多壁碳纳米管石墨糊修饰电极阳极溶出伏安法测定铜

多壁碳纳米管石墨糊修饰电极阳极溶出伏安法测定铜
多壁碳纳米管石墨糊修饰电极阳极溶出伏安法测定铜

碳纳米管综述

碳纳米管综述 摘要:本文主要介绍碳纳米管的发现及发展过程,并说明碳纳米管的制备方法及其制备技术。同时也叙述碳纳米管的各种性能与应用。 引言:在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 正文: 碳纳米管的制备: 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD,以及在各种合成技术基础上产生的定向控制生长法等。电弧法 利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作。 T. W. Ebbeseo[2]在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert[3]将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet[4]等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs 合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备成本偏高其工业化规模生产还需探索。 催化裂解法或催化化学气相沉积法(CCVD) 催化裂解法是目前应用较为广泛的一种制备碳纳米管的方法。该方法主要采用过渡金属作催化剂,适于碳纳米管的大规模制备,产物中的碳纳米管含量较高,但碳纳米管的缺陷较多。 催化裂解法制备碳纳米管所需的设备和工艺都比较简单,关键是催化剂的制备和分散。目前用催化裂解法制备碳纳米管的研究主要集中在以下两个方面:大规模制备无序的、非定向的碳纳米管;制备离散分布、定向排列的碳纳米管列阵。一般选用Fe, Co、Ni及其合金作催化剂,粘土、二氧化硅、硅藻土、氧化铝及氧化镁等作载体,乙炔、丙烯及甲烷等作碳源,氢气、氮气、氦气、氩气或氨气作稀释气,在530℃~1130℃范围内,碳氢化合物裂解产生的自由碳离子在催化剂作用下可生成单壁或多壁碳纳米管。1993年Yacaman等人[5]采用此方法,用Fe催化裂解乙炔,在770℃下合成了多壁碳纳米管,后来分别采用乙烯、聚乙烯、丙烯和甲烷等作为碳源,也都取得了成功。为使碳离子均匀分布,科研人员还用等离子加强或微波催化裂解气相沉积法制备碳纳米管。 激光蒸发法

碳糊修饰电极的应用研究进展

课程论文

碳糊修饰电极的应用研究进展 姓名:王添璞学院:材料科学与工程学院 班级:2007级应用化学学号:0714431027 摘要:本文主要是对使用碳糊修饰电极对Pb2+、I-、痕量银、痕量铜、痕量钪及水中镉离子的电化学测定方法的研究进展做一简单综述。 关键词:碳糊修饰电极痕量测定 1.引言 电化学分析具有快速、简便、灵敏的特点,其中固体电极特别是碳糊电极的优点尤其突出,主要表现在:无毒,残余电流小,制作简单,表面易更新,电位使用范围宽,价格便宜。因而碳糊电极广泛应用于测定无机离子、有机物。 2.碳糊电极简介 碳糊电极,即利用导电性的石墨粉与憎水性的粘合剂混制成糊状物,然后将其涂在电极棒上或填充入电极管中而制成的一类电极。由于CPE具有制作方便、无毒、应用范围广、使用寿命长、重现性好等特点,因而自从Adams于二十世纪五十年代制备出第一根碳糊电极起,特别是七十年代“化学修饰”概念的出现,以及八十年代“直接混合”技术的引入以来,碳糊电极倍受广大电分析化学工作者的青睐。碳糊电极(CPE)的性能取决于其所用的材料(碳粉和粘合刑)、制备方法、电极表面状态以及使用时间等。碳粉为多晶粉末,由于其吸附性能很大程度上取决于它的表面结构,因此它的不同来源及颗粒度的粗细对CPE 的性能影响较大,一般来说,碳粉的平均直径应在0.01-0.02mm之间,粉末越细的碳粉越易混匀,因而也就越易制得重现性好、残余电流小的碳糊电极。粘合剂的作用是使碳粉粘合成糊状,有时还起着选择性萃取以提高分析选择性的作用。与其它种类的电极相比,CPE 具有许多优点,突出表现在:残余电流小,制作简单,表面易更新,电位使用范围宽特别是正电位可适用+1.7V(vs.SCE),价格便宜,因而碳糊电极广泛应用于测定无机离子、有机物,还可以应用于电化学反应机理研究、化学物相分析等。【1】 3.碳糊修饰电极简介 在碳糊中加入一定量的修饰剂便制得了均匀的化学修饰碳糊电极(CMCPE)。一般的固体修饰电极,在电极表面接着或涂敷了具有选择化学基团的一层薄膜,虽然达到了对电极表面进行人工修饰的目的,但制备手续繁琐,又不易控制电极表面的修饰,存在性能不够稳定的问题。在电分析化学中,一般所用的电极都只有电子授受的单一作用,溶液中大多数离子在电极上电子转移的速度较慢,如何使电极性能成为预定地、有选择地进行反应,并提供更快的电子转移速度已成为电极的一个重要方向,于是提出了化学修饰电极。CMCPE 是化学修饰电极的一种,它继承了CPE的全部优点,同时,由于特效性修饰剂的引入,使其灵敏度、选择性进一步提高,而且还具有了修饰电极的特征,如易于制成各种功能的电

