材料力学中的组合变形

材料力学中的组合变形
材料力学中的组合变形

材料力学中的组合变形

过程转备与控制工程梁艳辉201005050219

摘要:材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。而组合变形在生活中普遍存在,基本上一些简单的单一变形在我们身边很少见,都是以组合变形的的形式出现,所以讨论组合变形具有重要意义。

关键字:组合变形,线弹性,载荷,应力,内力,静力等效原则,强度理论,失效形式通过一个学期的学习,对材料力学有了一个基本的理解。整个材料力学主要讨论了各种变形以及如何对各种变形进行强度校核,刚度校核以及稳定性校核。那么材料力学中主要有哪些变形呢?主要分为单一变形和组合变形,单一变形包括:杆的拉伸和压缩变形,杆的扭转变形,杆的弯曲变形和剪切变形。而组合变形包括:弯扭组合变形,拉扭组合变心,以及拉弯扭组合变形等。下面主要来简单的谈一谈我对组合变形的理解。

一.生活中的实例

在工程实际中,杆件的受力变形的情况种类很多,又不少构件同时发生两种或两种以上的基本变形,生活中常见的机械设备的传动轴:传动轮上作用力的既有扭转变形又有弯曲变形。常见的钻杆:钻杆受扭距的作用,同时钻杆的自重沿钻杆的轴向作用,所以钻杆的变形既有轴向的拉伸变形又有扭转变形。这样的例子在生活中还有很多。

二.如何解决组合变形

在线弹性,小形变的条件下,构件的内力,应力和变形均与外力成线性关系。可以认为载荷的作用是独立的,每一个载荷所引起内力,应力,变形都不受其他载荷的影响。几个载荷的同时作用在杆件上所产生的应力,变形,等于各个载荷单独作用时产生的应力,变形之

和,此即为叠加原理。当杆件在复杂载荷作用下同时发生几中基本变形的时候,根据静力等效原则,现将外力进行分解,简化,分组,使简化后的每一组载荷只对应一种基本变形,再分别计算每一中基本变形下产生的应力,内力和变形,然后将所得的结果相加,便可得到组合变形时尚内力,应力和变形,其结果与个力的加载次序无关。当构件的危险点处于单向应力状态的时候,可以将应力代数相加:如果构件的危险点处于复杂应力状态下,则需要按照强度静力等效原则理论进行计算。

三.组合变形的失效形式

常见的失效形式有变形失效断裂失效表面损伤失效及材料老化失效等。弹性变形失效:一些细长的轴、杆件或薄壁筒零部件,在外力作用下将发生弹性变形,如果弹性变形过量,会使零部件失去有效工作能力。例如镗床的镗杆,如果工作中产生过量弹性变形,不仅会使镗床产生振动,造成零部件加工精度下降,而且还会使轴与轴承的配合不良,甚至会引起弯曲塑性变形或断裂。引起弹性变形失效的原因,主要是零部件的刚度不足。因此,要预防弹性变形失效,应选用弹性摸量大的材料。塑性变形失效:零部件承受的静载荷超过材料的屈服强度时,将产生塑性变形。塑性变形会造成零部件间相对位置变化,致使整个机械运转不良而失效。例如压力容器上的紧固螺栓,如果拧得过紧,或因过载引起螺栓塑性伸长,便会降低预紧力,致使配合面松动,导致螺栓失效。

断裂失效是零部件失效的主要形式,按断裂原因可分为以下几种:韧性断裂失效:材料在断裂之前所发生的宏观塑性变形或所吸收的能量较大的断裂称为韧性断裂。工程上使用的金属材料的韧性断口多呈韧窝状。脆性断裂失效:材料在断裂之前没有塑性变形或塑性变形很小(<2~5%)的断裂称为脆性断裂。疲劳断裂、应力腐蚀断裂、腐蚀疲劳断裂和蠕变断裂等均属于脆性断裂。疲劳断裂失效:零部件在交变应力作用下,在比屈服应力低很多的应力下发生的突然脆断,称为疲劳断裂。由于疲劳断裂是在低应力、无先兆情况下发生的,因而具有很大的危险性和破坏性。据统计,80%以上的断裂失效属于疲劳断裂。疲劳断裂最明显的特征是断口上的疲劳裂纹扩展区比较平滑,并通常存在疲劳休止线或疲劳纹疲劳断裂的断裂源多发生在零部件表面的缺陷或应力集中部位。提高零部件表面加工质量,减少应力集中,对材料表面进行表面强化处理,都可以有效地提高疲劳断裂抗力。

以上所述就是我对组合变形的基本理解。

弯扭组合变形实验报告

薄壁圆管弯扭组合变形应变测定实验 一.实验目的 1.用电测法测定平面应力状态下主应力的大小及方向; 2.测定薄壁圆管在弯扭组合变形作用下,分别由弯矩、剪力和扭矩所引起的 应力。 二.实验仪器和设备 1.弯扭组合实验装置; 2.YJ-4501A/SZ 静态数字电阻应变仪。 三.实验原理 薄壁圆管受力简图如图1所示。薄壁圆管在P 力作用下产生弯扭组合变形。 薄壁圆管材料为铝合金,其弹性模量E 为72 2m GN , 泊松比μ为0.33。薄壁圆管截 图1 面尺寸、如图2所示。由材料力学分析可知,该截面上的内力有弯矩、剪力和扭矩。Ⅰ-Ⅰ截面现有A 、B 、C 、D 四个测点,其应力状态如图3所示。每点处已按 –450、00、+450方向粘贴一枚三轴450应变花,如图4所示。 图2 图3 图4 四.实验内容及方法 1. 指定点的主应力大小和方向的测定 薄壁圆管A 、B 、C 、D 四个测点,其表面都处于平面应力状态,用应变花测出三个方向的线应变, 然后运用应变-应力换算关系求出主应力的大小和方向。若测得应变ε-45、ε0、ε45 ,则主应力大小的计算公式为 ()()()?? ? ???-+--±++-=--24502 0454******* 1211εεεεμεεμ μσσE

