线性代数上机作业题答案详解

线性代数上机作业题答案详解
线性代数上机作业题答案详解

线性代数机算与应用作业题

学号: 姓名: 成绩: 一、机算题

1.利用函数rand 和函数round 构造一个5×5的随机正整数矩阵A 和B 。 (1)计算A +B ,A -B 和6A (2)计算()T

AB ,T T B A 和()100

AB

(3)计算行列式A ,B 和AB (4)若矩阵A 和B 可逆,计算1A -和1B - (5)计算矩阵A 和矩阵B 的秩。 解 输入:

A=round(rand(5)*10)

B=round(rand(5)*10) 结果为:

A =

2 4 1 6

3 2 2 3 7

4 4 9 4 2

5 3 10

6 1 1 9 4 3 3 3

B =

8 6 5 4 9 0 2 2 4 8 9 5 5 10 1 7 10 6 0 3 5 5 7 9 3

(1)输入:

A+B 结果为:

ans=

10 10 6 10 12

2 4 5 11 12

13 14 9 12 6

10 20 12 1 4

14 9 10 12 6

输入:

A-B

结果为:

ans =

-6 -2 -4 2 -6

2 0 1

3 -4

-5 4 -1 -8 4

-4 0 0 1 -2

4 -1 -4 -6 0

输入:

6*A

结果为:

ans =

12 24 6 36 18

12 12 18 42 24

24 54 24 12 30

18 60 36 6 6

54 24 18 18 18 (2)输入:

(A*B)'

结果为:

ans =

82 112 107 90 135

100 121 107 83 122

80 99 105 78 107

61 82 137 121 109

78 70 133 119 134

输入:

B'*A'

结果为:

ans =

82 112 107 90 135

100 121 107 83 122

80 99 105 78 107

61 82 137 121 109

78 70 133 119 134

输入:

(A*B)^100

结果为:

ans =

1.0e+270 *

1.6293 1.6526 1.4494 1.5620 1.6399

1.9374 1.9651 1.7234 1.8573 1.9499

2.4156 2.4501 2.1488 2.3158 2.4313

2.0137 2.0425 1.7913 1.9305 2.0268

2.4655 2.5008 2.1932 2.3636 2.4815 (3)输入:

D=det(A)

结果为:

D =

5121

输入:

D=det(B)

结果为:

D =

-9688

输入:

D=det(A*B)

结果为:

D =

-49612248

(4)输入:

inv(A)

结果为:

ans =

0.0217 -0.0662 -0.0445 -0.0135 0.1453

0.1845 -0.1582 0.0264 0.0475 -0.0334

-0.3199 0.2742 -0.0457 0.1178 -0.0088

0.1707 0.0283 -0.1343 0.0471 -0.0002

-0.1619 0.1070 0.2785 -0.1877 -0.0490 输入:

inv(B)

结果为:

ans =

0.1726 -0.1560 0.0357 -0.0667 -0.0471

-0.2642 0.2693 0.1786 0.2157 -0.2007

0.1982 -0.2957 -0.3214 -0.0993 0.4005

-0.1305 0.1478 0.1429 0.0050 -0.0553

0.0818 0.0577 -0.0357 -0.0316 -0.0223 (5)输入:

rank(A)

结果为:

ans =

5

输入:

rank(B)

结果为:

ans =

5 2.求解下列方程组

(1)求非齐次线性方程组

1234

1234

1234

1234

2245 14171278

77665

2921710

x x x x

x x x x

x x x x

x x x x

+++=

?

?-+-+=

?

?

+++=

?

?--+-=

?

的唯一解。

(2)求非齐次线性方程组

12345

12345

12345

12345

597284 422825239

8881

266977

x x x x x

x x x x x

x x x x x

x x x x x

++++=

?

?++++=

?

?

++++=

?

?++++=

?