碳纳米管的结构_制备及修饰

科 ● 自Iijima [1]首次用高分辨透射电镜发现碳纳米管(CNTs)后,碳纳米管及其相关材料以其独特的性质、新颖的结构及许多潜在的应用前景引起了人们极大的兴趣和关注,而用纳米材料来修饰和填充碳纳米管成为人们研究的热点之一[2-4]。探索碳纳米管的物理、化学性能及其在各个领域中的应用也成为众多科研工作者研究的目标。碳纳米管的结构比较特殊是由类似于石墨的六边形网络所组成的管状物,独特的纳米中空结构、封闭的拓扑构型及不同的螺旋结构等使其具有大量特殊的优异性能,如导电性好,耐热,机械强度比较高,耐腐蚀,有自润滑性和生物相容性等。这些优异特性使得碳纳米管在复合材料、储氢材料、催化剂材料等方面有着巨大的应用潜力。纳米中空结构使得它有可能作为一种纳米反应器[5]。作为碳家族的新成员,它有合适的孔径分布,便于金属组分更好地分散[6]。它独特而又稳定的结构及形貌,尤其是表面性质,能依据人们的需要进行不同方法的修饰,使其适合作为新型催化剂载体[7-8]。 1 碳纳米管的性质 1.1 碳纳米管的结构 碳纳米管可分为单壁碳纳米管(SWNTs )和多璧碳纳米管(MWNTs )。碳纳米管可看作是由石墨烯层片卷成、直径为纳米尺度的圆桶,其两端由富勒烯半球封帽而成。多壁碳纳米管则是由若干个单层管同心套迭而成的,石墨碳原子中的4个价电子只有3个成键,形成六边形的平面网状结构。这种排列使石墨中的每个碳原子有一个未成对电子,这个未成对电子围绕着这个碳环平面高速运转,因而使石墨具有较好的导电性,碳纳米管中存在大量的六边形结构,当六边形往外逐渐延伸成为五边形时,会造成碳纳米管突出;而形成七边形时碳纳米管则凹进。这样就形成了碳纳米管独特的纳米中空结构、封闭的拓扑构型及不同的螺旋结构。而碳纳米管也由于如此的特殊结构具有了一系列卓越的性质。1.2碳纳米管的制备 电弧法制备碳管的基本原理是在两个相距很近的石墨电极间加上高电压以至放电,放电电弧产生的高温使得阳极石墨棒上的碳物质迅速蒸发,随后蒸发物质中的碳原子以团簇为单元组成多种碳物质形态,沉积于阴极和反应腔壁上,碳纳米管是其中的沉积产物之一。电弧法多用来制备多璧碳纳米管(MWNTs )但制备的碳纳米管缺陷多,且与其他的副产物如无定形碳、纳米微粒等杂质烧结于一体,对以后的分离和提纯会有不利的影响。 催化裂解法(CVD 法)是目前应用最广泛的方法之一,该方法所用的关键设备就是可加热反应腔。反应腔可以分为立式固定床和卧式磁舟两种。其基本原理是:在中等温度下(800-1200K 左右),含碳化合物如烃、金属有机化合物、CO 等在金属催化剂的作用下分解为碳原子,沉积在金属颗粒的表面,然后溶解、扩散进入金属体相,最后析出生长成为碳纳米管。可以认为实现可控制技术的一个可能的途径是通过控制催化剂颗粒的大小和分布间接控制碳管的生长,因此有关CVD 技术的催化剂问题受到广泛关注。可以用于合成碳管的催化剂一般为过渡金属元素:Fe 、Co 、Ni 、Cr 、Mo 、Mg 和Si 等。同电弧法相比,催化裂解法制得的CNTs 缺陷较多,但是此法制得的碳纳米管产量大且易提纯,还可通过催化剂颗粒的大小控制碳纳米管的粗细。 激光蒸发法是制备碳纳米管的重要方法之一。它是利用激光对石墨进行蒸发并利用专门设计的收集器来收集合成的碳管。其基本原理是:在惰性气体流中用激光蒸发含有金属催化剂的石墨靶表面,在石墨上生长碳纳米管,随后收集于铜水冷器。激光束的宽度为6至7个毫米,经过计算机的精确引导,激光束持续而定量地蒸发含有金属催化 剂的石墨靶,再由流动的Ar 气将碳物质送到蒸发炉外的水冷铜收集器处,在那里就能找到碳管,该方法首次得到相对较大数量的单壁碳纳米管。激光蒸发(烧蚀)法的主要缺点是单壁碳纳米管的纯度较低、易缠结。 1.3碳纳米管的修饰 碳纳米管的修饰共分为两类,分别为共价修饰和有机化学修饰。其中碳纳米管的共价修饰共有三种途径:自由基加成法、电化学氧化法、化学试剂氧化法这三种。 自由基加成法是一种碳纳米管共价修饰的方法,CNTs 管壁上存在很大的自由基加成的可能性。在碳纳米管璧原位上的重氮化可以是碳纳米管有效地溶解在水中,增大碳纳米管的溶解度。Sinnott [15]采用经典分子动力学模拟方法构建了碳自由基与碳纳米管的加成模型,通过模型的建立发现带羧基的烷基自由基可以有效地加成到碳纳米管管壁上,得到功能化的碳纳米管。 通过电化学氧化法可以制得大量的碳纳米管修饰电极,将CNTs 固定于电极材料上,加压条件下用NaOH 溶液处理。万谦等[16]碳纳米管经过纯化、浓酸回流处理后与DMF 分散物质形成悬浮液,然后通过微量滴管等直接滴涂或溅射等方法修饰到各种基质电极上,即可制成碳纳米管修饰电极。 化学试剂氧化法是一种较为普遍的方法,以浓硝酸或者硝酸和硫酸的混酸作为强氧化剂,经过处理后使得碳纳米管表面具有大量的羧基和羟基基团,这种方法简单易行,很多文献对碳纳米管修饰都是采用此方法,但是表面羧基化后的CNTs 其表面羧基之间存在氢键作用,碳纳米管分散性和溶解性还是仍然较差,还需要进一步对CNTs 表面的COOH 进行反应,破坏羧基之间的氢键作用。 CNTs 的化学修饰共分为三类,包括酸碱中和反应、酰化反应、胺化反应,其中酸碱中和反应是认为羧基化后的CNTs 可以与带碱性基团的聚合物发生类似于酸碱中和反应的反应,在上个世纪90年代,Chen 等以羧基化后的碳纳米管与带碱性基团的聚合物十八胺发生中和反应,第一次得到了可溶性CNTs 为SWNTs 在各种生物及超分子领域的应用提供了依据。Banerjee 等用Wilkinson 催化剂[RhCl(PPh 3)3]与羧基化SWNTs 反应,发现修饰后的SWNTs 溶解度显著增大在二甲基甲酰胺(DMF)、四氢呋喃(THF)、二甲基亚砜(DMSO)等有机溶剂中,从而证明金属离子可通过离子作用与羧基化CNTs 反应。 酰化反应如酰胺化反应和酰氯化反应等,酰氯化反应是碳纳米管在加热条件下在硝酸中回流后,以亚硫酰二氯(SOCl 2)作酰化剂,得到含有酰基氯的碳纳米管。由于含有酰基氯的碳纳米管具有更高的活性,可以与苯胺发生酰胺化反应进一步得到含有酰基苯胺的碳纳米管。 2结论 多壁碳纳米管是一类新奇碳素纳米材料。典型的CNTs 具有纳米级管状结构。鉴于这类新奇管状纳米碳材料具有独特的结构和物化性质,作为一种新型碳素催化剂载体或促进剂,较之一些常规载体材料更具特色,近年来引起国际催化学界的日益注意,所涉及用CNTs 作为新型催化剂载体或促进剂的研究领域包括:选择加氢、氢甲酞化、选择脱氢、氨合成、FT 合成、甲醇/低碳醇合成等。【参考文献】 [1]Iijima S.Helical microtubules of graphitic carbon .Nature ,1991,354:56-58.[2]Kogak,Gao G T ,Tanaka H ,et al.Formation of ordered ice nanotubes inside carbon nanotubes[J].Nature ,2001,412:802-805.(下转第38页) 碳纳米管的结构、制备及修饰 赵健勇(山东师范大学化学化工与材料科学学院 山东济南250014) 【摘要】本文详细介绍了碳纳米管的特殊结构,各种不同的制备方法,以及在共价修饰和化学修饰的各种方法,对碳纳米管应用作出展 望。 【关键词】碳纳米管;结构;制备;修饰