主应力方向计算公式为 ()()04545045 452εεεεεεα----= --tg 或 ()45 450454522εεεεεα+---=--tg 2. 弯矩、剪力、扭矩所分别引起的应力的测定 a. 弯矩M 引起的正应力的测定 只需用B 、D 两测点00方向的应变片组成图5(a )所示半桥线路,就可测得弯矩M 引的正应变 2 Md M εε= 然后由虎克定律可求得弯矩M 引起的正应力 2 Md M M E E εεσ= = b. 扭矩M n 引起的剪应力的测定 图5 用A 、C 两被测点-450、450方向的应变片组成图5(b )所示全桥线路,可 测得扭矩M n 在450方向所引起的线应变 4 nd n εε= 由广义虎克定律可求得剪力M n 引起的剪应力 ()214nd nd n G E εμετ=+= c. 剪力Q 引起的剪应力的测定 用A 、C 两被测点-450、450方向的应变片组成图5(c )所示全桥线路,可测得剪力Q 在450方向所引起的线应变 4 Qd Q εε= 由广义虎克定律可求得剪力Q 引起的剪应力 () 2 14Qd Qd Q G E εμετ=+= 五.实验步骤 1. 接通测力仪电源,将测力仪开关置开。 2. 将薄壁圆管上A 、B 、C 、D 各点的应变片按单臂(多点)半桥测量接线方法接至应变仪测量通道上。 3. 预加50N 初始载荷,将应变仪各测量通道置零;分级加载,每级100N ,加至450N ,记录各级载荷作用下应变片的读数应变,然后卸去载荷。 4. 按图5各种组桥方式,从复实验步骤3,分别完成弯矩、扭矩、剪力所引起应变的测定。 六.实验数据及结果处理

材料力学习题组合变形

组合变形 基 本 概 念 题 一、选择题 1. 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到 形心的距离e 和中性轴到形心距离d 之间的关系是( )。 A .e = d B .e >d C .e 越小,d 越大 D .e 越大,d 越小 2.三种受压杆件如图所示,设 杆1、杆2和杆3中的最大压应力(绝 对值)分别用1max σ、2max σ、 3max σ表示,则( )。 A .1max σ=2max σ=3max σ B .1max σ>2max σ=3max σ C .2max σ>1max σ=3max σ D .2max σ<1max σ=3max σ 题2图 3.在图示杆件中,最大压应力发生在截面上的( )。 A .A 点 B .B 点 C .C 点 D .D 点 题3图 题4图 4. 铸铁杆件受力如图4所示,危险点的位置是( )。 A .①点 B .②点 C .⑧点 D .④点 5. 图示正方形截面直柱,受纵向力P 的压缩作用。则当P 力作用点由A 点移至B 点时柱内最大压应力的比值()max A σ﹕()max B σ为( )。 A .1﹕2 B .2﹕5 C .4﹕7 D .5﹕2 6. 图示矩形截面偏心受压杆件发生的变形为( )。 A .轴向压缩和平面弯曲组合 B .轴向压缩,平面弯曲和扭转组合 C .轴向压缩,斜弯曲和扭转组合 D .轴向压缩和斜弯曲组合 -41-

题5图 题6图 7. 图所示悬臂梁的横截面为等边角钢,外力P 垂直于梁轴,其作用线与形心轴 y 垂直,那么该梁所发生的变形是( )。 A .平面弯曲 B .扭转和斜弯曲 C .斜弯曲 D .两个相互垂直平面(xoy 平面和xoz 平面)内的平面弯曲 题7图 8. 图示正方形截面杆受弯扭组合变形,在进行强度计算时,其任一截面的危 险点位置有四种答案,正确的是( )。 A .截面形心 B .竖边中点A 点 C .横边中点B 点 D .横截面的角点D 点 题8图 题9图 9. 图示正方形截面钢杆,受弯扭组合作用,若已知危险截面上弯矩为M ,扭 矩为T ,截面上A 点具有最大弯曲正应力σ和最大剪应力τ,其抗弯截面模量为W 。关于A 点的强度条件是( )。 A .σ≤[σ],τ≤[τ] B .W T M 2122)(+≤[σ] C .W T M 2122)75.0(+≤[σ] D .2122)3(τσ+≤[σ] 10. 折杆危险截面上危险点的应力状态是图中的( )。 -42-