的通解。

解(1)输入:

A=[2,1,2,4;-14,17,-12,7;7,7,6,6;-2,-9,21,-7];

b=[5;8;5;10];

x=A\b

结果为:

x =

-0.8341

-0.2525

0.7417

1.3593

(2)输入:

A=[5,9,7,2,8;4,22,8,25,23;1,8,1,8,8;2,6,6,9,7];

b=[4;9;1;7];

[R,s]=rref([A,b]);

[m,n]=size(A);

x0=zeros(n,1);

r=length(s);

x0(s,:)=R(1:r,end);

x0

x=null(A,'r')

结果为:

x0 =

-1.6635

0.1346

1.5865

x =

4.1827 0.8558

-1.3269 -1.0577

-1.5673 -0.3942

1.0000 0

0 1.0000

所以方程组的通解为

x=k1[4.1827,-1.3269,-1.5673,1.0000,0]’+k2[0.8558,-1.0577,-0.3942,0,1.0000]’+[ -1.6635,0.1346,1.5862,0,0]

3.已知向量组

13 4 0 8 3

α

??

??

??

??

=

??

??

??

??

2

1

1

2

2

α

??

??

??

??

=

??

??

??

??

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

=

1

6

3

2

3

α,

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

=

2

1

2

3

9

4

α,

5

8

2

21

10

α

??

??

??

??

=-

??

??

??

??

,求出它的最大

无关组,并用该最大无关组来线性表示其它向量。解输入:

a1=[3;4;0;8;3];

a2=[1;1;0;2;2];

a3=[2;3;0;6;1];

a4=[9;3;2;1;2];

a5=[0;8;-2;21;10];

A=[a1,a2,a3,a4,a5];

rref(A)

结果为:

ans =

1 0 1 0 2

0 1 -1 0 3

0 0 0 1 -1

0 0 0 0 0

0 0 0 0 0

即最大无关组为a1、a2、a4

a3=a1-a2

a5=2a1+3a2-a3

4.求下列矩阵的特征值和特征向量,并判断其正定性。

(1)

123

256

3625

A

??

??

=??

??

??

;(2)

2031

3106

1622

B

-??

??

=--

??

??

--

??

解(1)输入:

A=[1,2,3;2,5,6;3,6,25];

[V,D]=eig(A)

结果为:

V =

0.9357 0.3279 0.1303

-0.3518 0.8961 0.2706

-0.0280 -0.2990 0.9538

D =

0.1582 0 0

0 3.7297 0

0 0 27.1121

输入:

lamda_A=eig(A)

结果为:

lamda_A =

0.1582 3.7297

27.1121 即矩阵A 正定

(2)输入:

B=[-20,3,1;3,-10,-6;1,-6,-22];

[V ,D]=eig(B) 结果为: V =

-0.3810 0.9059 0.1850 0.4005 -0.0186 0.9161

0.8334 0.4231 -0.3557 D =

-25.3404 0 0

0 -19.5947 0 0 0 -7.0649 输入: lamda_B=eig(B)

结果为: lamda_B =

-25.3404 -19.5947 -7.0649 即矩阵B 负定

5. 用正交变换法将下列二次型化为标准形。

()222123123112213323,,23f x x x x x x k x x k x x k x x =+++++

其中“123k k k ”为自己学号的后三位。

解 输入:

A=[1,0,2;0,2,1.5;2,1.5,3]; [V,a]=eig(A) 结果为: V =

0.7488 0.5139 0.4186 0.3389 -0.8396 0.4246 -0.5696 0.1761 0.8028

a =

-0.5214 0 0 0 1.6854 0 0 0 4.8361

即标准型为f=-0.5214y1^2+1.6854y2^2+4.8361y3^2

二、应用题

1.在某网格图中,每一个节点的值与其相邻的上、下、左、右四个节点的值有如下关系:

T k T k T k T k T =+++下下左左右右上上,其中系数0.3k 上=;0.2k 下=;0.4k 左=;0.3k 右=。

如图所示,如:13040T k k T k k T =?++?+下32左右上。请计算该网格节点1,2,3,4的值(计算结果按四舍五入保留小数点后1位)。

2030404020C C

C C

C C

解 输入:

A=[1,-0.3,-0.2,0;-0.4,1,0,-0.2;-0.3,0,1,-0.3;0,-0.3,-0.4,1];

b=[25;15;18;8]; U=rref([A,b]) 结果为:

U =

1.0000 0 0 0 45.8452

0 1.0000 0 0 40.8267

0 0 1.0000 0 42.9863

0 0 0 1.0000 37.4426

即T1=45.8℃,T2=40.8℃,T3=43.0℃,T4=37.4℃

2.假设一个城市的总人口数固定不变,但人口的分布情况变化如下:每年都有12%的市区居民搬到郊区;而有10%的郊区居民搬到市区。若开始有800000人口居住在市区,200000人口居住在郊区。那么,20年后市区和郊区的人口数各是多少?

解输入:

A=[0.88,0.1;0.12,0.9];

X0=[800000;200000];

X20=A^20*X0

结果为:

X20 =

1.0e+005 *

4.5695

5.4305

即20年后市区和郊区人口数约为456950和543050.

3.一个混凝土生产企业可以生产出三种不同型号的混凝土,它们的具体配方比例如表1所示。

表1混凝土的配方

现在有一个用户要求混凝土中含水、水泥、砂、石子及灰的比例分别为:24,52,73,133,12。那么,能否用这三种型号混凝土配出满足用户要求的混凝土?如果需要这种混凝土520吨,问三种混凝土各需要多少?

解输入:

u1=[10;22;32;53;0];

u2=[10;26;31;64;5];

u3=[10;18;29;50;8];

v=[24;52;73;133;12];

U=[u1,u2,u3,v]; [U0,r]=rref(U) 结果为: U0 =

1.0000 0 0 0.6000 0 1.0000 0 0.8000 0 0 1.0000 1.0000 0 0 0 0 0 0 0 0

r =

1 2 3

即能用这三种型号混凝土配出满足用户要求的混凝土。

且520吨水泥需要1号130吨,2号173吨,3号217吨。

4.某城市有如下图所示的交通图,每一条道路都是单行道,图中数字表示某一个时段该路段的车流量。若针对每一个十字路口(节点),进入和离开的车辆数相等。请计算每两个相邻十字路口间路段上的交通流量()1,2,,4i x i =L 。

解 输入:

A=[1,-1,0,0;0,1,-1,0;0,0,1,-1;-1,0,0,1]; b=[-100;72;37;-9]; U=rref([A,b]) 结果为: U =

1 0 0 -1 9 0 1 0 -1 109 0 0 1 -1 37 0 0 0 0 0

即x1=x4+9 x2=x4+109 x3=x4+37

(完整版)数值线性代数答案

习题1 1.求下三角阵的逆矩阵的详细算法。 [解] 设下三角矩阵L的逆矩阵为T 我们可以使用待定法,求出矩阵T的各列向量。为此我们将T按列分块如下: 注意到 我们只需运用算法1·1·1,逐一求解方程 便可求得 [注意]考虑到内存空间的节省,我们可以置结果矩阵T的初始状态为单位矩阵。这样,我们便得到如下具体的算法: 算法(求解下三角矩阵L的逆矩阵T,前代法) 3.证明:如果是一个Gauss变换,则也是一个Gauss变换。

[解]按Gauss变换矩阵的定义,易知矩阵是Gauss变换。下面我们只需证明它是Gauss 变换的逆矩阵。事实上 注意到,则显然有从而有 4.确定一个Gauss变换L,使 [解] 比较比较向量和可以发现Gauss变换L应具有功能:使向量的第二行加上第一行的2倍;使向量的第三行加上第一行的2倍。于是Gauss变换如下 5.证明:如果有三角分解,并且是非奇异的,那么定理1·1·2中的L和U都是唯一的。 [证明]设,其中都是单位下三角阵,都是上三角阵。因为A非奇异的,于是 注意到,单位下三角阵的逆仍是单位下三角阵,两个单位下三角阵的乘积仍是单位下三角阵;上三角阵的逆仍是上三角阵,两个上三角阵的乘积仍是上三角阵。因此,上述等将是一个单 位下三角阵与一个上三角阵相等,故此,它们都必是单位矩阵。即, 从而