羧基化多壁碳纳米管修饰电极循环伏安法测定过氧化氢

羧基化多壁碳纳米管修饰电极循环伏安法测 定过氧化氢 【摘要】目的:研究用羧基化多壁碳纳米管修饰电极伏安法测定过氧化氢的浓度。方法:采用涂布法制成羧基化多壁碳纳米管修饰电极;在pH=7.0 KH2PO4-Na2HPO4缓冲溶液中,采用该修饰电极伏安法测定H2O2。结果:该修饰电极对H2O2有着显著的电催化作用,与裸玻碳电极相比,其灵敏度大大提高,在 1.2×10-6~1.0×10-3 mol/L 浓度范围内,过氧化氢的氧化峰电流与其浓度呈良好的线性关系,检测限为3.1×10-7 mol/L,将该修饰电极用于医用过氧化氢的测定,相对平均偏差为1.2%,平均回收率为97.6%,结果满意。结论:该修饰电极响应快,灵敏度高,稳定性好,寿命长,适合于具有电活性生物分子的测定。 【关键词】碳纳米管学修饰电极伏安法过氧化氢 Abstract: Objective: To study a quantitative method for determination of hydrogen peroxide (H2O2) by voltammetry with multi-wall carbon nanotubes functionalized with carboxylic group modified electrode (CME). Method: The CME was fabricated, which based on the immobilization of multi-wall carbon nanotubes functionalized with carboxylic group. In a medium of KH2PO4-Na2HPO4 buffer solution with pH=7.0,the CME was

