数值线性代数第三次上机作业

数值线性代数第三次上机作业
数值线性代数第三次上机作业

数值线性代数第三次上机作业

对比试验希尔伯特矩阵和魔方矩阵及Matlab内置QR分解(六阶矩阵)

运行结果:

六阶的希尔伯特矩阵经典的Gram-Schmidt QR分解:

Q = 0.8189 -0.5397 0.1893 -0.0482 0.0090 -0.0011

0.4094 0.3320 -0.7024 0.4489 -0.1617 0.0332

0.2730 0.4219 -0.1529 -0.5723 0.5854 -0.2322

0.2047 0.4067 0.2015 -0.3866 -0.4687 0.6189

0.1638 0.3735 0.3963 0.0915 -0.4285 -0.6961

0.1365 0.3399 0.4998 0.5574 0.4773 0.2784

R = 1.2212 0.7019 0.5045 0.3970 0.3284 0.2806

0 0.1385 0.1511 0.1444 0.1340 0.1237

0 0 0.0096 0.0152 0.0181 0.0195

0 0 0 0.0005 0.0010 0.0014

0 0 0 0 0.0000 0.0000

0 0 0 0 0 0.0000

六阶的希尔伯特修正的Gram-Schmidt QR分解:

Q = 0.8189 -0.5397 0.1893 -0.0482 0.0090 -0.0011

0.4094 0.3320 -0.7024 0.4489 -0.1617 0.0331

0.2730 0.4219 -0.1529 -0.5723 0.5854 -0.2320

0.2047 0.4067 0.2015 -0.3866 -0.4687 0.6188

0.1638 0.3735 0.3963 0.0915 -0.4285 -0.6961

0.1365 0.3399 0.4998 0.5574 0.4773 0.2785

R = 1.2212 0.7019 0.5045 0.3970 0.3284 0.2806

0 0.1385 0.1511 0.1444 0.1340 0.1237

0 0 0.0096 0.0152 0.0181 0.0195

0 0 0 0.0005 0.0010 0.0014

0 0 0 0 0.0000 0.0000

0 0 0 0 0 0.0000

六阶的希尔伯特matlab内置的QR分解:

Q= 0.8189 -0.5397 0.1893 -0.0482 0.0090 -0.0011

0.4094 0.3320 -0.7024 0.4489 -0.1617 0.0331

0.2730 0.4219 -0.1529 -0.5723 0.5854 -0.2320

0.2047 0.4067 0.2015 -0.3866 -0.4687 0.6188

0.1638 0.3735 0.3963 0.0915 -0.4285 -0.6961

0.1365 0.3399 0.4998 0.5574 0.4773 0.2785

R= 1.2212 0.7019 0.5045 0.3970 0.3284 0.2806

0 0.1385 0.1511 0.1444 0.1340 0.1237

0 0 0.0096 0.0152 0.0181 0.0195

0 0 0 0.0005 0.0010 0.0014

0 0 0 0 0.0000 0.0000

0 0 0 0 0 0.0000 六阶的魔方矩阵经典的Gram-Schmidt QR分解:

Q = 0.6211 -0.1702 -0.2070 0.4998 -0.2062 0.3876

0.0532 0.5740 -0.4500 0.2106 0.6487 -0.2518

0.5502 -0.0011 -0.4460 -0.4537 -0.2062 -0.4605

0.1420 0.4733 0.3763 0.5034 -0.3329 0.3379

0.5324 -0.0695 0.6287 -0.2096 0.5220 0.0596

0.0710 0.6424 0.1373 -0.4501 -0.3329 -0.6758

R = 56.3471 16.4693 30.0459 39.0969 38.0321 38.6710

0 54.2196 34.8797 23.1669 25.2609 23.2963

0 0 32.4907 -8.9182 -11.2895 -7.9245

0 0 0 7.6283 -3.9114 7.4339

0 0 0 0 3.4197 6.8393

0 0 0 0 0 0.0000 六阶的魔方矩阵修正的Gram-Schmidt QR分解:

Q = 0.6211 -0.1702 -0.2070 0.4998 -0.2062 -0.0310

0.0532 0.5740 -0.4500 0.2106 0.6487 -0.5581

0.5502 -0.0011 -0.4460 -0.4537 -0.2062 0.2015

0.1420 0.4733 0.3763 0.5034 -0.3329 -0.3721

0.5324 -0.0695 0.6287 -0.2096 0.5220 0

0.0710 0.6424 0.1373 -0.4501 -0.3329 -0.7131

R = 56.3471 16.4693 30.0459 39.0969 38.0321 38.6710

0 54.2196 34.8797 23.1669 25.2609 23.2963

0 0 32.4907 -8.9182 -11.2895 -7.9245

0 0 0 7.6283 -3.9114 7.4339

0 0 0 0 3.4197 6.8393

0 0 0 0 0 0.0000 六阶的魔方矩阵matlab内置的QR分解:

Q = 0.6211 -0.1702 -0.2070 0.4998 -0.2062 0.5000

0.0532 0.5740 -0.4500 0.2106 0.6487 0.0000

0.5502 -0.0011 -0.4460 -0.4537 -0.2062 -0.5000

0.1420 0.4733 0.3763 0.5034 -0.3329 -0.5000

0.5324 -0.0695 0.6287 -0.2096 0.5220 0.0000

0.0710 0.6424 0.1373 -0.4501 -0.3329 0.5000

R = 56.3471 16.4693 30.0459 39.0969 38.0321 38.6710 0 54.2196 34.8797 23.1669 25.2609 23.2963 0 0 32.4907 -8.9182 -11.2895 -7.9245 0 0 0 7.6283 -3.9114 7.4339 0 0 0 0 3.4197 6.8393 0 0 0 0 0 0.0000 以上为三种QR 分解的对比。

三 通过试验2测试经典和修正的Gram-Schmidt QR 分解的稳定性 通过程序的编译,并运行得到以下结果:

01020304050607080

10-20

10-15

10-10

10-5

10

其中圆圈表示经典G-S QR 分解,叉号表示修正G-S QR 分解。 在图中,能看到

首先注意到是r jj 对j 有一个稳定的下降,接近符合线2j 。

然后,注意的第二件事是r jj 的几何下降并非一路继续j=80,这

是计算计的舍入误差所致。对经典格拉姆-施密特算法,这些数永远

不会变得小于108-左右。对修正的格拉姆-施密特算法,它们将缩小8个数量阶,跌至1016-阶,这是由于此计算的计算机的machine epsilon 水平。

由上可见,经典的格拉姆-施密特过程是不稳定的算法之一,而修正的格拉姆-施密特相对能稳定些。

(完整版)数值线性代数答案

习题1 1.求下三角阵的逆矩阵的详细算法。 [解] 设下三角矩阵L的逆矩阵为T 我们可以使用待定法,求出矩阵T的各列向量。为此我们将T按列分块如下: 注意到 我们只需运用算法1·1·1,逐一求解方程 便可求得 [注意]考虑到内存空间的节省,我们可以置结果矩阵T的初始状态为单位矩阵。这样,我们便得到如下具体的算法: 算法(求解下三角矩阵L的逆矩阵T,前代法) 3.证明:如果是一个Gauss变换,则也是一个Gauss变换。

[解]按Gauss变换矩阵的定义,易知矩阵是Gauss变换。下面我们只需证明它是Gauss 变换的逆矩阵。事实上 注意到,则显然有从而有 4.确定一个Gauss变换L,使 [解] 比较比较向量和可以发现Gauss变换L应具有功能:使向量的第二行加上第一行的2倍;使向量的第三行加上第一行的2倍。于是Gauss变换如下 5.证明:如果有三角分解,并且是非奇异的,那么定理1·1·2中的L和U都是唯一的。 [证明]设,其中都是单位下三角阵,都是上三角阵。因为A非奇异的,于是 注意到,单位下三角阵的逆仍是单位下三角阵,两个单位下三角阵的乘积仍是单位下三角阵;上三角阵的逆仍是上三角阵,两个上三角阵的乘积仍是上三角阵。因此,上述等将是一个单 位下三角阵与一个上三角阵相等,故此,它们都必是单位矩阵。即, 从而