即A的LU分解是唯一的。 17.证明定理1·3·1中的下三角阵L是唯一的。 [证明] 因A是正定对称矩阵,故其各阶主子式均非零,因此A非奇异。为证明L的唯一性,不妨设有和使 那么 注意到:和是下三角阵,和为上三角阵,故它们的逆矩阵也分别是下三角阵和上三角阵。因此,只能是对角阵,即 从而 于是得知 19.若是A的Cholesky分解,试证L的i阶顺序主子阵正好是A的i阶顺序主子阵的Cholesky因子。 [证明] 将A和L作如下分块 其中:为矩阵A和L的i阶顺序主子阵。。显然

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

西南大学线性代数作业答案

西南大学线性代数作业答案

第一次 行列式部分的填空题 1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符 号应取 + 号。 2.排列45312的逆序数为 5 。 3.行列式2 5 1122 1 4---x 中元素x 的代数余子式是 8 . 4.行列式10 2 3 25403--中元素-2的代数余子式是 —11 。 5.行列式25 11 22 14--x 中,x 的代数余子式是 — 5 。 6.计算00000d c b a = 0 行列式部分计算题 1.计算三阶行列式 3 811411 02--- 解:原式=2×(—4)×3+0×(—1)×(—1)+1×1×8—1×(—1)× (—4)—0×1×3—2×(—1)×8=—4 2.决定i 和j ,使排列1 2 3 4 i 6 j 9 7 为奇排列. 解:i =8,j =5。

3.(7分)已知0010413≠x x x ,求x 的值. 解:原式=3x 2—x 2—4x=2 x 2—4x=2x(x —2)=0 解得:x 1=0;x 2=2 所以 x={x │x ≠0;x ≠2 x ∈R } 4.(8分)齐次线性方程组 ?? ? ??=++=++=++000z y x z y x z y x λλ 有非零解,求λ。 解:()211 1 1 010001 1 111111-=--= =λλλλλD 由D=0 得 λ=1 5.用克莱姆法则求下列方程组: ?? ? ??=+-=++=++10329253142z y x z y x z y x 解:因为 33113 210421711 7021 04 21 911 7018904 2 1 351 1321 5 421231 312≠-=?-?=-------=-------=)(r r r r r r D 所以方程组有唯一解,再计算: 81 1 11021 29 42311-=-=D 108 1 103229543112-==D 135 10 13291 5 31213=-=D 因此,根据克拉默法则,方程组的唯一解是:

线性代数模试题试题库(带答案)

第一套线性代数模拟试题解答 一、填空题(每小题4分,共24分) 1、 若12335544i j a a a a a 是五阶行列式中带正号的一项,则,12 i j = =。 令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。 2、 若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D = (1)n D - 。 即行列式D 的每一行都有一个(-1)的公因子,所以D = (1)n D -。 3、设1101A ??= ??? , 则100A =110001?? ???。 23 111112121113,,010*********A A ????????????==== ??? ? ??? ????????????? L 可得 4、设A 为5 阶方阵,5A =,则5A =1 5n +。 由矩阵的行列式运算法则可知:1 555 n n A A +==。 5、A 为n 阶方阵,T AA E =且=+

数值线性代数第二版徐树方高立张平文上机习题第一章实验报告(供参考)