碳纳米管电极的制备及应用研究

碳纳米管电极的制备及应用研究 【摘要】:氧化还原蛋白质(酶)的直接电化学研究引起了越来越多研究者的兴趣,这些研究能帮助我们了解蛋白质的结构和蛋白质发生电子传递的机理。由于多数蛋白质分子量较大,其电活性中心很难与电极直接交换电子。为了促进蛋白质和电极的电子传递,研究运用了各种纳米材料修饰电极,如金属纳米颗粒、碳纳米管等。碳纳米管自从被发现后,因为其独特的力学、电子特性以及化学特性成为世界范围内的研究热点之一。因其具有独特的结构、优良的力学性质及杰出的电学性质,碳纳米管在显微镜探针、场发射显示器、超级电容器、分离领域及传感器等领域得到广泛应用。由于碳纳米管的表面效应,即直径小、表面能高、原子配位不足,使其表面原子活性高,易与周围的其它物质发生电子传递作用,在电化学和电分析化学的研究中,如蛋白质的直接电化学和电化学生物传感器的构筑,具备了独特的优势。本文利用碳纳米管优良的物理、化学、电催化性能以及它们良好的生物相容性,结合纳米粒子的小粒径和大的比表面积效应,制备了2种不同类型的多壁碳纳米管修饰电极,实现了血红蛋白的直接电化学,该类修饰电极对过氧化氢等具有良好的生物电催化性质,能用于生物传感界面的构建。采用化学气相沉积法在石英基底上成功制备了直立碳纳米管阵列,并将其制成直立碳纳米管阵列电极,将血红蛋白、葡萄糖氧化酶采用多种方法固定到阵列电极界面上,制备的生物传感器具有较高的灵敏度、较低的检测下限以及快的响应速度。具体内容如下:第一章绪论首先系统介绍了碳纳米管的发现及应用研究,包括

碳纳米管的分类、性能、制备方法、功能化以及应用现状。接着介绍了氧化还原蛋白质(酶)的直接电化学,包括研究意义、研究现状以及纳米材料在蛋白质(酶)生物传感器中的应用。第二章血红蛋白在1-芘丁酸琥珀酰胺酯/碳纳米管和金胶纳米粒子修饰电极上的直接电化学本章采用多壁碳纳米管(MWNTs)、1-芘丁酸琥珀酰胺酯(PASE)和金纳米粒子(AuNPs)构筑生物兼容性薄膜,用于固定血红蛋白生物分子。首先1-芘丁酸琥珀酰胺酯的芘基端可以与碳纳米管的侧壁通过π键合作用形成PASE/MWNTs,然后,血红蛋白(Hb)通过蛋白分子中的胺基与PASE的琥珀酰胺酯基端的亲核取代反应形成胺键,固定到PASE/MWNTs纳米复合材料表面。最后,金胶纳米粒子通过静电作用力吸附血红蛋白分子表面,形成Au/Hb/PASE/MWNTs。采用紫外可见吸收光谱(UV-Vis)、傅立叶变换红外光谱(FTIR)、电化学交流阻抗(EIS)及循环伏安扫描(CV)等方法对电极修饰过程进行表征。实验结果表明,Hb在Au/Hb/PASE/MWNTs/GCE电极表面没有发生变性,能够进行有效和稳定的直接电子转移反应。所得的Au /Hb/PASE/MWNTs/GCE电极对H_2O_2、TCA、NaNO_2、O_2具有良好的催化还原的生物传感特性。第三章血红蛋白在多壁碳纳米管/金胶纳米粒子和SiO_2层层组装膜电极界面上的直接电化学本章提出一种基于多壁碳纳米管/金胶纳米粒子(MWNTs/Au),SiO_2溶胶-凝胶和蛋白质层层组装的方法固定血红蛋白(Hb),制得蛋白质电化学生物传感器。首先将一定量的MWNTs和金胶掺杂在一起后滴涂在玻碳(GC)电极表面,随后先后将一定量的Hb和SiO_2均匀滴涂

碳糊电极和化学修饰碳糊电极的制备及应用综述

碳糊电极和化学修饰碳糊电极的制备及应用综述摘要:碳糊电极和化学修饰碳糊电极在电化学研究中起着非常重要的作用.从电极材料选用和修饰剂选择方面综述了碳糊电极和化学修饰碳糊电极制备的几种方法,概括了近年来化学修饰电极的应用.关键词:碳糊电极;修饰剂;制备;应用;CPE;CMCPE 所谓碳糊电极(carbon paste electrode,简称CPE)是利用导电性的石墨粉(颗粒度0.02 mm~0.01mm)与憎水性的粘合剂(如石蜡、硅油等)混合制成糊状物,再将其涂在电极棒表面或填充入电极管中而制成的一类电极.由于碳糊电极无毒、电位窗口(依实验条件电位范围为-1.4~+1.3V,最高至+1.7 V)制作简单、成本低廉、表面容易更新,备受电化学分析工作者的青睐.然而,单纯的CPE 作用有限,后来通过电极修饰的方法使其具有一定功能,即化学修饰碳糊电极(CMCPE).CMCPE 是在CPE 基础上发展起来的,由碳糊表面接着化学修饰剂构成,通过对电极表面的分子剪裁,可按意图给电极修饰预定的功能.CMCPE的出现提高了CPE 的选择性和灵敏度,使分离、富集和选择性测定三者合而为一. 迄今为止,CPE 及CMCPE 已在无机物分析、有机物分析及药物分析、电化学和生物传感器等研究中得到广泛应用. 1. 碳糊电极(CPE)的制备方法 将石墨粉和粘合剂按适当比例充分混匀至糊状,将该糊状物压入适当直径的绝缘槽内(如玻璃管等),另一端与导线相连,紧密

