ()b x c ,-=β ,

原函数为:()()22b a x c x y ++-+≥+=βα ()22b a c ++=,

即y 3.构造数列

数列问题以其多变的形式和灵活的求解方法出现在数学解题中,在解决诸多数学问题尤其是在不等式证明中,通常可以构造一个数列,利用数列的性质和求和运算来解题,很有使用价值.

例5.()2112n ???++.

证明:()2112n x n =???++,,,2,1 =n

()

()221112122n n x x n n +-=+++ ()()??? ??+-++=2321n n n 04

932322<++-++=n n n n , 1n n x x +∴<),2,1( =n 即{n x }是递减数列,

于是n x 120x <=<,

()2112

n ???++. 此题的巧妙之处在于恰当的构造了一个辅助数列{n x },而利用数列自身的性质,将难于证明的问题变易,使问题迎刃而解.

例6.求不超过

8的最大整数.

分析:如果把8展开去计算,计算量比较大且相当麻烦,想到

是的共轭根式,而0<

<1,我们先去计算8

+8 问题就简化多了.

解:x y 则y x +=222,16xy x y =+=, ()28844442x y x y x y +=+-

()[]442222222y x y x y x --+=

()2256832=--

61472=.

即8+8=61472.

因为0<8

<1,

所以不超过8

的最大整数为61471.

本例题通过对偶思想,构造对偶数列

8

,使问题得到巧妙解决. 4.构造几何模型 如果原问题的已知条件,数量关系有比较明显的几何意义或者是以某一种形式可以和几何图形建立联系,那么我们就可以把已知条件或要证不等式中的代数量直观化为某个图形中的几何量,即构造出一个符合条件的几何图形,便可应用该图形的性质及相应的几何知识证明不等式.

例7.

m >,()0m n >>.

分析:由隐含条件可知0m n >>和22m n -的形式考虑到可以构造一个直角三角形ABC ,如图所示使AB m =,BC n =,90C ?∠=,显

然AC =, 0m n >> ,2mn n >,222mn n >,

222mn n n ∴->

n >

; n m >>.

数形结合是针对具体问题的特点而构造出的几何模型,是借用一类问题的性质,来研究一类问题的思维方法,是丰富学生联想,拓展学生思维,培养学生创造意识和创造思维的手段之一.数形结合有助于找到解答思路,也常使解答简捷,是一种很常用的解题法,一些不等式问题若能发现其几何意义,合理巧妙地构造图形,则可达到事半功倍的效果.

(二)构造法在函数中应用

构造函数需牢固掌握各类初等函数的性质.构造函数的过程要求我们敏锐地观察、正确地判断、合理地选择适当的函数,并准确运用函数的性质.有些数学问题本质上就是将其中某些变化的量建立起联系来构造函数,再利用函数性质就能解决,其基本思想就是将数学问题转化为函数问题来解答,它的用途非常广泛,常见的有不等式的证明、解方程、做辅助函数等,下面谈谈如何用构造法解决在函数中的应用.

1.构造函数

例8.(一般形式的中值定理)设f 和g 是闭区间[]b a ,上的两个连续函数,在开区间()b a ,内都可导,则在()b a ,内至少存在一点ξ,使得

()()[]()()()[]()ξξf a g b g g a f b f '-='-.

分析:将结果中的ξ换成变量x ,可得

()()[]()()()[]()x f a g b g x g a f b f '-='-,

作恒等变换

()()[]()()()[]()0='--'-x f a g b g x g a f b f , 则 ()()[]()()()[]()()0='---x f a g b g x g a f b f ,

积分得()()[]()()()[]()C x f a g b g x g a f b f =---,

作辅助函数()()()[]()()()[]()x f a g b g x g a f b f x F ---=.

B

C A

证明: 作辅助函数:

()()()[]()()()[]()x f a g b g x g a f b f x F ---=,

显然()x F 在闭区间[]b a ,上满足Rolle 理的条件,故在()b a ,内至少存 在一点ξ,使得()0='ξF 即

()()[]()()()[]()ξξf a g b g g a f b f '-='-.

从一般形式的中值定理的证明看出:微分中值类问题中的证明,关键是构造一个辅助函数,构造方法一般从结论出发,通过对条件和结论的分析,构造出辅助函数,具体的构造方法如下:将欲证结论中的ξ换成x ,然后等式两端积分,再将积分结果移项,使等式一端为常数,则等式的另一端即为所求的辅助函数.

2.构造方程

方程是数学解题的一个重要工具,对于很多数学问题,根据其已知条件,数量关系构造出与结论相关的函数方程,在已知与未知之间搭起桥梁,通过对辅助方程及方程的性质(比如求根、找根与系数的关系、找判别式等)的研究,来解决原问题,使解答简捷、合理.

例9. 设R y x ∈,且322=++y xy x ,求22y xy x +-的最值.

分析:观察已知条件所给的两个代数式的结构特点,设22x xy y k -+=,则易得到22x y +与22x y 的等式.联想到将22,x y 看作是某一个方程的两个根,则代数式的最值问题转化为方程是否有解的问题,问题就容易解决多了.

解:由已知322=++y xy x ,并设22x xy y k -+=, 可得22

32k x y ++= , 222694k k x y -+= 所以22,x y 是关于t 所构造函数方程22

369024k k k t t +-+-+=的两个根, 2

236902k k k +??∴?=--+≥ ???

或21090k k -+≤. 19k ∴≤≤ 当y x ==1时,221x xy y -+=;

当3,3x y ==时,22y xy x +-=9.

综上可知22y xy x +-的最小值为1,最大值为9.

例10.设242210,210a a b b +-=--=且210,0ab a -≠≠. 求2000221ab b a ??++ ???的值.

分析:通过仔细观察,可将2210,0a a a +-=≠变为 2

11210a a ????--= ? ?????

, 再由 ()222210b b --= 发现21,b a 可看作是2210x x --=的两个根,同 时2000221ab b a ??++ ???等价为2000221b b a a ??++ ??

?构造函数方程使问题变得简单. 解:将2210,a a +-=变形为211210a a ????--= ? ?????

