粉末高速工具钢

粉末高速工具钢
粉末高速工具钢

粉末高速工具钢

杨秋

((辽宁工程技术大学材料科学与工程学院阜新123000)

摘要:粉末高速钢是通过特殊方法把高速钢微细粉末成形并烧结而制成的高速钢材产品,简称PM HSS。粉末高速钢具有碳化物颗粒细小、夹杂物含量少、分布均匀等的显微组织特点,使高速钢的抗弯强度、硬度和切削性能得到了显著提高。

关键词:综述;粉末高速钢;研究趋势;进展

1 PM HSS钢种开发

2.1第一代PM HSs

上世纪70年代工业化生产的PM Hss由美国Crucible厂和瑞典Stora厂(现属法国Erasteel公司)相继投产,此为第一代的PM粉末高速工具钢HSS。第一代PM HSS生产者使用1-2 t的中间钢包,其钢材夹杂物含量相当电弧炉+U'钢包精炼钢的水平,但是第一代PMHSS的抗弯强度较普通熔炼高速钢提高了约1倍。

2.2第二代PM HSS

继第一代PM HSS之后,各生产厂对设备和生产工艺进行了改进和更新,谓ESH技术就是带有电渣加热和吹Ar设备的中间钢包系统,2个石墨电极浸入碱性电渣内。电流通过钢水表面的活性渣产生热量,可保证3 h内高速钢钢水雾化过程中温度稳定,又可使钢水脱硫、脱氧。同时自钢包底吹Ar搅拌,使中间钢包钢水温度均匀化,又促进钢水净化反应。采用ESH方法生产的PM HSS称为第二代PMHSS,其产品商标也改为ASP2000系列(如ASP 2030,以前第一代称ASP 30),它比第一代的PM HSS钢材更为纯净,非金属夹杂物含量可减少90%,淬回火后的钢材韧性可提高20%。钢材的质量和性能对化学成分的波动非常敏感,通常要求成分的波动范围愈小愈好。第二代钢较第一代钢达到了更高的技术水平,成分波动范围比第一代缩小近50%。此外,第二代PMHSS ASP 2000系列钢材的纵向与横向抗弯强度相差较小约为22%-32%,而普通熔炼HSS(M2、M42)的相应值达200%以上,并随钢材直径而变化,直径愈大,纵向和横向抗弯强度相差值也愈大。这一点正是大尺寸、高应力刀具使用PM HSS的理由之一。

2.3第三代PM HSS

第三代PM HSS无论是产品质量还是物理化学性能都比前两代PM HSS有很大的提高,它也是目前PM HSS生产厂的主流产品。第三代PM HSS采用最大的8t中间钢包及ESH技术,利用电磁搅拌来替代吹自炉底的微弱心气流进行钢水搅拌,气雾喷粉装置的喷嘴位置也由紧接钢包渗孔的喷雾室顶部,改到了喷雾室顶侧面。这些技术的改革大大提高了PM HSS的性能,简化了工艺,提高了生产效率。

2.4新型PM HSS

近几年,一家日本公司开发出了一种新型粉末冶金高速钢,其硬度可达到70-75 HRC。这种钢于 550-560℃下经多次回火后.在1 170℃的高温下,硬度最低可达到70 HRC。另外,还具有良好的耐磨性。这种钢的化学成分(质量分数)为:铬lO.5%、钨 9.5%、钼6.5%、碳3.3%,其余为Fe。该钢种在刀具和热加工设备方面体现了其特殊用途。

据美刊报道美国Cmeible材料公司研制出一种新的CPM Rex 121含钒钴量较高的粉末冶金高强工具钢,并且已大量面市。据该公司称,这种新型钢的特点是结合了任何一种高速钢的高耐磨性、可达更高标准的硬度和热硬度值。据称,这种钢的热硬性优势就在于其切削速度比其含钴高速钢提高25%-50%。而且在如此高的速度下,具有更大的耐磨性使其仍可保持一种锐利刃口。据报导,碳含量为1.25%-2.30%的粉末高速钢,用氮置换0.4%-0.6%的碳后,韧性提高约3倍,耐热粘性提高2倍,耐磨损性提高1.2倍,用这种材料制成的切削工具比以往产品寿命提高2-3倍。