上机习题 1.先用你所熟悉的的计算机语言将不选主元和列主元Gauss 消去法编写成通用的子程序;然后用你编写的程序求解84阶方程组;最后将你的计算结果与方程的精确解进行比较,并就此谈谈你对Gauss 消去法的看法。 Sol : (1)先用matlab 将不选主元和列主元Gauss 消去法编写成通用的子程序,得到P U L ,,: 不选主元Gauss 消去法:[])(,A GaussLA U L =得到U L ,满足LU A = 列主元Gauss 消去法:[])(,,A GaussCol P U L =得到P U L ,,满足LU PA = (2)用前代法解()Pb or b Ly =,得y 用回代法解y Ux =,得x 求解程序为()P U L b A Gauss x ,,,,=(P 可缺省,缺省时默认为单位矩阵) (3)计算脚本为ex1_1 代码 %算法(计算三角分解:Gauss 消去法) function [L,U]=GaussLA(A) n=length(A); for k=1:n-1 A(k+1:n,k)=A(k+1:n,k)/A(k,k); A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n); end

U=triu(A); L=tril(A); L=L-diag(diag(L))+diag(ones(1,n)); end %算法计算列主元三角分解:列主元Gauss消去法) function [L,U,P]=GaussCol(A) n=length(A); for k=1:n-1 [s,t]=max(abs(A(k:n,k))); p=t+k-1; temp=A(k,1:n); A(k,1:n)=A(p,1:n); A(p,1:n)=temp; u(k)=p; if A(k,k)~=0 A(k+1:n,k)=A(k+1:n,k)/A(k,k); A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-A(k+1:n,k)*A(k,k+1:n); else break; end end L=tril(A);U=triu(A);L=L-diag(diag(L))+diag(ones(1,n));

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

昆明理工大学线性代数考试试题集及答案

《线性代数B 》 2010~ 2011 学年第 一 学期课程试卷A 一、填空 1. 125 642782516945 4321111= 12 . 2. 设A 、B 为4阶方阵,且,2||1 =-A 813=B ,则=||AB 1/2 . 3. 给定矩阵A ,且E A -可逆,满足B A E AB +=+2,则=B E A + . 4.设??????????=210110001A ,则=-1A ???? ??????--11012000 1 . 5.已知321,,ααα线性相关,3α不能由21,αα线性表示,则21,αα线性 相关 . 6.设???? ? ?????=??????????=??????????=120,61,321321αααt ,且1α,32αα,线性相关, 则=t 8 . 7.设A 是34?矩阵,且2)(=A R ,???? ? ?????=213010321B 则=)(AB R __2___ 8.设三阶方阵A 的每行元素之和均为零,又2)(=A R ,则齐次线性方程组O Ax =的通解为 )(111R k k ∈???? ?????? . 9. 向量组,11011????????????-=α,02132????????? ???-=α,31103????????????-=α???? ? ? ??????-=01014α的一个最大线性无关组为 421,,ααα . 10. 设A 为n 阶方阵,0=Ax 有非零解,则A 必有一个特征值为 0 . 二、单项选择

1..若=---+=--1 2 1 203242,112 2013z y x z y x 则( A ) )A ( 1- ; )B ( 2 ; )C ( 1 ; )D ( 0. 2.设C B A ,,均为二阶方阵,AC AB =,则当(C )时,可以推出C B =. .1111)D (;0110)C (;0011)B (;0101)A (? ? ? ???=? ?? ???=? ?? ???=? ?? ???=A A A A 3. 下列结论正确的是( A ) . )A ( s ααα,,,21 线性无关的充要条件是其中任意一个向量都不是其余向量的线性组合; )B ( 若向量321,,ααα线性相关,则21,αα线性相关; )C ( 若n 阶方阵A 与对角阵相似,则A 有n 个不同的特征值; )D ( 若方程组O Ax =有非零解,则b Ax =有无穷多解. 4. 已知321,,ηηη是四元方程组b Ax =的三个解,其中,3)(=A R ? ? ??? ???????=43211η,???? ????????=+444432ηη, 则以下不是方程组b Ax =的通解为( D ) . )A (;43214202???? ?? ??????+????????????--k )B ( ;43212101????????????+????????????--k )C (;22222101???? ????????+????????????--k )D (????? ? ??????+????????????43210123k . 5. 设向量组321,,ααα线性无关,则下列向量组中线性无关的是( B ) )A (133221,,αααααα--- ; )B (1321,,αααα+ ; )C (212132,,αααα- ; )D (32322,,αααα+. 6.若n 阶矩阵B A ,有共同的特征值,且各有n 个线性无关的特征向量,则(A )