,0a ≠ , ()222210b

b --=, ∴21,b a

是2210x x --=的两个根, 即212b a

+=,211b a =-. 所以2000221ab b a ??++ ???=()

200020002211211b b a a ??++=-= ???. 例11.锐角,,αβγ满足2

22sin sin sin 12sin sin sin 222222αβγαβγ++=-,

求证αβγπ++=. 证明:已知条件可视为关于sin

2α的一元二次方程,由题意可得 222sin 2sin sin sin sin sin 10222222αβγαβγ?

???+++-= ? ?????, 由2222224sin sin 4sin sin 14cos cos 222222β

γβγβγ???=-+-= ??

?, 因为,,αβγ为锐角,即

,,222αβγ也均为锐角,由一元二次求根公式得

sin sin sin cos cos cos 2222222α

β

γ

β

γβγ??=-+=+ ???

, 又02

π<< ,则sin 02α>,再由022βγπ<+<,则有 2222

a β

γ

π+=-, 故αβγπ++=. 3.构造复数

复数是实数的延伸,一些难以解决的实数问题可以转化为复数问题,虽然数的结构会变得复杂,但常使问题简明化,正所谓“退一步海阔天空”.复数内容的增加使学生更加全面的认识数的概念,也把学生的思维打开,而不是局限于实数那个狭小的范围内.

例12.求函数y =.

分析:可以看作是2x i +的模,可以看作是()13x i -++的模,然后利用复数模的性质求解.

解:设()12122,1315z x i z x i z z i =+=-++?+=+, 因为1212z z z z +≥+,

≥=当 1z ,2z 同向时,即

12x x -=时 ,25x =.

综上可知y . 4.构造级数

级数与函数、数列、导数等诸多知识密切的联系在一起,根据问题条件中的数量关系和结构特征,构造出一个级数,然后依据理论,使问题在新的关系下得到转化而获解.下面就是一个构造级数的例子.

例 13.设{}n x 的定义如下:()()12121,,,3,42

n n n x a x b x x x n --===

+=??? 求lim n n x →∞. 解析:构造级数11()k k k x x ∞

-=-∑ 设00x = 具体的写出{}1k k x x --如下:

()0

2112x x b a b a ??-=-=-- ???,

()()()1

3221221111222x x x x x x x b a ??-=+-=--=-- ???

, ()()()24332332111222x x x x x x x b a ??-=+-=--=-- ???

, ……, ()2112k k k x x b a --??-=-- ???

,

……, 因此lim n n x →∞=11()k k k x x ∞

-=-∑()()2211223

k k b a a a b -∞=??=--+=+ ???∑. 本题中的级数11

()k k k x x ∞-=-∑就是构造的级数,它通过合适的构造,使原

问题变得更加简单易求.

5.构造辅助命题

在解决某些数学问题时,如果缺乏现成的根据,那么我们不妨构造一个辅助命题作为依据,只要证明了这个命题是真命题,原命题就迎刃而解.这种解决数学问题的方法,称为构造辅助命题.

例14.解方程53232+=--x x x . (1)

分析:直接去原方程的绝对值符号得

53232+=--x x x . (2)

如果方程(1)与(2)同解,问题就容易解决.但在初等数学中没有定理可用来解决直接判定这两个方程是否同解.注意到方程(1)的定义域为R ,而对于任何R x ∈恒有()()03532322>+=++--x x x x ,于是可构造辅助命题:

设方程()()x x f ?=. (3)

的定义域为A ,如果对于任何A x ∈,恒有

()()0>+x g x f ,

那么方程(3)与方程

()()x x f ?=. (4)

同解.

证明:先证(3)的解是(4)的解.

设1x 是(3)的任一解,则()()11x x f ?=,

两边平方得()()[]()()[]01111=+?-x x f x x f ??;

()()11x x f ?=∴.

再证(4)的解必是(3)的解.

设2x 是(4)的任一解,则()()22x x f ?=,

上式可改写为()()22x x f ?=,这表明2x 是方程(3)的解,命题得证. 根据上述辅助命题,解例题方程(1)只需解方程(2);

解得:1-=x 或7=x .

下列方程也可根据这个辅助命题求解: (1).;311x x x -=-++ (2).x x x -=-+7322.

(三)构造法在其他特例中的应用

综合上面,我们所列举构造法的一些应用,其实构造法的应用不仅仅这些,还有其他的,下面我们列举一些其他的构造法,可以让我们更进一步去研究构造法的应用.

1.构造新的数学命题

当一些问题直接证明(或求解)较困难时,可以寻找与之等价(或接近)的较易证明的另一问题,比如构造原命题的逆否命题、构造矛盾命题等.

例15.求证在自然数集中,存在()N n n ∈+,12个连续的自然数,使得前1+n 个自然数的平方和等于后n 个数的平方和.

分析:这是一个证明存在性的问题,直接证明不易入手,但可以从题

目的“连续”和“12+n ”的条件发现这12+n 个数中,中间的那个数(即第1+n 个数)是关键.不妨设这个数为m ,则第一个数为n m -,第12+n 个数为n m +,这样就把问题转化为:求以m 为未知数的方程, ()

()2

1221∑∑==+=+-n k n k k m m k m 的自然数解,此方程不难求解,移项得 ()()[]

02122=++--∑=m k m k m n

k , 化简得 ()0122=+-m n n m ,

解得 0=m (舍去),()()N n n n m ∈+=,12.

即存在第一个数为()12+n n ,第1+n 个数为()122+n n ,最后一个数为()32+n n 的12+n 个连续自然数,符合题目所求.

2.构造递推关系

根据函数方程和递推关系之间的联系,根据已知条件和各种定理以及相应的运算法则,构造一个递推关系,能产生意想不到的效果.

例16.设12,x x 是方程2310x x ++=的两个根,试求7712x x +的值.

分析:令()12()n n f n x x n N =+∈ ,由12123,1x x x x +=-=

()13f =-, ()27f =,

()2f n +=2212n n x x +++

()()()1112121212n n n n x x x x x x x x ++=++-+

()31()f n f n =-+- 重复迭代就可以任意算出()f n 的值,这里

()13f =-,()27f =,()318f =-,()447f =;

()5123f =-,()6322f =, ()7843f =-,

所以7712x x +=-843.