即A的LU分解是唯一的。 17.证明定理1·3·1中的下三角阵L是唯一的。 [证明] 因A是正定对称矩阵,故其各阶主子式均非零,因此A非奇异。为证明L的唯一性,不妨设有和使 那么 注意到:和是下三角阵,和为上三角阵,故它们的逆矩阵也分别是下三角阵和上三角阵。因此,只能是对角阵,即 从而 于是得知 19.若是A的Cholesky分解,试证L的i阶顺序主子阵正好是A的i阶顺序主子阵的Cholesky因子。 [证明] 将A和L作如下分块 其中:为矩阵A和L的i阶顺序主子阵。。显然

西南大学线性代数作业答案

西南大学线性代数作业答案

第一次 行列式部分的填空题 1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符 号应取 + 号。 2.排列45312的逆序数为 5 。 3.行列式2 5 1122 1 4---x 中元素x 的代数余子式是 8 . 4.行列式10 2 3 25403--中元素-2的代数余子式是 —11 。 5.行列式25 11 22 14--x 中,x 的代数余子式是 — 5 。 6.计算00000d c b a = 0 行列式部分计算题 1.计算三阶行列式 3 811411 02--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)× (—4)—0×1×3—2×(—1)×8=—4 2.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j =5。

3.(7分)已知0010413≠x x x ,求x 的值. 解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2 所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组 ?? ? ??=++=++=++000z y x z y x z y x λλ 有非零解,求λ。 解:()211 1 1 010001 1 111111-=--= =λλλλλD 由D=0 得 λ=1 5.用克莱姆法则求下列方程组: ?? ? ??=+-=++=++10329253142z y x z y x z y x 解:因为 33113 210421711 7021 04 21 911 7018904 2 1 351 1321 5 421231 312≠-=?-?=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算: 81 1 11021 29 42311-=-=D 108 1 103229543112-==D 135 10 13291 5 31213=-=D 因此,根据克拉默法则,方程组的唯一解是:

线性代数上机作业题答案

线性代数机算与应用作业题 学号: 姓名: 成绩: 一、机算题 1.利用函数rand 和函数round 构造一个5×5的随机正整数矩阵A 和B 。 (1)计算A +B ,A -B 和6A (2)计算()T AB ,T T B A 和()100 AB (3)计算行列式A ,B 和AB (4)若矩阵A 和B 可逆,计算1 A -和1 B - (5)计算矩阵A 和矩阵B 的秩。 解 输入: A=round(rand(5)*10) B=round(rand(5)*10) 结果为: A = 2 4 1 6 3 2 2 3 7 4 4 9 4 2 5 3 10 6 1 1 9 4 3 3 3 B = 8 6 5 4 9 0 2 2 4 8 9 5 5 10 1 7 10 6 0 3 5 5 7 9 3 (1)输入: A+B 结果为:

ans= 10 10 6 10 12 2 4 5 11 12 13 14 9 12 6 10 20 12 1 4 14 9 10 12 6 输入: A-B 结果为: ans = -6 -2 -4 2 -6 2 0 1 3 -4 -5 4 -1 -8 4 -4 0 0 1 -2 4 -1 -4 -6 0 输入: 6*A 结果为: ans = 12 24 6 36 18 12 12 18 42 24 24 54 24 12 30 18 60 36 6 6 54 24 18 18 18 (2)输入: (A*B)' 结果为: ans = 82 112 107 90 135 100 121 107 83 122

80 99 105 78 107 61 82 137 121 109 78 70 133 119 134 输入: B'*A' 结果为: ans = 82 112 107 90 135 100 121 107 83 122 80 99 105 78 107 61 82 137 121 109 78 70 133 119 134 输入: (A*B)^100 结果为: ans = 1.0e+270 * 1.6293 1.6526 1.4494 1.5620 1.6399 1.9374 1.9651 1.7234 1.8573 1.9499 2.4156 2.4501 2.1488 2.3158 2.4313 2.0137 2.0425 1.7913 1.9305 2.0268 2.4655 2.5008 2.1932 2.3636 2.4815 (3)输入: D=det(A) 结果为: D = 5121 输入: D=det(B) 结果为:

数值线性代数第二版徐树方高立张平文上机习题第一章实验报告(供参考)