填实,抛光即可.从CPE 的制备方法可知,其原料除石墨粉外,还有粘合剂,这里粘合剂的作用仅使电极成型而不参与导电.石墨粉与粘合剂混合的比例是CPE 制备的关键因素之一.通常因粘合剂种类不同,混合比例也不同.制备CPE 的粘合剂主要有两大类. 1.1 非导体粘合剂 (1)有机液体粘合剂,如石蜡、硅油、矿物油、环氧树脂等.在这类电极上,电化学反应在电极与试液界面上进行. (2)固体粘合剂,如固体石蜡、PVC(Polyvinyl chlorid)等.固体石蜡作粘合剂的CPE 比普通CPE 具有更多的优越性,如电极表面光洁稳定、重现性好、背景噪音低、灵敏度高、选择性好等,并且能够在流动体系中应用. 1.2 电解质溶液粘合剂 NaOH 即是一种电解质溶液粘合剂,使用这类粘合剂制备的CPE,电化学反应可在电极本体内进行,从而扩大了CPE 的应用范围,电极表面易于更新,正电位残余电流低.但由于该电极坚固性较差,在负电位区背景电流大,导致以该种粘合剂制备的CPE 在电化学研究中鲜于使用. 2. 化学修饰碳糊电极(CMCPE)的制备方法 CMCPE 与普通CPE 不同的是决定电极性能的关键因素是修饰剂. 修饰剂的种类和用量直接关系到电极的灵敏度和选择性. 修

壳聚糖对碳纳米管的表面修饰

许爱民等:堇青石陶瓷表面Ca0.6Mg0.4Zr4(PO4)6涂层的显微结构及耐碱性· 163 ·第36卷第2期 壳聚糖对碳纳米管的表面修饰 刘爱红1,2,孙康宁1,2,王菲1,2,俞中平1,2 (1. 山东大学,液态结构及其遗传性教育部重点实验室;2. 山东省工程陶瓷重点实验室,济南 250061) 摘要:采用表面沉积交联法实现了壳聚糖对碳纳米管的表面修饰,并对所得的复合材料进行了相应的检测。结果表明:得到的复合材料中碳纳米管表面完全被壳聚糖所覆盖,管径变粗,并且由于壳聚糖覆盖层的静电排斥作用,使壳聚糖修饰后碳纳米管的团聚减少。 关键词:碳纳米管;壳聚糖;表面修饰 中图分类号:R318.08 文献标识码:A 文章编号:0454–5648(2008)02–0163–03 SURFACE MODIFICATION OF CARBON NANOTUBES WITH CHITOSAN LIU Aihong1,2,SUN Kangning1,2,WANG Fei1,2,YU Zhongping1,2 (1. Key Laboratory for Liquid Structure and Heredity of Materials of Education Ministry; 2. Engineering Ceramics Key Laboratory of Shandong Province, Shandong University, Jinan 250061, China) Abstract: Surface modification of carbon nanotubes (CNTs) with biopolymer chitosan was performed via a controlled surface depo-sition and crosslinking process. The characteristic of modified CNTs was measured The results show that the diameter of CNTs be-comes thicker because the surface of CNTs is covered with chitosan, and the glomeration of the CNTs decreases to improve the dis-persion of CNTs due to static electric repulsive action of chitosan coating. Key words: carbon nanotubes; chitosan; surface modification 近年来,碳纳米管(carbon nanotubes, CNTs)的研究热点转向生物医用材料方面,已在生物医学方面得到广泛应用。用CNTs可制备各种生物传感器,生物医学微电子器件的导线、开关、记忆元件等。[1–4] 由于CNTs的生物相容性较差,常需要对CNTs 进行表面修饰改性。用生物相容性好的天然高分子修饰碳纳米管,制备成CNTs/天然高分子复合材料,是改善碳纳米管生物相容性的一种重要方法。 壳聚糖(chitosan, CS)是甲壳素(chitin)脱去部分乙酰基后的产物,是一种常见的天然高分子,在生物材料的研究中得到了广泛的应用,其良好的生物相容性已经得到认可。[5] 通过壳聚糖对CNTs的表面修饰,有望改善CNTs的生物相容性,更有可能赋予CNTs某些生物学的性质,为扩大CNTs在生物医学领域的应用提供了一种途径。据此,采用表面沉积交联法,由壳聚糖修饰CNTs的表面,并对所得复合材料进行了检测。 1 实验 1.1 CNTs的纯化氧化预处理 实验所用原料为:多壁CNTs,深圳纳米港有限公司产,纯度95%(质量分数)以上;壳聚糖(食品级,脱乙酰度为95%),济南海得贝海洋生物工程有限公司产;其他试剂均为分析纯试剂。 采用混酸液相氧化法对CNTs原料进行纯化氧化预处理。将2g CNTs加入120mL混酸溶液中(浓H2SO4与浓HNO3体积比为3:1),超声分散2~3h,然后在室温磁力搅拌120h,进行氧化。通过0.22μm 的聚碳酸酯滤纸真空抽滤混合物,再由去离子水洗涤至pH值为7。处理后的CNTs在80℃真空干燥 收稿日期:2007–07–27。修改稿收到日期:2007–10–21。 基金项目:国家自然科学基金(50672051,30540061);山东大学大学生科技创新基金资助项目。 第一作者:刘爱红(1981—),女,博士研究生。 通讯作者:孙康宁(1955—),男,教授。Received date:2007–07–27. Approved date: 2007–10–21. First author: LIU Aihong (1981–), female, postgraduate student for doctor degree. E-mail: aihong1981@https://www.360docs.net/doc/0d16394392.html, Correspondent author: SUN Kangning (1955–), male, professor. E-mail: sunkangning@https://www.360docs.net/doc/0d16394392.html, 第36卷第2期2008年2月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 36,No. 2 February,2008