材料力学中的组合变形

材料力学中的组合变形 过程转备与控制工程梁艳辉201005050219 摘要:材料力学是研究材料在各种外力作用下产生的应变、应力、强度、刚度、稳定和导致各种材料破坏的极限。材料力学是所有工科学生必修的学科,是设计工业设施必须掌握的知识。而组合变形在生活中普遍存在,基本上一些简单的单一变形在我们身边很少见,都是以组合变形的的形式出现,所以讨论组合变形具有重要意义。 关键字:组合变形,线弹性,载荷,应力,内力,静力等效原则,强度理论,失效形式通过一个学期的学习,对材料力学有了一个基本的理解。整个材料力学主要讨论了各种变形以及如何对各种变形进行强度校核,刚度校核以及稳定性校核。那么材料力学中主要有哪些变形呢?主要分为单一变形和组合变形,单一变形包括:杆的拉伸和压缩变形,杆的扭转变形,杆的弯曲变形和剪切变形。而组合变形包括:弯扭组合变形,拉扭组合变心,以及拉弯扭组合变形等。下面主要来简单的谈一谈我对组合变形的理解。 一.生活中的实例 在工程实际中,杆件的受力变形的情况种类很多,又不少构件同时发生两种或两种以上的基本变形,生活中常见的机械设备的传动轴:传动轮上作用力的既有扭转变形又有弯曲变形。常见的钻杆:钻杆受扭距的作用,同时钻杆的自重沿钻杆的轴向作用,所以钻杆的变形既有轴向的拉伸变形又有扭转变形。这样的例子在生活中还有很多。 二.如何解决组合变形 在线弹性,小形变的条件下,构件的内力,应力和变形均与外力成线性关系。可以认为载荷的作用是独立的,每一个载荷所引起内力,应力,变形都不受其他载荷的影响。几个载荷的同时作用在杆件上所产生的应力,变形,等于各个载荷单独作用时产生的应力,变形之

实验一----弯扭组合变形

实验一----弯扭组合变形

弯扭组合变形的实验报告 力学-938小组 一.实验目的 1.测定薄壁圆管表面上一点的主应力; 2.验证弯扭组合变形理论公式; 3.掌握电阻应变片花的使用。 二.实验设备和仪表 1.静态数字电阻应变仪; 2.弯扭组合试验台。 三.实验原理与分析 1.实验计算简图如下所示: 在D点作用一外力,通过BD杆作用在C点,同时产生 弯矩和扭矩; 2.应变测量常常采用电阻应变花,把几个敏感栅制作成特殊夹角 形式,组合在同一基片上。本实验采用45o直角应变花,在A,B,C,D四点(这四点分别布置在圆管正前方、正上方、正后

方,正下方)上各贴一片,分别沿-45o ,0o ,45o 方向,如图所示。测量并记录每一点三个方向的应变值-45εo 、0εo 、45εo 。 正上方和正下方(B 、D 点)处于弯扭组合情况下,同时作 用有弯曲正应力和扭转切应力,其中弯曲正应力上端受拉,下端受压,而前方和后方由于弯矩作用产生的切应力远远小于扭转产生的切应力,所以可以忽略不计,这样,在前后位置只受扭转剪应力。 3. 理论应变的计算公式及简单推导 弯曲正应力计算公式:()4432 z M PLD W D d σπ= = -; (1) 扭转剪应力计算公式:()44 16 n p M PaD W D d τπ== -; (2) 根据(1)(2)式可计算出理论上作用在每点的应力值。 由应力状态理论分析可知,薄壁圆管表面上各点均处于平面应力状态。若在被测位置x,y 平面内,沿x,y 方向的线应变

为,x y εε,剪应变为x y γ ,根据应变分析可知,该点任一方向 α的线应变计算公式为: 1 cos 2sin 22 2 2 x y x y xy αεεεεεαγα+-= + - (3) 将α分别用-45o ,0o ,45o 代替,可得到x,y 方向的应变方程 组: 0454504545x y xy εεεεεεγεε--?=? =+-?? =-?o o o o o o (4) 由此,可得到解出每点-45εo 、0εo 、45εo 值的公式: 0454522 x x y xy x y xy εεεεγεεεγε-? =?? +-? =?? ++?=??o o o (5) 另外,根据2中的分析,利用材料力学相关公式,可得,x y εε, x y γ的理论计算公式为: ()21x y x xy E G E σεεμεμττγ?= ??? =-?? +?==?? (6) 这样,将(1)(2)(6)式代入到(5)式中,即可求解每点 -45εo 、0εo 、45εo 的理论值。 4. 将计算得到的理论值直接与测试仪上显示的数据进行对比,分析 误差。 四. 实验步骤

《材料力学》第8章-组合变形及连接部分的计算-习题解

第八章 组合变形及连接部分的计算 习题解 [习题8-1] 14号工字钢悬臂梁受力情况如图所示。已知m l 8.0=,kN F 5.21=, kN F 0.12=,试求危险截面上的最大正应力。 解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因钢材的拉压 性能相同,故只计算最大拉应力: 式中,z W ,y W 由14号工字钢,查型钢表得到3 102cm W z =,3 1.16cm W y =。故 MPa Pa m m N m m N 1.79101.79101.168.0100.11010228.0105.2363 63363max =?=???+?????=--σ [习题8-2] 受集度为 q 的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为 030=α,如图所示。已知该梁材料的弹性模量 GPa E 10=;梁的尺寸为 m l 4=,mm h 160=,mm b 120=;许用应力MPa 12][=σ;许用挠度150/][l w =。试校核梁的强度和刚度。

解:(1)强度校核 )/(732.1866.0230cos 0m kN q q y =?== (正y 方向↓) )/(15.0230sin 0m kN q q z =?== (负z 方向←) )(464.34732.181 8122m kN l q M y zmaz ?=??== 出现在跨中截面 )(24181 8122m kN l q M z ymaz ?=??== 出现在跨中截面 )(51200016012061 61322mm bh W z =??== )(3840001201606 1 61322mm hb W y =??== 最大拉应力出现在左下角点上: y y z z W M W M max max max + = σ MPa mm mm N mm mm N 974.1138400010251200010464.33 636max =??+??=σ 因为 MPa 974.11max =σ,MPa 12][=σ,即:][max σσ< 所以 满足正应力强度条件,即不会拉断或压断,亦即强度上是安全的。 (2)刚度校核 =