上机习题 1.先用你所熟悉的的计算机语言将不选主元和列主元Gauss 消去法编写成通用的子程序;然后用你编写的程序求解84阶方程组;最后将你的计算结果与方程的精确解进行比较,并就此谈谈你对Gauss 消去法的看法。 Sol : (1)先用matlab 将不选主元和列主元Gauss 消去法编写成通用的子程序,得到P U L ,,: 不选主元Gauss 消去法:[])(,A GaussLA U L =得到U L ,满足LU A = 列主元Gauss 消去法:[])(,,A GaussCol P U L =得到P U L ,,满足LU PA = (2)用前代法解()Pb or b Ly =,得y 用回代法解y Ux =,得x 求解程序为()P U L b A Gauss x ,,,,=(P 可缺省,缺省时默认为单位矩阵) (3)计算脚本为ex1_1 代码 %算法(计算三角分解:Gauss 消去法) function [L,U]=GaussLA(A) n=length(A); for k=1:n-1 A(k+1:n,k)=A(k+1:n,k)/A(k,k); A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n); end

U=triu(A); L=tril(A); L=L-diag(diag(L))+diag(ones(1,n)); end %算法计算列主元三角分解:列主元Gauss消去法) function [L,U,P]=GaussCol(A) n=length(A); for k=1:n-1 [s,t]=max(abs(A(k:n,k))); p=t+k-1; temp=A(k,1:n); A(k,1:n)=A(p,1:n); A(p,1:n)=temp; u(k)=p; if A(k,k)~=0 A(k+1:n,k)=A(k+1:n,k)/A(k,k); A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n); else break; end end L=tril(A);U=triu(A);L=L-diag(diag(L))+diag(ones(1,n));

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

数值线性代数第三次上机作业

数值线性代数第三次上机作业 对比试验希尔伯特矩阵和魔方矩阵及Matlab内置QR分解(六阶矩阵) 运行结果: 六阶的希尔伯特矩阵经典的Gram-Schmidt QR分解: Q = 0.8189 -0.5397 0.1893 -0.0482 0.0090 -0.0011 0.4094 0.3320 -0.7024 0.4489 -0.1617 0.0332 0.2730 0.4219 -0.1529 -0.5723 0.5854 -0.2322 0.2047 0.4067 0.2015 -0.3866 -0.4687 0.6189 0.1638 0.3735 0.3963 0.0915 -0.4285 -0.6961 0.1365 0.3399 0.4998 0.5574 0.4773 0.2784 R = 1.2212 0.7019 0.5045 0.3970 0.3284 0.2806 0 0.1385 0.1511 0.1444 0.1340 0.1237 0 0 0.0096 0.0152 0.0181 0.0195 0 0 0 0.0005 0.0010 0.0014 0 0 0 0 0.0000 0.0000 0 0 0 0 0 0.0000 六阶的希尔伯特修正的Gram-Schmidt QR分解: Q = 0.8189 -0.5397 0.1893 -0.0482 0.0090 -0.0011 0.4094 0.3320 -0.7024 0.4489 -0.1617 0.0331 0.2730 0.4219 -0.1529 -0.5723 0.5854 -0.2320 0.2047 0.4067 0.2015 -0.3866 -0.4687 0.6188 0.1638 0.3735 0.3963 0.0915 -0.4285 -0.6961 0.1365 0.3399 0.4998 0.5574 0.4773 0.2785 R = 1.2212 0.7019 0.5045 0.3970 0.3284 0.2806 0 0.1385 0.1511 0.1444 0.1340 0.1237 0 0 0.0096 0.0152 0.0181 0.0195 0 0 0 0.0005 0.0010 0.0014 0 0 0 0 0.0000 0.0000 0 0 0 0 0 0.0000 六阶的希尔伯特matlab内置的QR分解: Q= 0.8189 -0.5397 0.1893 -0.0482 0.0090 -0.0011 0.4094 0.3320 -0.7024 0.4489 -0.1617 0.0331 0.2730 0.4219 -0.1529 -0.5723 0.5854 -0.2320 0.2047 0.4067 0.2015 -0.3866 -0.4687 0.6188 0.1638 0.3735 0.3963 0.0915 -0.4285 -0.6961 0.1365 0.3399 0.4998 0.5574 0.4773 0.2785