例17.用1,2两个数字写成n 位数,其中任意相邻的两位不全为1,记n 位数的个数为()n f ,求()10f .

解:把满足条件的n 位数分成两类:第一类以1开头的数,其第二位数

必是2,因此划去这两个数字共有()2-n f ;第二类以2开头,则第二位可以是1,也可以是2,划去第一位数字2,共有()1+n f 个数.

所以()()()21-+-=n f n f n f .

因为()21=f ,()32=f ,

所以()53=f ,()84=f ,()135=f ,()216=f ,()347=f ;

()558=f ,()899=f ,()14410=f .

即10位数共有144个.

3.构造反例

为了说明一个问题不真,常常选择一个符合题设条件但命题不成立的反例,这个过程叫做构造反例.选择特殊值,极端的情形,常常都是构造反例,反例是用已知为真的事实去揭露另一个判断的虚假性.

例18.若命题x ,y 为无理数,则“y x ”也为无理数是否成立?

如果从正面回答这个问题有点难度,因此构造范例如下:

解:

(12==y x ,

(2,

有2y x ===??.

论它是有理数还是无理数,都给这个命题提供了反例,避免了从正面去证

明这个命题.

4.构造实际模型 数学源于生活而又应用于生活,当遇到抽象问题时,一时难以下笔,则可以考虑从实际生活中找原型,并将数学问题放到实际生活情境中去研究,巧妙地构造出新的数学模型,化抽象为具体,化复杂为简单,从而使问题求解带来意想不到的结果.构造模型就是换一种问题语境,其目的在于,为抽象的数学形式寻求某种具体背景,以便于通过直观的意义来解决问题.

例19.求方程10=+++w z y x 有多少组正整数解?

分析:这是一个不定方程问题,若用代数法进行讨论非常繁琐,若通过构造法将其转化为组合问题,则此题很容易得到解答.即构造10个相同的小球,放在4个盒子中,则每个盒子不空的总的放法即为方程解的组数.其又相当于将10个小球排成一排放在两条竖线之间,则球与球之间构成9个空位,在9个空位间划3条竖线,将每两条竖线间的小球依次装人4个盒子中,共有3

C =84种装法,所以原方程有84组正整数解.

9

可见,通过构造模型可使抽象的数学问题具体化,形象化,从而使问题易于解答.

构造法是数学中主要的解题方法之一,具有扎实的基本理论、基本运算的功底,是综合的分析解决问题的基础.同时多方位地、多角度的构造辅助问题,有机的将科学知识融汇贯通,提高解决问题的能力.

构造法的应用还有很多,需要针对不同的数学问题采用其相应的构造方法,这里不能一一枚举,但通过以上几例可见,构造法在解题应用中不但具有把问题由繁化简,由难化易,由抽象化具体的转化功能,而且还具有保证解答正确的“保险”功能,因此构造法是解决数学问题应用甚广的一种方法.在解决数学问题中若能巧妙恰当地运用构造法,则可以达到事半功倍的效果.

四、结束语

笔者在形成论文的过程中,参考了大量的文献资料,对构造法在解题中的应用有了更深层次的理解和认识.在此系统的介绍了构造法的理论简介以及在不同类型题中的相关应用,使我们更进一步的了解构造法的有关知识,为更好的运用打下坚实的基础.同时,从本文的例子可以看出,构造法在解题中有意想不到的功效,它能使问题得到很快解决.但它也不拘一格,我们应具体问题具体分析,多种构造法要学会灵活运用.构造法的核心是根据题设条件,结论特征恰当构造一种新的数学对象.它在许多问题的解决过程中显示出令人瞩目的特殊作用,往往能化繁为简,化难为易,得到简捷明快,出奇制胜的效果,它已成为解决数学问题的重要方法.用构造法解决问题正是学习者主动建构知识的过程,在这个过程中,对自己已有的知识经验进行调整,整合或者重新组合,从而构造出新的数学对象,这样新旧知识发生冲突,从而引发认知结构的重组,构成新的认知结构,培养人们分析问题时的创新能力.同时提高我们作为学习者的学习、研究的能力,为将来成为优秀的数学教师打好基础、做好准备.

参考文献

[1] 高桐乐,数学解题中的基本模型构造.第二版1989 ,(11).

[2] 杜军涛,巧妙构造解题.考试周刊.2012年第31期.

[3] Singh R,Green JH.The relation between career decision

making strategies and person-job fit:A study of job changers. Journal of Vocational Behavior,2004,64(1):198~221.

[4] 王梅杰,构造法在解决数学问题中的应用法[J].教育科学2011,(12).

[5] 梁法驯,数学解题方法[M].华中理工大学出版杜,2000.

[6] 张同君,陈传理,竞赛数学解题研究[M].高等教育出版社, 2005.11.

[7] 郑兴明,构造向量巧解垂直问题.中学语数外(高中版),2003.

[8] Judith A.McLaughlin.Understanding Statistics in the

Behavioral Sciences.Wads worth Group,2002:320~321.

[9] 宋波,例析构造数列解题.福建中学数学.2012年第7期.

[10] 杨麦秀,构造法在数学分析中的应用.太原师范专科学校学报2001.

[11] 戴再平,数学方法与解题研究[M].高教出版社.

[12] 王子兴,数学教学论[M].广西师范大学出版社,1992.1.

[13] 侯敏义,数学思维数学方法论.东北师范大学出版社.1991.

[14] 陈自强,数学解题思维方法引导[M].中南工业大学出版社.1995.6.