碳纳米管在电化学中的应用

碳纳米管在电化学中的应用 【摘要】对碳纳米管修饰电极的制备方法、应用以及碳纳米管修饰电极的发展趋势作比较全面的综述。 【关键词】碳纳米管;化学修饰电极 Application of the Carbon nanotube in electrochemistry Abstract The methods of preparation, applications and developing trends of carbon nanotube modified electrodes in the field of electrochemistry were reviewed. Key words Electrochemistry Carbon nanotube modified electrodes 碳纳米管,又名巴基管(buckytube),是1991年由日本科学家饭岛澄男(Sumio Iijima)在高分辨透射电镜(HRTEM)下发现的一种针状的管形碳单质。它以特有的力学、电学和化学性质,以及独特的准一维管状分子结构和在未来高科技领域中所具有的潜在应用价值,迅速成为化学、物理及材料科学等领域的研究热点。目前,碳纳米管在理论计算、制备和纯化生长机理、光谱表征、物理化学性质以及在力学电学、化学和材料学等领域的应用研究方兴未艾,在一些方面已取得重大突破。碳纳米管(CNT)的发现,开辟碳家族的又一同素异形体和纳米材料研究的新领域。 由于CNT具有良好的导电性、催化活性和较大的比表面积,可使过电位大大降低及对部分氧化还原蛋白质能产生直接电子转移现象,因此被广泛用于修饰电极的研究。碳纳米管在作为电极用于化学反应时能促进电子转移。碳纳米管的电化学和电催化行为研究已有不少报道。 1碳纳米管的分类 CNT属于富勒碳系,管状无缝中空,具有完整的分子结构,由碳六元环构成的类石墨平面卷曲而成,其中每个碳原子通过sp2杂化与周围3个碳原子发生完全键合,各单层管的顶端有五边形或七边形参与封闭。CNT的径向尺寸为纳米量级,轴向尺寸为微米量级,具有较大的长径比。由单层石墨片卷积而成的称为单壁碳纳米管(SWNT),制备时管径可控,一般在1~6 nm之间,当管径>6 nm后CNT 结构不稳定,易塌陷。SWNT轴向长度可达几百纳米甚至几个微米。由两层以上柱状碳管同轴卷积而成的称为多壁碳纳米管(MWNT),层间距约为0.34 nm。

超级电容器电极材料——碳纳米管

超级电容器电极材料——碳纳米管 超级电容器电极材料——碳纳米管 碳纳米管(Carbon Nano Tubes,Ts)是1991年 NEC公司的电镜专家 Iijima通过高分辨率电子显微镜观察电弧法设备中产生的球状分子时发现的一种管状新型纳米碳材料,如下图所示: 理想Ts是由碳原子形成的石墨烯卷成的无缝?中空的管体,根据管中碳原子层数的不同,Ts 可分为单壁碳纳米管 (Single-walled Nano Tubes SWNTs)和多壁碳纳米管 (Multi-walled Nano Tubes,MWNTs)?Ts的管径一般为几纳米到几十纳米,长度一般为微米量级,由于 Ts具有较大的长径比,因此可以将其看做准一维的量子线?Ts因其独特的力学?电子学和化学特性而迅速成为世界范围内的研究热点之一,并在复合增强材料?场发射?分子电子器件和催化剂等众多领域得到了广泛的应用? Niu等首先报道使用催化裂解法生长的直径为8nm的Ts制备了厚度为25.4μm?比表面积为430m2/g的薄膜电极,在38%的H2SO4水溶液中,获得了49~113F/g的质量比容,而且在频率为11Hz时,其相角非常接近-90°,并且具有大于 8kW/g的高功率? E.Frakcowaik等以钴盐为催化剂,二氧化硅为模板催化裂解乙炔制得比表面积为400m2/g 的MWNTs,其比容量达135F/g,而且在高达50Hz的工作频率下,其比容量下降也不大?这说明Ts的比表面 积利用率?功率特性和频率特性都远优于活性炭?碳纳米管的比容与其结构有直接关系? 江奇娜等研究了MWNTs的结构与其容量之间的关系,结果发现比表面积较大?孔容较大和孔径尽量多的分布在30~40nm区域的 Ts会具有更好的电化学容量性能?从Ts的外表来看,管径为30~40nm?管长越短?石墨化程度越低的Ts的容量越大?另外,由于SWNTs通常成束存在,管腔开口率低,形成双电层的有效表面积低,所以MWNTs更适合用做双电层电容器的电极材料?由于Ts的绝大部分孔径都在2nm以上,而2nm以上的孔非常有利于双电层的形成,所以Ts电容器具有非常高的比表面积利用率,但由于Ts的比表面积都很低,一般为100~400m2/g,所以Ts的比容都较低? 提高Ts比容的最直接办法是提高其比表面积,采用高速球磨将Ts打断能在一定程度上提高Ts的比表面积,进而提高其比容?另外,通过化学氧化或电化学氧化的方法在Ts表面产生电活性官能团,利用这些表面官能团在充放电过程中产生的赝电容也可以有效提高Ts的比容?Ts与金属氧化物或导电聚合物相复合,可以制备同时具有双电层电容和法拉第赝电