《线性代数(一)》2011年下半年第一次

《线性代数(一)》2011年下半年第一次作业 一.填空题(4x6=24分) 1.计算3阶行列式 2 311273 8 2 -=- 。 2.已知排列1r46s97t3为奇排列,则r ,s ,t 的取值分别为 。 3.用行列式的性质计算:=++ +1 11 c b a b a c a c b 。 4.设A 为3阶方阵,而且 9A =-, 则 = A A T ; * A A = ; = * * ) (A ; 1 * 4A A --= . (注:* A 为A 的伴随矩阵.) 5.设11140012 5A B ???? == ? ????? ,, 则 = AB ; T B A = ;= 2 A ;n A = 。 6. 设 2 ()53p t t t =-+与矩阵3 162A -??= ?-?? ,则2 2()53p A A A I =-+= 。 二.选择题(4x9=36分) 1. 120 2 1 k k -≠-的充分必要条件是( )。 A 、1k ≠- B 、3k ≠ C 、31k k ≠≠-且 D 、31k k ≠≠-或 2、如果11 1213 21 222331 32 33 1a a a D a a a a a a ==,1D =1131 1232 1333 31323321 22 23 441631228652015a a a a a a a a a a a a +--+---,那么 1D =()。 A 、80 B 、-120 C 、120 D 、60 3.如果30 40 50x ky z y z kx y z +-=?? +=??--=? 有非零解,则() A 、01k k ==或 B 、01k k ==-或 C 、11k k ==-或 D 、31k k =-=-或

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

数值线性代数北大版问题详解全

数值线性代数习题解答 习题1 1.求下三角阵的逆矩阵的详细算法。 [解] 设下三角矩阵L的逆矩阵为T 我们可以使用待定法,求出矩阵T的各列向量。为此我们将T按列分块如下: 注意到 我们只需运用算法1·1·1,逐一求解方程 便可求得 [注意]考虑到存空间的节省,我们可以置结果矩阵T的初始状态为单位矩阵。这样,我们便得到如下具体的算法: 算法(求解下三角矩阵L的逆矩阵T,前代法) 2.设为两个上三角矩阵,而且线性方程组 是非奇异的,试给出一种运算量为的算法,求解该方程组。 [解]因,故为求解线性方程组 ,可先求得上三角矩阵T的逆矩阵,依照上题的思想我们很容易得到计算的算法。于是对该问题我们有如下解题的步骤:(1)计算上三角矩阵T的逆矩阵,算法如下: 算法1(求解上三角矩阵的逆矩阵,回代法。该算法的的运算量为)

(2)计算上三角矩阵。运算量大约为. (3)用回代法求解方程组:.运算量为; (4)用回代法求解方程组:运算量为。 算法总运算量大约为: 3.证明:如果是一个Gauss变换,则也是一个Gauss变换。 [解]按Gauss变换矩阵的定义,易知矩阵是Gauss变换。下 面我们只需证明它是Gauss变换的逆矩阵。事实上 注意到,则显然有从而有 4.确定一个Gauss变换L,使 [解] 比较比较向量和可以发现Gauss变换L应具有 功能:使向量的第二行加上第一行的2倍;使向量的第三行加上第一行的2倍。于是Gauss变换如下 5.证明:如果有三角分解,并且是非奇异的,那么定理1·1·2中的L和U都是唯一的。

[证明]设,其中都是单位下三角阵, 都是上三角阵。因为A非奇异的,于是 注意到,单位下三角阵的逆仍是单位下三角阵,两个单位下三角阵的乘积仍是单位下三角阵;上三角阵的逆仍是上三角阵,两个上三角阵的乘积仍是上三角阵。因此,上述等将是一个单位下三角阵与一个上三角阵相等, 故此,它们都必是单位矩阵。即,从而 即A的LU分解是唯一的。 6.设的定义如下 证明A有满足的三角分解。 [证明]令是单位下三角阵,是上三角阵。定义如下 容易验证: 7.设A对称且,并假定经过一步Gauss消去之后,A具有如下形式 证明仍是对称阵。 [证明] 根据Gauss变换的属性,显然做矩阵A的LU分解的第一步中的Gauss变换为