最新浅谈构造法在中学数学解题中的应用上课讲义

浅谈构造法在中学数学解题中的应用 富源六中范文波 [摘要]:现代数学素质教育要求大力提高学生的数学素养,这不仅要使学生掌握数学知识,而且要使学生掌握渗透于数学知识中的数学思想方法,使他们能用数学知识和方法解决实际问题。构造法作为一种数学方法,不同于一般的逻辑方法,它是一步一步寻求必要条件,直至推导出结论,它属于非常规思维。其本质特征是“构造”,用构造法解题,无一定之规,表现出思维的试探性、不规则性和创造性。本文主要通过大量的例题说明构造法是广泛存在于解题过程中的,而且对于解某些问题是非常有用的. [关键词]:构造法;创造性;构造;几何变换 1 前言 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方向,换一个角度去思考从而找到一条绕过障碍的新途径。构造法就是这样的手段之一. 构造的数学思想提炼于数学各分支的研究方法之中,它融直观性、简单性、统一性、抽象性、相似性于一体,显示出简化与精密、直观与抽象的高度统一. 什么是构造法又怎样去构造呢?构造法是运用数学的基本思想经过认真的观察,深入的思考、分析,迁移联想,正确思维,巧妙地、合理地构造出某些元素、某种模式,使问题转化为新元素的问题,或转化为新元素之间的一种新的组织形式,从而使问题得以解决,这种方法称之为“构造法”. 构造法的内涵十分丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体的问题的特点而采取相应的解决办法,其基本的方法是:借用一类问题的性质,来研究另一类问题的思维方法.在解题过程中,若按习惯定势思维去探求解题途径比较困难时,我们可以根据题目特点,展开丰富的联想拓宽自己思维范围,运用构造法来解题也是培养我们创造意识和创新思维的手段之一,同时对提高我们的解题能力也有所帮助. 构造法包含的内容很多,在解题中的应用也千变万化,无一定规律可言,它需要更多的分析、类比、归纳、判断,同时能激发人们的直觉思维和发散思维.

《数学归纳法及其应用举例》教案

《数学归纳法及其应用举例》教案 中卫市第一中学 俞清华 教学目标: 1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。 2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。 3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观 和勇于探索的科学精神。 教学重点: 了解数学归纳法的原理及掌握用数学归纳法证题的方法。 教学难点: 数学归纳法原理的了解及递推思想在解题中的体现。 教学过程: 一.创设情境,回顾引入 师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从前有 一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢? 生:因为有姓“万”的。 师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢? 生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。) 师:其实员外儿子观察、归纳、猜想的能力还是很不错的,但遗憾的是他猜错了!在数学 上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢? 生:有。例如等差数列通项公式的推导。 师:很好。我们是由等差数列前几项满足的规律:d a a 011+=,d a a +=12,d a a 213+=,d a a 314+=,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗? 生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。 师:对。(投影展示有关定义) 像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的 对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。 完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又 叫做枚举法。那么,用完全归纳法得出的结论可靠吗? 生:(齐答)可靠。 师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?

构造中位线巧解题复习过程

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高1.70m,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定理

数学解题中的构造法思想

数学解题中的构造法思想 数学科 庞春英 我们首先从下面例题的解法开始讨论: 例:解方程组 ?? ???=++=++=++323232c z c cy x b z b by x a z a ay x 解法一:直接按照三元一次方程组的消元法解题 (略)。 解法二:把原方程组改写为?????=---=---=---0002323 23x cy z c c x by z b b x ay z a a 利用方程根的定义,我 们把a,b,c 看成关于t 的三次方程023=---x yt zt t 的三个根。根据韦达定理得: x abc y ac bc ab z c b a ==++=++,,,因此原方程组的解为:?? ? ??++=++==c b a z ca bc ab y abc x 。 比较例题的两种解法:解法一作为一般的方法,求解极为麻烦,运算量大;解法二则是构造一个满足问题条件的关于t 的三次方程,构造的元件是a,b,c ,构造的“支架”是原方程变形的关系式“023=---x yt zt t ”。在解法二中,以问题已知元素或条件为“元件”,数学中的某些关系式为“支架”,在思维中构造了一种新的“建筑物”这种方法有一定的普遍意义。 在解题过程中思维的创造活动的特点是“构造”,我们称之为构造性思维,运用构造性思维解题的方法称为构造法,即为了解决某个数学问题,我们通过联想和化归的思想,人为地构造辅助图形、模型、方程、函数以帮助解决原来的问题,这样的解题方法,可以看作是构造解题。 早在公元前三百年左右,欧几里德为了证明素数有无穷多个,假设只有有限个素数n p p p p 321,,,而构造一个新素数121+n p p p ,从而证明了原命题。另外,古希腊人为了证明毕达哥拉斯学派的信条“万物皆为(有理数)”是不对的,构造一个边长为1的正方形,则它的对角线竟不是一个“有理数”。上述这些大概是数学史上最早采用构造法解题的例子吧。 所谓构造法,其实质就是运用数学的基本思想,经过认真的观察,深入的思考,构造出解题的数学模型,从而使问题得以解决。构造法体现了数学发现的思想,因为解决问题同获得知识一样,首先需要感知它,要通过仔细地观察、分析,去发现问题的各个环节以及其中的联系,从而为寻求解法创造条件;构造法还体现了类比的思想,为了找出解题的途径,很自然地联系已有知识中与之类似的或与之相关的问题,从而为构造模型提供了参照对象;构造法还体现了化归的思想,把一个个零散的发现由表及里,由浅入深地集中和联系起来,通过恰当的方法加

谈构造法在数学解题中的运用

谈构造法在数学解题中的运用 摘要:“构造法”作为一种重要的化归手段,在数学解题中有着重要的作用。本文从“构造函数”、“构造方程”等常见构造及“构造模型”、“构造情境”等特殊构造出发,例谈构造法在数学解题中的运用。 关键词:构造数学解题 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来,构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提,根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带,使解题另辟蹊径、水到渠成。 “构造法”作为一种重要的化归手段,在数学中有着极为重要的作用,现举例谈谈其在数学解题中的运用。 一、构造函数 理解和掌握函数的思想方法有助于实现数学从常量到变量的这个认识上的飞跃。很多数学命题繁冗复杂,难寻入口,若巧妙运用函数思想,能使解答别具一格,耐人寻味。 [例1](柯西不等式)设a i,b i(i=1,2,…,n)均为实数,证明:

? ? ????? ??≤??? ??∑∑∑===n i i n i i n i i i b a b a 1212 12 证:构造二次函数f(x)=?? ? ??+??? ??+??? ??∑∑∑===n i i n i i i n i i b x b a x a 1212122,则 [例2]已知x,y,z ∈(0,1),求证: x(1-y)+y(1-z)+z(1-x)<1 (第15届俄罗斯数学竞赛题) 分析:此题条件、结论均具有一定的对称性,然而难以直接证明,不妨用构造法一试。 证:构造函数 f(x)=(y+z-1)x+(yz-y-z+1) ∵y,z ∈(0,1), ∴f(0)=yz-y-z+1=(y-1)(z-1)>0 f(1)=(y+z-1)+(yz-y-z+1)=yz >0 而f(x)是一次函数,其图象是直线, ∴由x ∈(0,1)恒有f(x) >0 即(y+z-1)x+(yz-y-z+1) >0 整理可得x(1-y)+y(1-z)+z(1-x) <1 二、构造方程 方程是解数学题的一个重要工具,许多数学问题,根据其数量关系,在已知和未知之间搭上桥梁,构造出方程,使解答简洁、合理。 [例3]已知a,b,c 为互不相等的实数,试证: bc (a-b)(a-c) +ac (b-a)(b-c) +ab (c-a)(c-b) =1 (1) 证:构造方程

中考数学构造法解题技巧

构造法在初中数学中的应用 所谓构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面介绍几种数学中的构造法: 一、构造方程 构造方程是初中数学的基本方法之一。在解题过程中要善于观察、善于发现、认真分析,根据问题的结构特征、及其问题中的数量关系,挖掘潜在已知和未知之间的因素,从而构造出方程,使问题解答巧妙、简洁、合理。 1、某些题目根据条件、仔细观察其特点,构造一个"一元一次方程" 求解,从而获得问题解决。 例1:如果关于x的方程ax+b=2(2x+7)+1有无数多个解,那么a、b的值分别是多少? 解:原方程整理得(a-4)x=15-b ∵此方程有无数多解,∴a-4=0且15-b=0 分别解得a=4,b=15 2、有些问题,直接求解比较困难,但如果根据问题的特征,通过转化,构造"一元二次方程",再用根与系数的关系求解,使问题得到解决。此方法简明、功能独特,应用比较广泛,特别在数学竞赛中的应用。

3、有时可根据题目的条件和结论的特征,构造出方程组,从而可找到解题途径。 例3:已知3,5,2x,3y的平均数是4。 20,18,5x,-6y的平均数是1。求 的值。 分析:这道题考查了平均数概念,根据题目的特征构造二元一次方程组,从而解出x、y的值,再求出的值。 二、构造几何图形 1、对于条件和结论之间联系较隐蔽问题,要善于发掘题设条件中的几何意义,可以通过构造适当的图形把其两者联系起来,从而构造出几何图形,把代数问题转化为几何问题来解决.增强问题的直观性,使问题的解答事半功倍。 例4:已知,则x 的取值范围是()

数列解题技巧归纳总结---好(5份)

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-? ?-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ??????????????????? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和 求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握 了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =?

浅谈构造法解题在高中数学竞赛中的应用

学好构造法 妙解竞赛题 在数学竞赛辅导过程中,需要长期给学生进行有针对性的数学思想方法的训练。其中构造法解题的思想,就是一种值得推广的解题思想方法。通过构造,可以建立起各种数学知识之间的联系与相互转化,让学生在熟练掌握各种数学知识的前提下交互使用,融会贯通。 一、构造几何模型,使代数问题几何化。 代数运算虽然直接,但有时会比较抽象且运算复杂,构造合乎要求的几何图形,可以是所求解的问题变得直观明朗,从而找到一个全新的接替办法。 例一,设a 为实数,证明:以1,1,34222+++-+a a a a a 为边长可以构成一个三角形,且三角形的面积为定值。 分析:从题目给出的三个根式我们知道,当实数a 去互为相反的两数时,只是其中两式角色互换,实质一样,故只需争对非负实数a 展开讨论即可。 ()( ) ? ???-+=++????-+=+-+= +120cos 121160cos 12113 2342222222 22a a a a a a a a a a 构造合乎要求的几何图形如图所示: ? =∠?=∠======120601CBE DAB CD BE AB a BC DF AD 于是:()( ) 343 2,3,222 2+=+= = =a a EF AE a AF 1 120cos 121,1,160cos 121,1,2 2 2 222++=????-+===+-=????-+====a a a a CE BE a BC a a a a DB FC AB a AD 所以:以1,1,34222+++-+a a a a a 为边长可以构成一个三角形,即ECF ?。 则:AEF AECF ECF S S S ??-= ?60 F E D C B A ?30 ? 120a a a 1 1 1

例谈构造法在中学数学解题中的应用

例谈构造法在中学数学解题中的应用 发表时间:2012-01-12T09:16:31.067Z 来源:《素质教育》2012年1月下供稿作者:高雁[导读] 方程,作为中学数学的重要内容之一,与数、式、函数等诸多知识密切相关。高雁江苏省吴江市松陵高级中学215200 摘要:构造法是一种重要的数学解题方法,在解题中被广泛应用。构造法是一种极其富有技巧性和创造性的解题方法,体现了数学中发现、类比、化归的思想,渗透着猜想、探索、特殊化等重要的数学方法。运用构造法解数学题可从中激发学生的发散思维,使学生的思维 和解题能力得到培养,对培养学生的多元化思维和创新精神大有裨益。关键词:构造法构造数学解题 “构造法”是指为解决某个数学问题时先构造一种数学形式(比如几何图形、代数式、方程等),寻求与问题的某种内在联系,使之简单明了,起到化简、转化和桥梁作用,从而找到解决问题的思路、方法。此法重在“构造”、深刻分析、正确思维和丰富联想,它体现了数学中发现、类比、化归等思想,渗透着猜想、试验、探索、概括等重要方法,是一种富有创造性的解决问题的方法。 下面举一些应用构造法的例题,介绍其在数学解题中的巧妙应用。 一、构造方程 方程,作为中学数学的重要内容之一,与数、式、函数等诸多知识密切相关。根据问题条件中的数量关系和结构特征,构造出一个新的方程,然后依据方程的理论,往往能使问题在新的关系下得以转化而获解。构造方程是初等代数的基本方法之一。 二、构造几何图形(体) 如果问题条件中的数量关系有明显的或隐含的几何意义与背景,或能以某种方式与几何图形建立起联系,则可考虑通过构造几何图形将题设中的数量关系直接在图形中得以实现,然后,借助于图形的性质在所构造的图形中寻求问题的结论。构造的图形,最好是简单而又熟悉其性质的,这些几何图形包括平面几何图形、立体几何图形及通过建立坐标系得到的解析几何图形。 三、构造函数 所谓“构造函数”是指:由题设条件为对象,构想、组合出一种新的函数关系、方程、多项式等具体形式,使问题在新的观点下实现转化而获解。构造函数证(解)问题是一种创造性思维过程,具有较大的灵活性和技巧性。在运用过程中,应有目的、有意识地进行构造,始终“盯住”要证、要解的目标。