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

《线性代数(一)》2011年下半年第一次

《线性代数(一)》2011年下半年第一次作业 一.填空题(4x6=24分) 1.计算3阶行列式 2 311273 8 2 -=- 。 2.已知排列1r46s97t3为奇排列,则r ,s ,t 的取值分别为 。 3.用行列式的性质计算:=++ +1 11 c b a b a c a c b 。 4.设A 为3阶方阵,而且 9A =-, 则 = A A T ; * A A = ; = * * ) (A ; 1 * 4A A --= . (注:* A 为A 的伴随矩阵.) 5.设11140012 5A B ???? == ? ????? ,, 则 = AB ; T B A = ;= 2 A ;n A = 。 6. 设 2 ()53p t t t =-+与矩阵3 162A -??= ?-?? ,则2 2()53p A A A I =-+= 。 二.选择题(4x9=36分) 1. 120 2 1 k k -≠-的充分必要条件是( )。 A 、1k ≠- B 、3k ≠ C 、31k k ≠≠-且 D 、31k k ≠≠-或 2、如果11 1213 21 222331 32 33 1a a a D a a a a a a ==,1D =1131 1232 1333 31323321 22 23 441631228652015a a a a a a a a a a a a +--+---,那么 1D =()。 A 、80 B 、-120 C 、120 D 、60 3.如果30 40 50x ky z y z kx y z +-=?? +=??--=? 有非零解,则() A 、01k k ==或 B 、01k k ==-或 C 、11k k ==-或 D 、31k k =-=-或

数值线性代数北大版问题详解全

数值线性代数习题解答 习题1 1.求下三角阵的逆矩阵的详细算法。 [解] 设下三角矩阵L的逆矩阵为T 我们可以使用待定法,求出矩阵T的各列向量。为此我们将T按列分块如下: 注意到 我们只需运用算法1·1·1,逐一求解方程 便可求得 [注意]考虑到存空间的节省,我们可以置结果矩阵T的初始状态为单位矩阵。这样,我们便得到如下具体的算法: 算法(求解下三角矩阵L的逆矩阵T,前代法) 2.设为两个上三角矩阵,而且线性方程组 是非奇异的,试给出一种运算量为的算法,求解该方程组。 [解]因,故为求解线性方程组 ,可先求得上三角矩阵T的逆矩阵,依照上题的思想我们很容易得到计算的算法。于是对该问题我们有如下解题的步骤:(1)计算上三角矩阵T的逆矩阵,算法如下: 算法1(求解上三角矩阵的逆矩阵,回代法。该算法的的运算量为)

(2)计算上三角矩阵。运算量大约为. (3)用回代法求解方程组:.运算量为; (4)用回代法求解方程组:运算量为。 算法总运算量大约为: 3.证明:如果是一个Gauss变换,则也是一个Gauss变换。 [解]按Gauss变换矩阵的定义,易知矩阵是Gauss变换。下 面我们只需证明它是Gauss变换的逆矩阵。事实上 注意到,则显然有从而有 4.确定一个Gauss变换L,使 [解] 比较比较向量和可以发现Gauss变换L应具有 功能:使向量的第二行加上第一行的2倍;使向量的第三行加上第一行的2倍。于是Gauss变换如下 5.证明:如果有三角分解,并且是非奇异的,那么定理1·1·2中的L和U都是唯一的。