2013年春-西南大学《线性代数》作业及答案

2013年春 西南大学《线性代数》作业及答案(共5次,已整理) 第一次作业 【单选题】9.下列n 阶(n>2)行列式的值必为0的有: B:行列式非零元素的个数小于n 个。 【单选题】1.有二阶行列式,其第一行元素是(1,3),第二行元素是(1,4),该行列式的值是: B:1 【单选题】2.有二阶行列式,其第一行元素是(2,3),第二行元素是(3,-1),则该行列式的值是:A:-11 【单选题】3.有三阶行列式,其第一行元素是(0,1,2),第二行元素是(-1,-1,0),第三行元素是(2,0,-5),则该行列式的值是:B:-1 【单选题】4.有三阶行列式,其第一行元素是(1,1,1),第二行元素是(3,1,4),第三行元素是(8,9,5),则该行列式的值是:C:5 【单选题】5. 行列式A 的第一行元素是(k,3,4),第二行元素是(-1,k,0),第三行元素是(0,k,1),如果行列式A 的值等于0,则k 的取值应是:C:k=3或k=1 【单选题】6. 6.排列3721456的逆序数是:C:8 【单选题】7. .行列式A 的第一行元素是(-3,0,4),第二行元素是(2,a ,1),第三行元素是(5,0,3),则其中元素a 的代数余子式是:B:-29 【单选题】8.已知四阶行列式D 中第三行元素为(-1,2,0,1),它们的余子式依次分别为5,3,-7,4,则D 的值等于. C:-15 【论述题】行列式部分主观题 行列式部分的填空题 1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。 2.排列45312的逆序数为 5 。 3.行列式25 1 122 1 4---x 中元素x 的代数余子式是 8 . 4.行列式1 02325 4 3 --中元素-2的代数余子式是 —11 。

线性代数复习题带参考答案(2)

线性代数考试题库及答案 第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数10 3 23211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 40 3 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

线性代数与概率统计全部答案(随堂 作业 模拟)

1.行列式? B.4 2.用行列式的定义计算行列式中展开式,的系数。 B.1,-4 3.设矩阵,求=? B.0 4.齐次线性方程组有非零解,则=?() C.1 5.设,,求=?() D. 6.设,求=?() D. 7.初等变换下求下列矩阵的秩,的秩为?() C.2 1.求齐次线性方程组的基础解系为() A. 2.袋中装有4个黑球和1个白球,每次从袋中随机的摸出一个球,并换入一个黑球,继续进行,求第三次摸到黑球的概率是() D.

3.设A,B为随机事件,,,,=?( ) A. 4.设随机变量X的分布列中含有一个未知常数C,已知X的分布列为 ,则C=?( ) B. 5. 44.,且,则=?() B.-3 一.问答题 1.叙述三阶行列式的定义。 1.三阶行列式的定义:对于三元线性方程组使用加减消元法.得到 2.非齐次线性方程组的解的结构是什么? 2.非齐次线性方程组的解的结构:有三种情况,无解.有唯一解.有无穷个解 3.什么叫随机试验?什么叫事件? 3.一般而言,试验是指为了察看某事的结果或某物的性能而从事的某种活动。一个试验具有可重复性、可观察性和不确定性这3个特别就称这样的试验是一个随机试验。每次试验的每一个结果称为基本事件。由

基本事件复合而成的事件称为随机事件(简称事件)。 4.试写出随机变量X的分布函数的定义。 4.设X是随机变量,对任意市属x,事件{X*p^k*q(n-k) 三.计算题 1.已知行列式,写出元素a43的代数余子式A43,并求A43的值.

数值分析试题及答案.

一、单项选择题(每小题3分,共15分) 1. 和分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110 l x = B . () 00l x =0, ()111 l x = C . () 00l x =1, ()111 l x = D . () 00l x =1, ()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组12312312 20223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A .232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案

二、填空题(每小题3分,共15分) 1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数 ()()() 33301213,88C C C === ,那么() 3 3C = 4. 因为方程 ()420 x f x x =-+=在区间 []1,2上满 足 ,所以 ()0 f x =在区间内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公 式 . 填空题答案

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001000 ( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 1 10000 0100100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 003232 1 1112)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若21 3332 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 222123 21 12 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若573411111 3263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23500101 1 110403--= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