构造中位线巧解题

构造中位线巧解题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

三角形的中位线定理,是一个非常有价值的定理。它是一个遇到中点,必须联想到的重要定理之一。但是,在解题时,往往只知道一个中点,而另一个中点就需要同学们,根据题目的特点,自己去寻找。本文就向同学们介绍三种在不同条件下寻找中点的方法,供同学们学习时参考。 一、知识回顾 1、三角形中位线定理: 的平行于第三边,并且等于它的一半。 2、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 3、应用时注意的几个细节: ①定理的使用前提:三角形或梯形。 ②定理使用时,满足的具体条件: 两条边的中点,且连接这两点,成一条线段。 ③定理的结论: 位置上:与第三边是平行的;与底是平行的(梯形) 大小上:等于第三边的一半;等于两底和的一半(梯形)。 在应用时,要灵活选择结论。 4、梯形的中位线: 中位线的2倍乘高再除以二就等于梯形的面积,用符号表示是L. L=(a+b)÷2 已知中位线长度和高,就能求出梯形的面积. S梯=2Lh÷2=Lh 中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。 二、什么情况下该用中位线 1、直接找线段的中点,应用中位线定理 例1、小峰身高,眼睛距头顶8cm,直立在水平地面上照镜子.如果他想从竖直挂在墙上的平面镜里看到自己的脚,这面镜子的底边离地面的高度不应超过 cm 2、利用等腰三角形的三线合一找中点,应用中位线定理 例2、如图3所示,在三角形ABC中,AD是三角形ABC∠BAC的角平分线,BD⊥AD,点D是垂足,点E是边BC 的中点,如果AB=6,AC=14,则DE的长为。 3、利用平行四边形对角线的交点找中点,应用中位线定 理 例3、如图5所示,AB∥CD,BC∥AD ,DE⊥BE ,DF=EF,甲从B出发,沿着 BA、AD、DF的方向运动,乙B出发,沿着BC、CE、EF的方向运动,如果两人的速 度是相同的,且同时从B出发,则谁先到达?

数列的几种构造法解题

数列几种构造法解题 数列的构造法,我这里仅仅表示的是n 1a 与+n a 之间的常见关系,还有很多需要补充的。 以下主要是以例题为主,表示不同类型的构造方法。 1-n 1-n 1n n 1n 2q a a 等比数列,a 2a ,1例=?==+. 1 -n 2d )1n (a a 等差数列,2a 2.a 例1n n 1n =-+=+=+ 1 2a 化简可得2)1a (1a 所以整体是等比数列1a ,所以1x 展开解得)x a (2x a 构造等比数列1 a 2a 。3例n n 1 -n 1n n n 1n n 1n -=+=++=+=++=++ 1-n n 011-n 1-n n n 1n n n n 1n n n n 110111 1n 1n n n n 1n n n n n 1 -n 1n n n n 1n 1n n n 1n 2n a 所以n 1)1-n (2a 2a 可以得到 12a 2a 得到 2同除以22a a )22-3a 化简即可得3 2)32()33a (33a 即整体是等比数列33a 。所以3x 展开解得)3a (32x 3a 构造13a 23a 可以得到 3首先同除以,间接构造 2解2-3a 所以2)3-a (3-a 所以1 x 展开解得) 3x a (23x a 构造,直接构造法: 1解32a a )1,4例n ?==?+==-+==-=-=---=+=++==?=-=+=++=++-----+++++n n n n n n n n n x

3n 327an 所以2)33a (33n a 即是等比数列, 3n 3a 所以3 t ,3m 展开解得), t mn a (2t )1n (m a 构造 n 3+2a =a ,5例1-n 1 -n 1n n n 1n n 1+n --?=?++=++++==++=+++?+ 综合例6的通项公式。a ,试求n 3a 2a ,2a 已知n n n 1n 1++==+ 1n -23a 所以22 )113-a (1n 3a 所以1y ,1x ,1m 展开化简依次可以解得)y xn 3m a (2y )1n (x 3m a 解:构造1n n n 1n 1n 11n n n n 1n 1n -+==?++=++-==-=+++=++++---++

例谈高中数学解题中的“法宝”

例谈高中数学解题中的“法宝” 高中数学教学课程标准中明确规定了学习数学不仅包括数学内容、数学语言,更重要的是数学思想、方法。在数学解题过程中,某些数学问题用常规方法是难以解决的,这时可以根据题目的条件和结论的特征,从新的角度,用新的观点去观察分析,用已知的数学关系为“支架”构造出满足条件或结论的数学对象,使原问题中隐晦不清的关系在新构造的数学对象中清楚地表现出来,从而借助该数学对象解决数学问题。这种解决数学问题的方法就是构造法。 一、构造法解题的思路 构造法解题的基本思想方法是“转化”思想。用构造法解题的巧妙之处在于不是直接去解决所给的问题,而是把它转化成一个与原问题有关的辅助新问题,然后通过新问题的解决帮助解决原问题。 二、构造法的思维方式 构造法是一种简捷、快速,灵活变通的解题方法,这些特点,特别是简捷的特点会大大提高学生的求知欲,他们会有一种跃跃欲试的渴望,但却无从知道什么样的问题适合用构造法去解,如何构造? 应用构造法解题的关键一是要明确的解题方向,即要明确为了解决什么样的问题面建立一个相应的构造;二是要