[证明]设,其中都是单位下三角阵, 都是上三角阵。因为A非奇异的,于是 注意到,单位下三角阵的逆仍是单位下三角阵,两个单位下三角阵的乘积仍是单位下三角阵;上三角阵的逆仍是上三角阵,两个上三角阵的乘积仍是上三角阵。因此,上述等将是一个单位下三角阵与一个上三角阵相等, 故此,它们都必是单位矩阵。即,从而 即A的LU分解是唯一的。 6.设的定义如下 证明A有满足的三角分解。 [证明]令是单位下三角阵,是上三角阵。定义如下 容易验证: 7.设A对称且,并假定经过一步Gauss消去之后,A具有如下形式 证明仍是对称阵。 [证明] 根据Gauss变换的属性,显然做矩阵A的LU分解的第一步中的Gauss变换为

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

2013年春-西南大学《线性代数》作业及答案

2013年春 西南大学《线性代数》作业及答案(共5次,已整理) 第一次作业 【单选题】9.下列n 阶(n>2)行列式的值必为0的有: B:行列式非零元素的个数小于n 个。 【单选题】1.有二阶行列式,其第一行元素是(1,3),第二行元素是(1,4),该行列式的值是: B:1 【单选题】2.有二阶行列式,其第一行元素是(2,3),第二行元素是(3,-1),则该行列式的值是:A:-11 【单选题】3.有三阶行列式,其第一行元素是(0,1,2),第二行元素是(-1,-1,0),第三行元素是(2,0,-5),则该行列式的值是:B:-1 【单选题】4.有三阶行列式,其第一行元素是(1,1,1),第二行元素是(3,1,4),第三行元素是(8,9,5),则该行列式的值是:C:5 【单选题】5. 行列式A 的第一行元素是(k,3,4),第二行元素是(-1,k,0),第三行元素是(0,k,1),如果行列式A 的值等于0,则k 的取值应是:C:k=3或k=1 【单选题】6. 6.排列3721456的逆序数是:C:8 【单选题】7. .行列式A 的第一行元素是(-3,0,4),第二行元素是(2,a ,1),第三行元素是(5,0,3),则其中元素a 的代数余子式是:B:-29 【单选题】8.已知四阶行列式D 中第三行元素为(-1,2,0,1),它们的余子式依次分别为5,3,-7,4,则D 的值等于. C:-15 【论述题】行列式部分主观题 行列式部分的填空题 1.在5阶行列式ij a 中,项a 13a 24a 32a 45a 51前的符号应取 + 号。 2.排列45312的逆序数为 5 。 3.行列式25 1 122 1 4---x 中元素x 的代数余子式是 8 . 4.行列式1 02325 4 3 --中元素-2的代数余子式是 —11 。

线性代数期末考试试卷答案

线性代数期末考试题样卷 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, ,Λ21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,,Λ21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,,Λ21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, ,Λ21中任意两个向量都线性无关 ② s ααα,, ,Λ21中存在一个向量不能用其余向量线性表示 ③ s ααα,, ,Λ21中任一个向量都不能用其余向量线性表示

线性代数与概率统计全部答案(随堂 作业 模拟)

1.行列式? B.4 2.用行列式的定义计算行列式中展开式,的系数。 B.1,-4 3.设矩阵,求=? B.0 4.齐次线性方程组有非零解,则=?() C.1 5.设,,求=?() D. 6.设,求=?() D. 7.初等变换下求下列矩阵的秩,的秩为?() C.2 1.求齐次线性方程组的基础解系为() A. 2.袋中装有4个黑球和1个白球,每次从袋中随机的摸出一个球,并换入一个黑球,继续进行,求第三次摸到黑球的概率是() D.

3.设A,B为随机事件,,,,=?( ) A. 4.设随机变量X的分布列中含有一个未知常数C,已知X的分布列为 ,则C=?( ) B. 5. 44.,且,则=?() B.-3 一.问答题 1.叙述三阶行列式的定义。 1.三阶行列式的定义:对于三元线性方程组使用加减消元法.得到 2.非齐次线性方程组的解的结构是什么? 2.非齐次线性方程组的解的结构:有三种情况,无解.有唯一解.有无穷个解 3.什么叫随机试验?什么叫事件? 3.一般而言,试验是指为了察看某事的结果或某物的性能而从事的某种活动。一个试验具有可重复性、可观察性和不确定性这3个特别就称这样的试验是一个随机试验。每次试验的每一个结果称为基本事件。由

基本事件复合而成的事件称为随机事件(简称事件)。 4.试写出随机变量X的分布函数的定义。 4.设X是随机变量,对任意市属x,事件{X*p^k*q(n-k) 三.计算题 1.已知行列式,写出元素a43的代数余子式A43,并求A43的值.