(完整版)材料力学期末复习试题库(你值得看看)

第一章 一、选择题 1、均匀性假设认为.材料内部各点的是相同的。 A:应力 B:应变 C:位移 D:力学性质 2、各向同性认为.材料沿各个方向具有相同的。 A:力学性质 B:外力 C:变形 D:位移 3、在下列四种材料中. 不可以应用各向同性假设。 A:铸钢 B:玻璃 C:松木 D:铸铁 4、根据小变形条件.可以认为: A:构件不变形 B:构件不破坏 C:构件仅发生弹性变形 D:构件的变形远小于原始尺寸 5、外力包括: A:集中力和均布力 B:静载荷和动载荷 C:所有作用在物体外部的力 D:载荷与支反力 6、在下列说法中.正确的是。 A:内力随外力的增大而增大; B:内力与外力无关; C:内力的单位是N或KN; D:内力沿杆轴是不变的; 7、静定杆件的内力与其所在的截面的有关。 A:形状;B:大小;C:材料;D:位置 8、在任意截面的任意点处.正应力σ与切应力τ的夹角α=。 A:α=90O; B:α=45O; C:α=0O;D:α为任意角。 9、图示中的杆件在力偶M的作用下.BC段上。 A:有变形、无位移; B:有位移、无变形; C:既有位移、又有变形;D:既无变形、也无位移; 10、用截面法求内力时.是对建立平衡方程而求解的。 A:截面左段 B:截面右段 C:左段或右段 D:整个杆件 11、构件的强度是指.刚度是指.稳定性是指。 A:在外力作用下抵抗变形的能力; B:在外力作用下保持其原有平衡态的能力; C:在外力的作用下构件抵抗破坏的能力; 答案:1、D 2、A 3、C 4、D 5、D 6、A 7、D 8、A 9、B 10、C 11、C、B、A 二、填空 1、在材料力学中.对变形固体作了 . . 三个基本假设.并且是在 . 范围内研究的。 答案:均匀、连续、各向同性;线弹性、小变形 2、材料力学课程主要研究内容是:。 答案:构件的强度、刚度、稳定性;

材料力学第8章组合变形

第8章 组合变形 。 8.1 组合变形的概念 前面几章我们研究了等直杆的拉伸(压缩)、剪切、扭转和弯曲这四种基本变形时的强度和刚度问题。但在工程实际中,还会遇到许多上述两种或两种以上的基本变形所组合成的变形,这种变形称为组合变形。例如,如图8-1所示钻床的立柱在P 作用下将发生拉伸和弯曲变形;如图8-2所示的带轮轴,力T 及轴承反力使其弯曲,而力偶矩0m 和1m 使轴扭转,带轮轴的变形是弯曲与扭转的组合变形。 图8-1 图8-2 构件组合变形时的强度计算,在构件变形较小且服从胡克定律的条件下,可运用叠加原理,首先将作用在构件上的外力进行适当的简化,然后通过平移或分解,使每一组外力只产生一种基本变形,分别计算出各种基本变形引起的应力,最后将它们叠加起来,便得到原有载荷作用下截面上的应力,并进行强度计算。 下面介绍工程中最常见的弯拉(压)和弯扭两种组合变形的强度计算。 8.2 弯曲与拉伸(压缩)组合变形时的强度计算 如图8-3(a)为一左端固定而右端自由的矩形截面悬臂梁,在其自由端作用一力P ,力P 的位于梁的纵向对称面内且与梁的轴线成一夹角α(见),力P 沿x 、y 方向可分解为两个分力x P 、y P (见图8-3(b )), x P 使梁产生轴拉伸变形,y P 使梁产生弯曲变形,因此梁在力P 的作用下的变形为拉伸与弯曲组合变形。下面对其进行强度计算。

图8-3 如图8-3(b )所示,将力沿杆的轴线和轴线的垂直方向分解为两个分力。 αcos P P x = αsin P P y = 在轴向力x P 的单独作用下,杆件发生拉伸变形,杆上各截面的轴力都相等,αcos P P N x ==,与轴力N 相对应的拉伸正应力N σ呈均匀分布,如图8-3(f )即 A N N = σ 在横向力y P 的单独作用下,杆发生弯曲变形。杆上固定端截面具有最大弯矩 αsin max Pl l P M y ==,与弯矩max M 相对应的弯曲正应力W σ沿截面高度呈线性分布,在上、下边 缘处绝对值最大,如图8-3(g )即 z W W M max = σ 由于上述两种应力都是正应力,故可按代数和进行叠加。当N W σσ>时,其应力分布如图8-3(e ) 所示。 危险截面的上、下边缘的正应力分别为 z W M A N max max += σ z W M A N max min -=σ 由上可见,危险截面上边缘各点的拉应力最大,是危险点。对于塑性材料,因许用拉应力和许用压应力相同。故可建立强度条件 []σσ≤+= W M A N max max (8-1) 对于脆性材料,因其许拉应力 []拉 σ和许用压应力[]压 σ不同,故应分别建立强度条件