弄清条件的本质特点,以便重新进行逻辑整合。构造法的思维方式是多样的,主要有类比构造,即所研究问题对象之间或这些对象与已学过的知识间存在着形式上、本质上的相同或相似性的可考虑类比构造;联想构造、转换构造、归纳构造、直觉构造、逆向构造,即按逆向思维方式,向原有数学形式的相反方向去思考,通过构造对立的数学形式来解决问题。 三、构造法在中学数学解题中的应用 1. 构造函数 函数在整个中学数学是占有相当的内容,学生对于函数的性质也比较熟悉。选择烂熟于胸的内容来解决棘手问题,会大大提高学生解决问题的能力。 2. 构造一元二次方程 方程作为中学数学的重要内容之一,它与代数式、函数、不等式等知识密切不可分。依据方程理论,能使许多的问题得以转化从而得到解决,这对学生的数学思想的培养具有重要意义。 有些数学题,经过观察可以构造一个方程,从而得到巧妙简捷的解答。 例2 若(z-x)2-4(x-y)(y-z)=0 ,求证:x,y,z成等差数列。 分析:拿到题目感到无从下手,思路受阻。但我们细

高中数学解题方法之构造法(含答案)

十、构造法 解数学问题时,常规的思考方法是由条件到结论的定向思考,但有些问题用常规的思维 方式来寻求解题途径却比较困难,甚至无从着手。在这种情况下,经常要求我们改变思维方 向,换一个角度去思考从而找到一条绕过障碍的新途径。 历史上有不少著名的数学家,如欧几里得、欧拉、高斯、拉格朗日等人,都曾经用“构 造法”成功地解决过数学上的难题。数学是一门创造性的艺术,蕴含着丰富的美,而灵活、 巧妙的构造令人拍手叫绝,能为数学问题的解决增添色彩,更具研究和欣赏价值。近几年来, 构造法极其应用又逐渐为数学教育界所重视,在数学竞赛中有着一定的地位。 构造需要以足够的知识经验为基础,较强的观察能力、综合运用能力和创造能力为前提, 根据题目的特征,对问题进行深入分析,找出“已知”与“所求(所证)”之间的联系纽带, 使解题另辟蹊径、水到渠成。 用构造法解题时,被构造的对象是多种多样的,按它的内容可分为数、式、函数、方程、 数列、复数、图形、图表、几何变换、对应、数学模型、反例等,从下面的例子可以看出这 些想法的实现是非常灵活的,没有固定的程序和模式,不可生搬硬套。但可以尝试从中总结 规律:在运用构造法时,一要明确构造的目的,即为什么目的而构造;二要弄清楚问题的特 点,以便依据特点确定方案,实现构造。 再现性题组 1、求证: 3 10910 22≥++=x x y (构造函数) 2、若x > 0, y > 0, x + y = 1,则4 2511≥???? ??+??? ??+ y y x x (构造函数) 3、已知01a <<,01b <<,求证: 22)1()1()1()1(22222222≥-+-+-+++-++b a b a b a b a (构造图形、复数) 4、求证:9)9(272≤-+x x ,并指出等号成立的条件。(构造向量) 5、已知:a>0、b>0、c>0 ,求证:222222c ac a c bc b b ab a ++≥+-++-当且仅当 c a b 111+=时取等号。(构造图形) 6 、求函数y = 再现性题组简解: 1、解:设)3(92 ≥+=t x t 则t t y t f 1)(2+==,用定义法可证:f (t )在),3[+∞上单调递增,令:3≤12t t < 则0)1)((11)()(2 1212122212121>--=+-+=-t t t t t t t t t t t f t f ∴310313)3(9 10322=+=≥++= f x x y

数学解题技巧与解题思路

解题技巧 一、三角函数题 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后, 如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。 三、立体几何题 1、证明线面位置关系,一般不需要去建系,更简单;

2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。 四、概率问题 1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数; 2、搞清是什么概率模型,套用哪个公式; 3、记准均值、方差、标准差公式; 4、求概率时,正难则反(根据p1+p2+...+pn=1); 5、注意计数时利用列举、树图等基本方法; 6、注意放回抽样,不放回抽样; 7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透; 8、注意条件概率公式; 9、注意平均分组、不完全平均分组问题。 五、圆锥曲线问题 1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

【专题整理】【解答题】【数学归纳法、放缩法】【数列】

数学归纳法和放缩法 放缩法证明不等式 1、添加或舍弃一些正项(或负项) 【例1】已知:* 21().n n a n N =-∈,求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈. 【解析】 111211111111 .,1,2,...,,2122(21)2 3.222232 k k k k k k k k a k n a +++-==-=-≥-=--+-,1222311111111 ...(...)(1),2322223223 n n n n a a a n n n a a a +∴ +++≥-+++=-->-,*122311...().232 n n a a a n n n N a a a +∴-<+++<∈. 【点评】若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的值变小.由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的.本题在放缩时就舍去了22k -,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 【例2】函数x x x f 4 14)(+=,求证:2121)()2()1(1-+>++++n n n f f f (*∈N n ). 【解析】 由n n n n n f 2 21 14111414)(?->+-=+=得:n n f f f 221122112211)()2()1(21?-++?-+?- >+++ 2 1 21)21211(4111-+=+++-=+-n n n n (*∈N n ). 【点评】此题不等式左边不易求和,此时根据不等式右边特征,先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和.若分子,分母如果同时存在变量时,要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式.如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可. 3、先放缩,后裂项(或先裂项再放缩) 【例3】已知:n a n =,求证: 31 2 <∑=n k k a k .

构造法解题一例

构造法解题一例 构造法解题是数学中常用的一种解题思路,是深入分析、正确思维以及丰富联想的产物,请看下面的这道例题: 例:正数a 、b 、c 、A 、B 、C 满足条件a+A=b+B=c+C=k 求证:aB+bC+cAk(aB+bC+cA) 得证。

证明五:还可联想函数式,构造以c(或a或b)为变量字母的一次函数式: f(c)=(k-a-b)c+k(a+b)-ab-k2 (0

构造法及构造法在中学数学解题中的应用

摘要:构造法就是根据题设条件和结论的特殊性,构造出一些新的数学形式,并借助它来认识与解决原问题的一种思想方法。构造法是运用数学的适当的数学思想与原理,针对一些数学的问题的特点而采用相应的解决办法,合理地运用构造法一方面可以提高解题效率;同时也能够发展学生的思维能力和创新意识。本文在分析构造法的内涵和研究价值的基础上,对构造法在中学数学中一些典型问题解决中的运用进行了探索和尝试。 关键字:中学数学,解题,构造法