数值分析试题及答案.

一、单项选择题(每小题3分,共15分) 1. 和分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110 l x = B . () 00l x =0, ()111 l x = C . () 00l x =1, ()111 l x = D . () 00l x =1, ()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组12312312 20223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A .232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案

二、填空题(每小题3分,共15分) 1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数 ()()() 33301213,88C C C === ,那么() 3 3C = 4. 因为方程 ()420 x f x x =-+=在区间 []1,2上满 足 ,所以 ()0 f x =在区间内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公 式 . 填空题答案

上海财经大学《 线性代数 》课程考试卷(B)及答案

诚实考试吾心不虚 ,公平竞争方显实力, 考试失败尚有机会 ,考试舞弊前功尽弃。 上海财经大学《 线性代数 》课程考试卷(B )闭卷 课程代码 105208 课程序号 姓名 学号 班级 一、单选题(每小题2分,共计20分) 1. 当=t 3 时,311244s t a a a a 是四阶行列式中符号为负的项。 2. 设A 为三阶方阵,3A = ,则* 2A -=__-72__。 3. 设矩阵01000 01000010 00 0A ????? ?=?????? ,4k ≥,k 是正整数,则=k P 0 。 4. 设A 是n 阶矩阵,I 是n 阶单位矩阵,若满足等式2 26A A I +=,则 () 1 4A I -+= 2 2A I - 。 5. 向量组()()()1,2,6,1,,3,1,1,4a a a +---的秩为1,则 a 的取值为__1___。 6. 方程组1243400x x x x x ++=??+=? 的一个基础解系是 ???? ? ? ? ??--??????? ??-1101,0011 。 7. 设矩阵12422421A k --?? ?=-- ? ?--??,500050004A ?? ? = ? ?-?? ,且A 与B 相似,则=k 4 。 …………………………………………………………… 装 订 线…………………………………………………

8. 123,,ααα是R 3 的一个基,则基312,,ααα到基12,αα,3α的过渡矩阵为 ???? ? ??001100010 。 9. 已知413 1 210,32111 a A B A A I -===-+-, 则B 的一个特征值是 2 。 10. 设二次型222 12312132526f x x x tx x x x =++++为正定, 则t 为 5 4||< t 。 二.选择题(每题3分,共15分) 1. 设A 为n 阶正交方阵,则下列等式中 C 成立。 (A) *A A =; (B)1*A A -= (C)()1T A A -=; (D) *T A A = 2. 矩阵 B 合同于145-?? ? - ? ??? (A) 151-?? ? ? ??? ; (B )????? ??--321;(C )???? ? ??112;(D )121-?? ? - ? ?-?? 3. 齐次线性方程组AX O =有唯一零解是线性方程组B AX =有唯一解的( C )。 (A )充分必要条件; (B )充分条件; (C )必要条件; (D )无关条件。 4.设,A B 都是n 阶非零矩阵,且AB O =,则A 和B 的秩( B )。 (A )必有一个等于零;(B )都小于n ;(C )必有一个等于n ;(D )有一个小于n 。 5.123,,ααα是齐次线性方程组AX O =的基础解系,则__B___也可作为齐次线性方程组 AX O =的基础解系。 (A) 1231231222,24,2αααααααα-+-+--+ (B )1231212322,2,263αααααααα-+-+-+

线性代数期末考试试题含答案

线性代数期末考试试题含 答案 The final edition was revised on December 14th, 2020.

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( )

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

相关文档
最新文档