材料力学组合变形习题概要

L 1AL101ADB (3) 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点 到形心之距离e和中性轴到形心距离d之间的关系有四种答案: (A ) e=d; (B ) e>d; (C ) e越小,d越大; (D ) e越大,d越小。 正确答案是______。 答案(C ) 1BL102ADB (3) 三种受压杆件如图。设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,现有下列四种答案: (A )max1σ=max 2σ=max3σ; (B )max1σ>max 2σ=max3σ; (C )max 2σ>max1σ=max3σ; (D )max 2σ<max1σ=max3σ。 正确答案是______。 答案(C ) 1BL103ADD (1) 在图示杆件中,最大压应力发生在截面上的哪一点,现有四种答案: (A )A点; (B )B点; (C )C点; (D )D点。 正确答案是______。 答案(C )

1AL104ADC (2) 一空心立柱,横截面外边界为正方形, 内边界为等边三角形(二图形形心重 合)。当立柱受沿图示a-a线的压力时,此立柱变形形态有四种答案: (A )斜弯曲与中心压缩组合; (B )平面弯曲与中心压缩组合; (C )斜弯曲; (D )平面弯曲。 正确答案是______。 答案(B ) 1BL105ADC (2) 铸铁构件受力如图所示,其危险点的位置有四种答案: (A )①点; (B )②点; (C )③点; (D )④点。 正确答案是______。 答案(D ) 1BL106ADC (2) 图示矩形截面拉杆中间开一深度为h/2的缺口,与不开口的拉杆相比,开口处 的最大应力的增大倍数有四种答案: (A )2倍; (B )4倍; (C )8倍; (D )16倍。 正确答案是______。 答案(C ) 1BL107ADB (3) 三种受压杆件如图,设杆1、杆2和杆3中的最大压应力(绝对值)分别用 max1σ、max 2σ和max3σ表示,它们之间的关系有四种答案:

《材料力学》第8章 组合变形及连接部分的计算 习题解

《材料力学》第8章组合变形及连接部分的计算习题解第八章组合变形及连接部分的计算习题解 [习题8-1] 14号工字钢悬臂梁受力情况如图所示。已知,F,2.5kN, l,0.8m1F,1.0kN,试求危险截面上的最大正应力。 2 解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因钢材的拉压 性能相同,故只计算最大拉应力: 33WW,102cmW式中,,由14号工字钢,查型钢表得到,。故 W,16.1cmyzzy 333,2.5,10N,0.8m1.0,10N,0.8m6,,,,79.1,10Pa,79.1MPa max,,63632,102,10m16.1,10m [习题8-2] 受集度为的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称q 0面间的夹角为,如图所示。已知该梁材料的弹性模量;梁的尺寸 为 ,,30E,10GPa [,],12MPa[w],l/150,,;许用应力;许用挠度。l,4mh,160mmb,120mm 试校核梁的强度和刚度。

1 解:(1)强度校核 0 (正y方向?) q,qcos30,2,0.866,1.732(kN/m)y 0q,qsin30,2,0.5,1(kN/m) (负z方向?) z 1122 出现在跨中截面 M,ql,,1.732,4,3.464(kN,m)zmazy88 1122 出现在跨中截面 M,ql,,1,4,2(kN,m)ymazz88 11223 W,bh,,120,160,512000(mm)z66 11223 W,hb,,160,120,384000(mm)y66 最大拉应力出现在左下角点上: MMymaxzmax ,,,maxWWzy 663.464,10N,mm2,10N,mm,,,,11.974MPa max33512000mm384000mm ,,11.974MPa,,[,]因为,,即: [,],12MPa maxmax 所以满足正应力强度条件,即不会拉断或压断,亦即强度上是安全的。 (2)刚度校核 = 2

材料力学习题解答(组合变形)

材料力学习题解答(组合变形)

9.3. 图示起重架的最大起吊重量(包括行走小车 等)为P =40 kN ,横梁AC 由两根No18槽钢组成,材料为Q235钢,许用应力 [ ]=120MPa 。试校核梁的强度。 解:(1) 受力分析 当小车行走至横梁中间时最危险,此时梁AC 的受力为 由平衡方程求得 No18×

注:对塑性材料,最大应力超出许用应力在5%以内是允许的。 9.5. 单臂液压机架及其立柱的横截面尺寸如图 所示。P =1600 kN ,材料的许用应力[σ]=160 MPa 。试校核立柱的强度。 解:(1) 计算截面几何性 ()()2 12 2212 1.40.86 1.204 1.40.050.0160.8620.016 1.105 0.099 ABCD abcd A A m A A m A A A m ==?===--?-?==-= 截面形心坐标 1122 1.40.050.0161.2040.7 1.1050.0520.51 0.099c c c A y A y y A m +=--???+?+ ???== 截面对形心轴的惯性矩 I 截面I-I

()()()234324 4 10.86 1.40.70.51 1.2040.24 1210.8620.016 1.40.050.01612 1.40.050.0160.050.51 1.1050.211 20.240.2110.029 I zc II zc I II zc zc zc I m I m I I I m = ??+-?==?-??----??++-?= ??? =-=-= (2) 内力分析 截开立柱横截面I-I ,取上半部分 由静力平衡方程可得 ()1600 0.92256c N P kN M P y kNm ===?+= 所以立柱发生压弯变形。 (3) 最大正应力发生在立柱左侧 []33max 2256100.511600100.0290.099 39.6716.1655.83 160C t zc My N I A MPa MPa σσ???=+=+=+==p 力柱满足强度要求。 9.6. 图示钻床的立柱为铸铁制成,P =15 kN ,许 用拉应力为[σt ]=35 MPa 。试确定立柱所需I N P 900 M y