碳糊电极的制备、处理及表征

实验二碳糊电极的制备、处理与表征(CV 法) 一、实验目的 1. 学习和掌握碳糊电极的制作方法; 2. 了解碳糊电极的性质。 二、实验原理 CHI 660电化学工作站(上海辰华公司)。实验采用三电极系统,以碳糊电极(φ= 2.4 mm)作为工作电极,对电极为铂丝电极,参比电极为银/氯化银电极(Ag/AgCl Sat. KCl)。 碳粉,石墨粉,糊碳(Electrodag 423SS, Acheson Colloids, Plymouth, UK ) ,银糊(silver ink,Electrodag 427,SS Acheson Colloids, Plymouth, UK) 氯化银糊(sliver chloride ink ,DB 2275, Acheson Colloids, Plymouth, UK),液体石蜡油。二硫化钼,玻璃研钵,环氧树脂版(0.5 mm),自制不绣钢电极摸版,玻璃管(φ= 2.4 mm),铜导线。所用试剂均为分析纯,所有溶液均为二次去离子超纯水(Milli-Q公司超纯水(18. 0 MΩ)。0.10 mol·L-1K4 [Fe(CN)6];0 10 mol·L-1 KCl。 三、实验步骤 1. 碳糊电极的制备与性能评价 将100 μL 液体石蜡油加入到盛有800 mg碳粉或石墨粉的玻璃研钵中,充分研磨得到颗粒细小、均匀的碳糊,再将其装填到玻璃管(φ= 2.4 mm)中,插入铜导线,即制成碳糊电极。

将100 μL 液体石蜡油加入到盛有800 mg碳粉或石墨粉及一定量二硫化钼混合的(这个条件要选择)玻璃研钵中,充分研磨得到颗粒细小、均匀的碳糊,再将其装填到玻璃管(φ= 2.4 mm)中,插入铜导线,即制成碳糊电极。 将所制碳糊电极在滤纸上磨檫处理,使其表面至平整。每次实验前碳糊电极均在0.10 mol/L 磷酸盐缓冲溶液(pH=7.4)中以100 mV/s扫速在0 ~ 1.2 V之间循环扫描,直至得到稳定的循环伏安曲线为止。 1. 考察不同量的二硫化钼对碳糊电极电化学行为性能的影响, 在0.04 mol·L-1 K4[Fe(CN)6] (含支持电解质KCl浓度为0.1 mol·L-1)溶液中,插入处理好的碳糊电极,以此更新处理的碳糊电极为指示电极,铂丝电极为辅助电极,饱和甘汞电极为参比电极,进行循环伏安仪测定。以5 mV/s、25 mV/s、50 mV/s、80 mV/s、100 mV/s、150 mV/s、200 mV/s的扫描速度,在-0.2至+0.6 V电位范围内扫描,分别记录循环伏安图,考察峰电流与扫速的关系。计算电极面积。 更新电极表面5次,测量某已确定(如50 mV/s)扫速下5次电极所得电流的相对标准偏差。说明电极制作的重复性。 2. 考察不同量的二硫化钼对碳糊电极上钌联吡啶电化学发光行为的影响 发光试验同第二次试验的过程,电极换为不同的碳糊电极。

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强,因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carb on nano tubes(CNTs) are nano meter-sized carb on materials with the characteristics of unique one-dimensional geometric structure large surface area high electrical conductivity,elevated mechanical strength and strong chemical inertn ess. Selecti ng appropriate methods to prepare carb on nano tube composites can enhance physical and chemical properties , and these composites have a great future in many areas especially in energy storage batteries . In this paper, based on the analysis and comparis on of the adva ntages and disadva ntages of carb on nano tube composites the enhan ceme nt mecha ni sms of the CNTs catalysts are in troduced. Afterwardthe lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carb on nano tube; composite; en ergy storage batteries; applicati on 1引言 碳纳米管(CNTs)在2004年被人们发现,是一种具有特殊结构的一维量子材料,它 的径向尺寸可达到纳米级,轴向尺寸为微米级,管的两端一般都封口,因此它有很大的强度,同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着碳纳米管的管径减小其表现出非化学平衡或整数配位数的化合价,储锂的容量增大;第三,碳纳米管具有良好的导