线性代数上机作业一

线性代数机算与应用作业题 主要练习线性代数课本上所讲函数的用法以及用这些函数解简单的实际问题 一、机算题 1.利用函数rand 和函数round 构造一个5×5的随机正整数矩阵A 和B 。 (1)计算A +B ,A -B 和6A (2)计算()T AB ,T T B A 和() 100 AB (3)计算行列式A ,B 和AB (4)若矩阵A 和B 可逆,计算1 A -和1 B - (5)计算矩阵A 和矩阵B 的秩。 2.求解下列方程组 (1)求非齐次线性方程组12341234 12341234224514171278776652921710x x x x x x x x x x x x x x x x +++=??-+-+=??+++=??--+-=?的唯一解。 (2)求非齐次线性方程组1234512345 12345123455972844228252398881266977 x x x x x x x x x x x x x x x x x x x x ++++=??++++=??++++=??++++=?的通解。 3.已知向量组134083α????????=????????,211022α????????=????????,????????????????=160323α,??????? ?????????=212394α,50822110α?? ???? ??=-?? ?? ????,求出它的最大 无关组,并用该最大无关组来线性表示其它向量。 4.求向量空间3R 中向量325α?? ? = ? ? ?? 在基1231230,1,2001βββ?????? ? ? ?=== ? ? ? ? ? ???????下的坐标 5.求下列矩阵的特征值和特征向量,并判断其正定性。 (1)1232563625A ????=?????? ; (2)203 131061622B -????=--?? ??--??

《线性代数》习题集(含答案)

《线性代数》习题集(含答案) 第一章 【1】填空题 (1) 二阶行列式 2 a ab b b =___________。 (2) 二阶行列式 cos sin sin cos αααα-=___________。 (3) 二阶行列式2a bi b a a bi +-=___________。 (4) 三阶行列式x y z z x y y z x =___________。 (5) 三阶行列式 a b c c a b c a b b c a +++=___________。 答案:1.ab(a-b);2.1;3.()2 a b -;4.3 3 3 3x y z xyz ++-;5.4abc 。 【2】选择题 (1)若行列式12 5 1 3225x -=0,则x=()。 A -3; B -2; C 2; D 3。 (2)若行列式11 1 1011x x x =,则x=()。 A -1 , B 0 ,; C 1 ,; D 2 ,。 (3)三阶行列式2 31503 2012985 2 3 -=()。 A -70; B -63; C 70; D 82。

(4A 44 a b -;B () 2 2 2a b -;C 44b a -;D 44 a b 。 (5)n 阶行列式 0100002 000 1 000 n n -=()。 A 0; B n !; C (-1)·n !; D () 1 1!n n +-?。 答案:1.D ;2.C ;3.A ;4.B ;5.D 。 【3】证明 33()by az bz ax bx ay x y z bx ay by az bz ax a b z x y bz ax bx ay by az y z x ++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。 【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。 答案:(1)τ(134782695)=10,此排列为偶排列。 (2)τ(217986354)=18,此排列为偶排列。 (3)τ(987654321)=36,此排列为偶排列。 【5】计算下列的逆序数: (1)135 (2n-1)246 (2n );(2)246 (2n )135 (2n-1)。 答案:(1) 12n (n-1);(2)1 2 n (n+1) 【6】确定六阶行列式中,下列各项的符号: (1)152332445166a a a a a a ;(2)215316426534a a a a a a ;(3)615243342516a a a a a a 答案:(1)正号;(2)负号。 【7】根据定义计算下列各行列式: (1)00001 00020 0030004000 50000 ;(2) 11 14 2223323341 44 000 00 a a a a a a a a ;(3)00010 20 0100 000 n n -;