材料力学习题解答(组合变形)

9.3. 图示起重架的最大起吊重量(包括行走小车等)为P =40 kN ,横梁AC 由两根No18槽 钢组成,材料为Q235钢,许用应力[σ]=120MPa 。试校核梁的强度。 解:(1) 受力分析 当小车行走至横梁中间时最危险,此时梁AC 的受力为 由平衡方程求得 0 sin 30 3.5 1.750 400 cos300 cos3034.641 0 3.5 1.750 202 o C A A o o C A C A A C C M S P S P kN X X S X S kN M Y P Y P kN =?-?====-====-?+?== =∑∑∑ (2) 作梁的弯矩图和轴力图 此时横梁发生压弯组合变形,D 截面为危险截面, max 34.64 35 .N kN M kN m == (3) 由型钢表查得 No.18工字钢 23299.29 152cm A cm W y == (4) 强度校核 33max max max 4634.6410351022229.299102152105.9115.1121 1.05[] c y M N A W MPa σσσ--??==+=+ ????=+= 故梁AC 满足强度要求。 x

注:对塑性材料,最大应力超出许用应力在5%以内是允许的。 9.5. 单臂液压机架及其立柱的横截面尺寸如图所示。P =1600 kN ,材料的许用应力[σ]=160 MPa 。试校核立柱的强度。 解:(1) 计算截面几何性 ()()2 1222 12 1.40.86 1.204 1.40.050.0160.8620.016 1.105 0.099 ABCD abcd A A m A A m A A A m ==?===--?-?==-= 截面形心坐标 1122 1.40.050.0161.2040.7 1.1050.0520.51 0.099 c c c A y A y y A m += --? ??+?+ ? ??= = 截面对形心轴的惯性矩 ()()()2 3432 4 4 10.86 1.40.70.51 1.2040.24 1210.8620.016 1.40.050.01612 1.40.050.0160.050.51 1.1050.211 20.240.2110.029 I zc II zc I II zc zc zc I m I m I I I m =??+-?==?-??----??++-?= ???=-=-= (2) 内力分析 截开立柱横截面I-I ,取上半部分 由静力平衡方程可得 I 截面I-I

材料力学:ch10 组合变形

第十章 组合变形 10-2 图a 所示板件,b =20mm ,δ=5mm ,载荷F = 12 kN ,许用应力[σ] = 100 MPa , 试求板边切口的允许深度x 。 题10-2图 解:在切口处切取左半段为研究对象(图b ),该处横截面上的轴力与弯矩分别为 F F =N (a) )(a b F M ?=显然, 222x b x b a ?=?= (b) 将式(b)代入式(a),得 2 Fx M = 切口段处于弯拉组合受力状态,该处横截面上的最大拉应力为 2 2N max 432(2a)6 22a Fx a F Fx a F W M A F δδδδσ+=+=+= 根据强度要求,在极限情况下, ][4322 σδδ=+a Fx a F 将式(b)与相关数据代入上式,得 01039.61277.042=×+??x x 由此得切口的允许深度为 mm 20.5=x 10-3 图示矩形截面钢杆,用应变片测得上、下表面的纵向正应变分别为=1.0×10 a ε-3 与=0.4×10b ε-3,材料的弹性模量E =210GPa 。试绘横截面上的正应力分布图,并求拉力F 及其偏心距e 的数值。

题10-3图 解:1.求和 a σ b σ截面的上、下边缘处均处于单向受力状态,故有 MPa 84Pa 104.010210 MPa 210Pa 100.1102103 9 39=×××===×××==??b b a a E εσE εσ偏心拉伸问题,正应力沿截面高度线性变化,据此即可绘出横截面上的正应力分布图,如图10-3所示。 图10-3 2.求和 F e 将F 平移至杆轴线,得 Fe M F F ==,N 于是有 a z a E εW Fe A F σ=+= E εW Fe A F σz b =?= 代入相关数据后,上述方程分别成为 26250240=+Fe F 10500240=?Fe F 经联立求解,于是得 mm 786.1m 10786.1kN 38.18N 183753=×=≈=?e F ,10-6 图示直径为d 的圆截面铸铁杆,承受偏心距为e 的载荷F 作用。试证明:当8 /d e ≤面上不存在拉应力,即截面核心为R = d/8的圆形区域。 时,横截 题10-6图 证明:此为偏心压缩问题。载荷偏心产生的弯矩为 Fe M =

材料力学B试题8组合变形

组合变形 1. 偏心压缩杆,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到形心的距离e 和中性轴到形心的距离d 之间的关系有四种答案: (A) d e =; (B) d e >; (C) e 越小,d 越大; (D) e 越大,d 越大。 答:C 2. 三种受压杆件如图所示,杆1 力(绝对值)分别为1m ax σ、2m ax σ和(A)3max 2max 1max σσσ==; (B)3max 2max 1max σσσ=>; (C)3max 1max 2max σσσ=>; (D)3max 1max σσσ=

(D)平面弯曲。 答:B 4. 点的位置有四种答案: (A) A 点; (B) B (C) C 点; (D) D 点。 答:C 5. 图示矩形截面拉杆,中间开有深度为2 h 的缺口,与不开口 (A) 2倍; (B) 4倍; (C) 8倍; (D) 16倍。 答:C 6. 三种受压杆件如图所示,杆1、杆2与杆3中的最大压应 力(绝对值)分别为1m ax σ、σ3 (A)max32max 1max σσσ<<; (B)3max 2max max1σσσ=<; (C)2max max3max1σσσ<<; (D)2max 3max 1max σσσ<=。 答:C