卟啉_多壁碳纳米管修饰电极的制备及多巴胺的测定.kdh

收稿日期:2009-11-19 作者简介:叶芳(1983-),女,湖北武汉人,韶关学院化学与环境工程学院助教,主要从事电化学修饰电极的研究. 韶关学院学报·自然科学Journal of Shaoguan University ·Natural Science 2010年6月 第31卷第6期卟啉/多壁碳纳米管修饰电极的制备及多巴胺的测定 叶芳1,南俊民2 (1.韶关学院化学与环境工程学院,广东韶关512005;2.华南师范大学化学与环境工程学院,广东广州510006) 摘要:利用电化学方法在多壁碳纳米管修饰的玻碳电极表面聚合一层无金属卟啉,制备了卟啉/多壁碳纳米管修饰电极,采用循环伏安法研究多巴胺(DA)在不同修饰电极上的电化学行为,并计算得到了不同修饰电极有效面积A eff 以及DA 电化学氧化过程的一些重要参数.实验结果表明,这种双层膜修饰电极具有更为明显的催化效果,微分脉冲伏安结果显示,催化氧化峰电流与DA 浓度在5×10-5mol ·L -1~3×10-7mol ·L -1范围内呈良好的线性关系,检出限达6×10-8mol ·L -1(S/N=3).关键词:电化学;多壁碳纳米管;卟啉;修饰电极;多巴胺 中图分类号:O646.54文献标识码:A 文章编号:1007-5348(2010)05-0062-05 卟啉作为一类天然的大环化合物,因含有多个双键和高度共轭的大∏体系,可以通过聚合方式得到聚合膜,因具有多个电活性中心和优异的光学、电学等特性,从而在光学和光电化学等领域中具有广泛的应用.碳纳米管独特的结构形态和性质使其催化效率提高,因而在电化学传感器和修饰电极方面受到广泛关注[1].近年来,有关碳纳米管修饰电极研究报道逐年增加,主要的应用研究有:抗坏血酸、多巴胺(DA )、肾上腺素等生物分子的分离检测[2],细胞色素C 的直接电子转移[3],硫化氢的电化学检测[4]等. 本文以多壁碳纳米管(MWNT)修饰的玻碳电极为基底电极,采用电化学方法在其表面聚合一层无金属卟啉,即5-邻(4-溴戊氧基苯基)-10,15,20-三苯基卟啉(o -BrPETPP)膜,制备了o -BrPETPP/MWNT 修饰电极,并将其用于DA 的检测. 1实验部分 1.1仪器与试剂MWNT 为深圳多维新材料有限公司产品.实验中所使用的5-邻(4-溴戊氧基苯基)-10,15,20-三苯基卟啉(o -BrPETPP)由华南理工大学提供.DA (Aldrich-Sigma 公司产品)、十六烷基磷酸(DHP)及其他实验试剂均为分析纯试剂.所用水均为实验室自制二次蒸馏水. 0.05mol ·L -1KH 2PO 4-NaOH 缓冲液(pH=6.0),其pH 值可分别用0.1mol ·L -1HCl 和0.1mol ·L -1NaOH 溶液调节.CHI660A 电化学工作站(上海辰华仪器有限公司产品);KQ-50B 超声波清洗器(中国昆山超声仪器厂产品);PHS-3C 型酸度计(上海雷磁产品). 实验采用三电极体系:参比电极为饱和甘汞电极(SCE ),对电极为铂电极(213型),工作电极为裸玻碳电极、MWNT 修饰电极、o -BrPETPP 修饰电极、o -BrPETPP/MWNT 修饰电极. 1.2MWNT 的预处理 将0.2g MWNT 在2mol ·L -1HCl 中超声处理4h ,以纯化MWNT 并除去上面的金属氧化物催化剂;蒸馏水洗至中性,100℃下恒温干燥成粉末.然后将纯化后的MWNT 在80ml 浓混酸(V HNO 3∶V H 2SO 4 =1∶3)混合,室Jun.2010Vol.31No.6

异鼠李素在碳糊电极上的伏安行为及其测定(1).

异鼠李素在碳糊电极上的伏安行为及其测定(1) 【摘要】目的研究异鼠李素在碳 糊电极上的伏安行为,建立异鼠李素含量测定的新方法。方法采用循环伏安法检测异鼠李素在电极上的电化学行为,以差示脉冲伏安测定其含量。结果异鼠李素发生单电子、单质子的氧化还原反应,该反应为有吸附特征的可逆过程。在pH 4.0磷酸缓冲液中,氧化峰电流与异鼠李素浓度在2.0×10-7~3.0×10-6 mol/L 呈良好的线性关系,检测限为2.5×10-8 mol/L。结论碳糊电极可有效消除样品中其他组分对异鼠李素测定的干扰,可用于实际样品的测定。 【关键词】鼠李素位测定法电极 异鼠李素(isorhamnetin)是一种多羟基黄酮类化合物,为一些中草药的有效成分,具有较好的抗心肌缺氧、缺血、缓解心绞痛、抗心律失常、抗氧自由基、降低血清胆固醇等多种心血管效应[1?2]。近20年来只有少量种类的黄酮类化合物的电化学性质被研究和应用[3]。多羟基黄酮类在电分析领域的应用已经引起关注[4]。碳糊电极具有电位范围宽、制备方便、价格低廉等特点,在伏安法中得到广泛应用[5]。笔者研究在碳糊电极上伏安法直接测定异鼠李素的方法,探讨该化合物在碳糊电极上的伏安性质和电极反应机制,采用差示脉冲伏安法测定心达康片中黄酮的总含量。 1材料与方法 1.1材料 1.1.1仪器电化学分析仪(CHI660B,上海辰华仪器公司);采用三电极体系,工作电极为碳糊电极,对电极为铂丝电极,参比电极为Ag?AgCl电极;精密酸度计(pHS?3B型,上海雷磁仪器厂);医用数控超声波清洗器(KQ?250DE型,昆山市超声仪器有限公司);搅拌器(JB?1型,上海雷磁新泾仪器有限公司);电子分析天平(BS110S型,德国Sartorius公司)。 1.1.2试剂异鼠李素标准品(中国药品生物制品检定所),用无水乙醇配制成1.0×10-3 mol/L储备液,避光保存;磷酸缓冲液(PBS):由50 mmol/L NaH2PO4?Na2HPO4和20 mmol/L NaCl配制,用50 mmol/L H3PO4和NaOH溶液调至pH 2,3,4,5,6,7.4。所用试剂均为分析纯,实验用水为二蒸水。心达康片样品(四川雅达药业股份有限公司,批号:050503),总黄酮标示量每片 5 mg。 1.2方法 1.2.1制备碳糊电极参照文献[6],取石墨粉3 g于研钵中,按3∶1(g/g)比例加入液体石蜡,搅拌均匀,调成糊状,填入直径3 mm的聚四氟乙烯管中,充分压紧,另一端用铜棒引出。电极表面在称量纸上抛光,用蒸馏水淋洗,将电极置于

相关文档
最新文档