西南大学2020年秋季线性代数 【0044】机考大作业参考答案

一、必答题 什么是线性方程组的系数矩阵和增广矩阵? 答:系数矩阵:方程组左边各方程的系数作为矩阵就是此方程的系数矩阵。 増广矩阵:将非齐次方程右边作为列向量加在系数矩阵后就是增广矩阵其次方程有非零解的条件是系数矩阵的秩小于N 就是说未知数的个数大于方程的个数。 1、写出下列线性方程组的系数矩阵和增广矩阵。 1231231232322 21x x x x x x x x x ++=??++=??+-=? 2、求解上述线性方程组 二、从下列两题中任选一题作答 1、(a)什么是逆矩阵? (b)设4阶方阵A 、B 、C 满足方程11(2)T E C B A C ---=,试求矩阵A ,其 中1232012300120001B --?? ?- ?= ? ???,1201012000120001C ?? ? ?= ? ???。 (a )设A 是一个n 阶矩阵,若存在另一个n 阶矩阵B ,使 得: AB=BA=E ,则称方阵A 可逆,并称方阵B 是A 的逆矩阵

(b ) 2、(a)什么是向量组的极大线性无关组? (b)判断 向量组()()()123=1320=70143=2101T T T ααα-、、、 ()()45=5162=2-141T T αα、是否线性无关。 (c) 求出一个向量组的一个极大线性无关组,并将其余向量用该极大线性无关组线性表示。 三、从下列两题中任选一题作答 1、(a )阐述方阵的特征值和特征向量的定义。 对于方阵a,存在一个非零向量x 和实数λ,使得ax=λx 成立,则称λ为矩阵的特征值,x 称为a 相对于λ的特征向量。 延伸: 由ax-λx=0得(a-λe)x=0.

2015年秋西南大学《线性代数》第1次作业

一、填空题(每小题3分,共15分) 1. 若矩阵???? ? ??=20001011k k A 是正定矩阵,则k 满足( k>1 ). 2. A 为3阶方阵, 且2||-=A ,*A 是A 的伴随矩阵, 则=+-|4|*1A A ( -4 ). 3. A 为5×3矩阵, R (A ) = 3, ???? ? ??=300020201B , 则R (AB ) = ( 3 ). 4. 设三阶方阵A 的特征值为1,2,-1,则1 *21-?? ? ??A 的特征值为( -1,-2,1 ). 5. 设,1011???? ??=A 则???? ? ?=10200912009A . 二、单选题(每小题3分,共15分) 1. 已知A 为n 阶方阵,且满足A 2 = 2E , E 为单位阵,则=--1)(E A ( A ). (A)A E + (B)A E - (C)E A - (D) A 2. n 阶方阵A 与对角阵相似的充要条件是 ( C ). (A) A 是实对称阵 (B) A 有n 个互异特征值 (C) A 有n 个线性无关的特征向量 (D) A 的特征向量两两正交 3. 已知线性方程组的系数矩阵A 是54?矩阵,且A 的行向量组线性无关,则下列结论正确的是( C ). (A) A 的列向量组线性无关 (B) 线性方程组的增广矩阵的任意四个列向量线性无关 (C) 线性方程组的增广矩阵的行向量组线性无关

(D) 线性方程组的增广矩阵的列向量组线性无关 4. 矩阵A 与B 相似, 则下列说法不正确的是( B ). (A) R (A ) = R (B ) (B) A = B (C) B A = (D) A 与B 有相同的特征值 5. 如果0λ是n 阶矩阵A 的特征值, 那么必有( A ). (A) 0||0=-E A λ (B) 0||0≠-E A λ (C) 0=-E A 0λ (D) 0≠-E A 0λ 三、判断题(下列叙述正确的打“√”,错误的打“×”,每小题3分,共15分) 1. 设A 、B 为两个不可逆的同阶方阵,则|A | = |B | . ( √ ) 2. 若A 可逆,则A 的伴随矩阵A *也可逆. ( √ ) 3. 若Ax = b (b ≠ 0)有无穷多解,则Ax = 0也有无穷多解. ( √ ) 4. 如果n 维向量组321,,ααα,对于任意一组不全为零的数321,,k k k ,总有0≠++332211αααk k k 成立, 则向量组321,,ααα线性无关. ( √ ) 5. 设A 、B 为同阶方阵,则必有(A + B )(A -B )=A 2-B 2 ( × ) 四、(10分)设4阶方阵A 、B 、C 满足方程1T 1)2(--=-C A B C E ,试求矩阵A , 其中??????? ??---=1000210032102321B , ?????? ? ??=1000210002101021C . 设4阶方阵A 、B 、C 满足方 程 ,试求矩阵A ,其中

相关文档
最新文档