7. 正方形等截面立柱,受纵向压力F 作用。当力F 作用点由A 移至B 时,柱内最大压应力的比值 max max B A σσ有四种答案: (A) 1:2; (B) 2:5; (C) 4:7; (D) 5:2。 答:C 8. 图示矩形截面偏心受压杆,其变形有下列四种答案:(A) 轴向压缩和平面弯曲的组合; (B)轴向压缩、平面弯曲和扭转的组合; (C)缩和斜弯曲的组合; (D)轴向压缩、斜弯曲和扭转的组合。 答:C 9. 矩形截面梁的高度mm 100=h ,跨度m 1=l 。梁中点承受集中力F ,两端受力kN 301=F ,三力均作用在纵向对称面内, mm 40=a 3 5 。试求F 值。 解:偏心距mm 102=-=a h e 跨中截面轴力 1N F F = 跨中截面弯矩e F Fl M 1max 4 -=(正弯矩),或 4 1max Fl e F M -=(负 弯矩)

材料力学期末试卷答案解析

一、一、填空题(每小题5分,共10分) 1、如图,若弹簧在Q作用下的静位移st20 = ? 冲击时的最大动位移 mm d 60 = ? 为:3Q。 2、在其它条件相同的情况下,用内直径为d 实心轴,若要使轴的刚度不变 的外径D。 二、二、选择题(每小题5分,共10分) 1、 置有四种答案: (A)截面形心;(B)竖边中点A (C)横边中点B;(D)横截面的角点 正确答案是:C 2、 足的条件有四种答案: (A) ; z y I I= (A) ; z y I I> (A) ; z y I I< (A)y z λ λ= 。正确答案是: D 三、 1、(15 P=20KN, []σ 解:AB 20000 M n = AB max M= 危险点在A

2、图示矩形截面钢梁,A 端是固定铰支座,B 端为弹簧支承。在该梁的中点C 处受到的重 解:(1)求st δ、max st σ。 将重力P 按静载方式沿铅垂方向加在梁中心C 处,点C 的挠度为st δ、静应力为max st σ, 惯性矩 ) (12016.004.0124 33m bh I ?== 由挠度公式 ) 2(21483K P EI Pl st +=δ得, 8 3339 3 10365.112 )10(104010210488.040---???????= st δ mm m 1001.01032.25240213==???+ mm m 1001.0== 根据弯曲应力公式z st W M =max σ得,其中 4Pl M = , 62bh W z =代入max st σ得, MPa bh Pl st 124 01.004.06 8.0406 42 2max =????== σ (2)动荷因数K d 12160 211211=?+ +=+ +=K st d h δ (3)梁内最大冲击应力 M P a st d d 1441212max =?=K =σσ 3、(10分)图中的1、2杆材料相同,均为园截面压杆,若使两杆在大柔度时的临界应力相等,试求两杆的直径之比d 1/d 2,以及临界力之比21)/()(cr cr P P 。并指出哪根杆的稳定性较好。 解:由 2 22212λπλπσE E cr == 即: 22 221 111i l i l μλμλ===;

材料力学习题解答(组合变形)

9.1. 求图示构件在指定截面上的内力分量。 解:(1) 受力分析,求约束力 1 1 2 2 1 1 2 2 0 420 /20 420 /20 0 /20 0 /2 z C C y C C A C A A C A M Y a P a Y Pa M Z a P a Z P a Y Y Y P Y Pa Z Z Z P Z P a =?-?===?-?===+-===+-==∑∑∑∑ (2) 截开I-I 截面,取左面部分 1 1 2 2 1 2 1 0 /2 0 /20 /20 20 2y I A zI A x I A y yI A z zI A Y Q P Y P Z Q P Z P M T Y a P a M M Z a P a M M Y a P a ==-===-===-?=-==?===?=∑∑∑∑∑ (3) 截开II-II 截面,取右面部分 1 2 1 2 1 0 /20 /2 0 /23/40 /20 /2 yII C II C x xII C y yII C z II C Y Q Y P Z N Z P M M M Y a Pa M M Z a P a M T Y a Pa ========-?===?===-?=-∑∑∑∑∑ 9.2. 人字架承受载荷如图所示。试求I-I 截面上的最大正应力及A 点的正应力。 Y I zI M=P 1a

解:(1) 受力分析,求约束力 125 D B Y Y kN == (2) 截开I-I 截面,取左面部分 ) 4 sin 125100 5 3 cos 1250.3202.5 .5I D I D N Y kN M Y DE kN m αα=-=-? =-=?=??= (3) 截面的几何性质 ()26 12525 2225 175 3 333 84 20.10.20.04 20010050100200200 125 0.04102001002517512525200100 3.08310 33 c y A m z mm I z dz z dz mm -=??=??+??= =?=?+?---=?+?=??? (4) 截面上最大拉应力和最大压应力 () () ()1 max 3 34 0.310010202.5100.30.125117.4 3.083100.04 I c c y M z N I A MPa σ--=- + -???-=- +=-? N I I