Abstract:According to the problem of construction method is the particularity of the set conditions and conclusion is constructed, some new form of mathematics, and with it to recognize and solution of the original problem a thought method. By using the mathematical method of construction is the proper mathematical idea and principle, in view of some mathematical characteristics and the corresponding solution, reasonable construction method on the one hand may improve by solving efficiency; Also can develop the students' thinking ability and innovative consciousness. Based on the analysis of the connotation and construction method, on the basis of research value of tectonic method in the middle school mathematics in the application of some typical problems probes and try. Keywords:middle school mathematics,problem-solving,method of construction

数学归纳法证明及其使用技巧

步骤 第一数学归纳法 一般地,证明一个与自然数n有关的命题P(n),有如下步骤: (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但 也有特殊情况; (2)假设当n=k(k≥n0,k为自然数)时命题成立,证明当n=k+1时命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 第二数学归纳法 对于某个与自然数有关的命题P(n), (1)验证n=n0,n=n1时P(n)成立; (2)假设n≤k时命题成立,并在此基础上,推出n=k+1命题也成立。 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立。 倒推归纳法 又名反向归纳法 (1)验证对于无穷多个自然数n命题P(n)成立(无穷多个自然数可以就是一 个无穷数列中的数,如对于算术几何不等式的证明,可以就是2^k,k≥1); (2)假设P(k+1)(k≥n0)成立,并在此基础上,推出P(k)成立, 综合(1)(2),对一切自然数n(≥n0),命题P(n)都成立; 螺旋式归纳法 对两个与自然数有关的命题P(n),Q(n), (1)验证n=n0时P(n)成立; (2)假设P(k)(k>n0)成立,能推出Q(k)成立,假设 Q(k)成立,能推出 P(k+1) 成立; 综合(1)(2),对一切自然数n(≥n0),P(n),Q(n)都成立。 应用 1确定一个表达式在所有自然数范围内就是成立的或者用于确定一个其她的形式在一个无穷序列就是成立的。 2数理逻辑与计算机科学广义的形式的观点指出能被求出值的表达式就是等价表达式。

3证明数列前n项与与通项公式的成立。 4证明与自然数有关的不等式。 变体 在应用,数学归纳法常常需要采取一些变化来适应实际的需求。下面介绍一些常见的数学归纳法变体。 从0以外的数字开始 如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有大于等于某个数字b的自然数,那么证明的步骤需要做如下修改: 第一步,证明当n=b时命题成立。第二步,证明如果n=m(m≥b)成立,那么可以推导出n=m+1也成立。 用这个方法可以证明诸如“当n≥3时,n^2>2n”这一类命题。 针对偶数或奇数 如果我们想证明的命题并不就是针对全部自然数,而只就是针对所有奇数或偶数,那么证明的步骤需要做如下修改: 奇数方面: 第一步,证明当n=1时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 偶数方面: 第一步,证明当n=0或2时命题成立。第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。 递降归纳法 数学归纳法并不就是只能应用于形如“对任意的n”这样的命题。对于形如“对任意的n=0,1,2,、、、,m”这样的命题,如果对一般的n比较复杂,而n=m 比较容易验证,并且我们可以实现从k到k-1的递推,k=1,、、、,m的话,我们就能应用归纳法得到对于任意的n=0,1,2,、、、,m,原命题均成立。如果命题P(n)在n=1,2,3,、、、、、、,t时成立,并且对于任意自然数k,由 P(k),P(k+1),P(k+2),、、、、、、,P(k+t-1)成立,其中t就是一个常量,那么P(n)对于一切自然数都成立、 跳跃归纳法

倍比法解题例谈

倍比法解题例谈 湖北省仙桃市吴乃华 利用两个同类量的倍数关系来解题,传统的做法通常是用倍比这一思路,来解答一些简单的如可以用“归一”来解答的问题。其实,用这种方法不仅还可以解答整数倍的其它典型问题,有时也可以把一些分数问题中的同一单位“1”的两个分率,或者虽不是同一单位“1”,但是具有某部分绝对数相等的情况的两个分率,利用其倍数关系,同样可以使问题得以解决。由于这种方法避开了某些常规模式的束缚,思路简单、明了,有时还使个别条件成了多余,因而省去了许多繁难的计算,大大地简化了解题的过程。 小学数学应用题,大都反映为三量间的关系,因此,两个同类量的倍比,常常可以分为正向倍比和反向倍比两种情况。并且当两量的倍比为反向倍比时,需要运用比例的知识来作认识上的转化,以调整自己的视角,比如“时间的比等于速度的反比”等等。特别值得注意的是,这种转化仅仅是认识上的转化,形式上不需作任何改变,但如果思想上没有这种认识,这种解法是没有意义的。 1. 正向倍比解题 (1) 两个同类量的正比 【例1】六(1)班全体同学为新盖教学楼搬一堆砖。如果每人搬18块,就还剩30块不能搬走;如果每人搬20块,搬完这堆砖后还可以多搬50块,这堆砖共有多少块? 分析与解答第一个方案每人搬的块数是第二个方案每人搬的块数的18÷20= 9 10 。由题意可知,人 数一定,能搬砖的总块数与每人搬的块数是成正比例的,从而可推知第一个方案能搬砖的总块数也是第二 个方案能搬的总块数的 9 10 ,比第二个方案可搬的总块数少1- 9 10 = 1 10 . 已知第二个方案比第一个方案能多搬30 + 50 = 80(块),所以这堆砖共有: (30 + 50 ) ÷(1- 1 10 )-50 = 750(块). 【例2】某自行车运动员以每小时20千米的速度沿公路骑行训练。行出42千米后,他的教练骑摩托车以每小时50千米的速度去追。教练要行多少千米才能追上? 分析与解答运动员每小时的速度是教练的20 ÷ 50=2 5 ,比教练的摩托车每小时慢1- 2 5 = 3 5 。由 于运动员在前42千米,教练就必须在相同的时间内比他多行42千米。因此,教练要行的路程就是: 42÷(1-2 5 )=70(千米) (2) 同一单位“1”的两个分率的倍比 【例3】一根钢管长2. 7米,截下总长的3/10 做了9个机械零件。剩余部分还可以做这样的零件几个?

相关文档
最新文档