实验一_弯扭组合变形

弯扭组合变形的实验报告 力学-938小组 一.实验目的 1.测定薄壁圆管表面上一点的主应力; 2.验证弯扭组合变形理论公式; 3.掌握电阻应变片花的使用。 二.实验设备和仪表 1.静态数字电阻应变仪; 2.弯扭组合试验台。 三.实验原理与分析 1.实验计算简图如下所示: 在D点作用一外力,通过BD杆作用在C点,同时产生弯矩 和扭矩; 2.应变测量常常采用电阻应变花,把几个敏感栅制作成特 殊夹角形式,组合在同一基片上。本实验采用45o直角应变 花,在A,B,C,D四点(这四点分别布置在圆管正前方、

正上方、正后方,正下方)上各贴一片,分别沿-45o ,0o ,45o 方向,如图所示。测量并记录每一点三个方向的应变值-45εo 、 0εo 、45εo 。 正上方和正下方(B 、D 点)处于弯扭组合情况下,同时作 用有弯曲正应力和扭转切应力,其中弯曲正应力上端受拉,下端受压,而前方和后方由于弯矩作用产生的切应力远远小于扭转产生的切应力,所以可以忽略不计,这样,在前后位置只受扭转剪应力。 3. 理论应变的计算公式及简单推导 弯曲正应力计算公式:()44 32 z M PLD W D d σπ= = -; (1) 扭转剪应力计算公式:()4416 n p M PaD W D d τπ==-; (2) 根据(1)(2)式可计算出理论上作用在每点的应力值。 由应力状态理论分析可知,薄壁圆管表面上各点均处于 平面

应力状态。若在被测位置x,y 平面,沿x,y 方向的线应变为 ,x y εε,剪应变为x y γ ,根据应变分析可知,该点任一方向α的 线应变计算公式为: 1 cos 2sin 22 2 2 x y x y xy αεεεεεαγα+-= + - (3) 将α分别用-45o ,0o ,45o 代替,可得到x,y 方向的应变方程 组: 0454504545x y xy εεεεεεγεε--?=? =+-?? =-?o o o o o o (4) 由此,可得到解出每点-45εo 、0εo 、45εo 值的公式: 0454522 x x y xy x y xy εεεεγεεεγε-? =?? +-?=?? ++?=??o o o (5) 另外,根据2中的分析,利用材料力学相关公式,可得,x y εε, x y γ的理论计算公式为: ()21x y x xy E G E σεεμεμττγ?= ??? =-?? +?==?? (6) 这样,将(1)(2)(6)式代入到(5)式中,即可求解每点 -45εo 、0εo 、45εo 的理论值。 4. 将计算得到的理论值直接与测试仪上显示的数据进行对比,分析误差。

弯扭组合变形主应力实验

实验五弯扭组合变形主应力实验 一、实验目的 1、用电测法测定平面应力状态下一点的主应力的大小和方向; 2、在弯扭组合作用下,分别测定由弯矩和扭矩产生的应力值; 3、进一步熟悉电阻应变仪的使用,学会全桥法测应变的实验方法。 二、仪器设备 1、弯扭组合变形实验装置; 2、YD-2009型数字式电阻应变仪; 三、试件制备与实验装置 1、试件制备 本实验采用合金铝制薄壁圆管作为测量对象。为了测量圆管的应力大小和方向,在圆管某一截面的管顶B点、管底D点各粘贴了一个45o应变花(如图4-5-1),圆管发生弯扭组合变形后,其应变可通过应变仪测定。 图4-5-1 2、实验装置 如图4-5-1所示,将薄壁圆管一端固定在弯扭组合变形实验装置上,逆时针转动实验架上的加载手轮,通过薄壁圆管另一端的钢丝束施加载荷,使圆管产生变形。从薄壁圆管的内力图4-5-2可以发现:薄壁圆管除承受弯矩M作用之外,还受扭矩T的作用,圆管处于“组合变形”状态,且弯矩M=P?L,扭矩T= P?a

图4-5-2 内力图 图 4-5-3 单元体图

四、实验原理 1、主应力大小和方向的测定 如图4-5-3,若测得圆管管顶B 点的-45o、0o、45o三个方向(产生拉应变方向为45o,产生压应变的方向为-45o,轴向为0o)的线应变为ε -45o 、ε 0o 、ε 45o 。由《材料力学》公式 αγαεεεεεα2sin 2 1 2cos 2 2 xy - + += -y x y x 可得到关于εx 、εy 、γ xy 的线形方程组 ()[]()[] 45 2sin 2 145 2cos 2 2 xy 45-?--?+ += --γ εεεεεy x y x 2 2 0y x y x εεεεε-+ += ()() 452sin 2 1 452cos 22 xy 45?- ?+ += -γεεεεεy x y x 联立求解以上三式得 εx =ε 0o εy =ε -45o +ε45o -ε0o γ xy =ε -45o-ε 45o 则主应变为 εγεεεεε2 xy 22,1222 ??? ??+??? ??±+= -y x y x y xy x εεγα--=02tg 由广义胡克定律 ()212 11μεεμ σ+-E = ()122 21μεεμ σ+-E = 得到圆管的管顶A 点主应力的大小和方向计算公式 ( )() () ()()2 45 02 45 045 452,10 12212-- - -+ ++E ± -E = εε εε μμεεσ 45 4504545022tg -----= εεεεεα 2、弯矩产生的应力大小测定 分析可知,圆管虽为弯扭组合变形,但管顶B 和管底D 两点沿x 轴方向的应变计只能测试因弯矩引起的线应变,且两者等值反向。因此,由上述主应力测试过程得知 ε=εx =ε 0o 实际反映的就是弯矩产生的应变值。据此公式,我们可分离测定弯矩产生的应变大小,假设

相关文档
最新文档