3 PM HSS制备技术的发展

PM HSS的制备工艺与普通高速钢的制备工艺不同,熔化的钢水不是直接注入铸模,而是利用高压气体(如氮气)或高压水对其进行雾化,雾化后获得的金属液滴迅速冷却为细小的粉末P41(直径小于1mm),称为雾化高速钢粉末,由于钢水溶液中的碳化物在快速冷却过程中来不及沉淀和形成团快,因此获得的粉末中碳化物颗粒细小且分布均匀,将雾化高速钢粉末进行成形和固结便制得PM HSS制品,常见的制备技术有:热等静压技术、冷压烧结技术、喷射成形技术等。

3.1热等静压法

热等静压法(HIP)技术【151生产PM HSs工艺是利用氮气雾化制取高速钢粉末,然后将粉末装入钢包套,经脱气、密封成为粉锭,经热等静压机压实成与粉末成分相同、相对密度接近100%的粉末冶金高速钢锭(材)。其基本工艺流程是:气体雾化法-÷粉末_+配料装套_热等静压_PM Hss。这种生产工艺设备投资大、技术难度高,且热等静压后视最终尺寸

要求进行锻、轧加工,但产品质量好,也是现在最为成熟的工业生产工艺。早在20世纪60年代,美国Crucible公司就开始筹建雾化法制粉和热等静压致密化粉末冶金高速钢的车间,并于1971年投产量1200t。

3.2模压烧结技术

这是一种传统的粉末冶金制品生广方法。该方法采用水雾化法制粉,制得的粉末经筛选分级、还原退火,用冷模压制成形,然后在保护气氛或真空条件下烧结致密化,生产出接近最终形状的粉末冶金高速钢预形坯嗍。其工艺流程是:水雾化法一粉末_+退火_+冷压成形_+烧结_÷PM HSS。水雾化粉末的冷凝速度比气雾化快,颗粒呈不规则形状,故其压坯具有良好的保形能力,但氧含量偏高。这种粉末用冷压成形,经过烧结达到致密化,其技术关键在于粉末的脱氧处理和烧结温度的合理选择及控制。烧结温度低则达不到高的致密度,温度过高又会引起颗粒界熔化过量,碳化物颗粒长大及晶粒粗化,因此适宜的温度范围很窄,难以准确控制明。英国Powdrex公司从事水雾化烧结高速钢的生产至少有20年历史,其专利遍及英、美、德、日的许多生产厂家,德国的Krobsoge公司和印度的BISL公司均采用此工艺。不过,烧结高速钢的品种目前还仅限于AIsL标淮范围内,如M2、M42Si、T15、M42等。3.3喷射成形技术

该技术的基本原理是:采用高压惰性气体将金属液流雾化成细小弥散的熔滴,熔滴在高速气体的作用下冷却成过冷态,将这些过冷熔滴在完全凝固前沉积到具有一定形状的收集器上,通过改变熔滴射流、沉积器的相对位置和沉积器的形状及运动形式可以得到锭(柱)、管(环)、板(带)等各种形状的半成品坯件嗍。其工艺示意图如图1所示。喷射成形工艺具有能制备偏析小、颗粒细小、致密度高的材料,简化工艺,降低成本等的优点。铸造及粉末冶金等工艺是无法比拟的。该工艺在多种合金材料的开发上取得了巨大成功,在钢铁材料应用上也取得了重大突破,研究材料范围日益扩大。

喷射成形的发展大致经历了以下几个阶段:学术思想的提出及工艺的初步成形(1968-1974年);实用合金系统的实验研究(1975-1984年);工艺优化和雾化沉积机理的研究(1984-1992年);雾化技术规模的扩大与产业化(1992-1998年);产业规模和研究材料的进一步扩大拓宽(1998年至今)。

4结束语

从PM HSS的研制进展与研究动向中,可以看出钢种的开发、设备的更新以及工艺的成熟进步是PM HSS进军工具钢领域的资本与支柱。PM HSS工艺技术随着粉末冶金技术日新

月异的发展,将会涌现出一系列新技术、新工艺,如粉末冶金注射成形、热压成形、流动热压成形、高速压制成形、微波烧结、烧结硬化等。PM HSS工艺技术正朝着高致密化、高性能化、集成化和低成本化等方向发展。PM HSS工艺技术在巨大的设备更新投资和科研经费的支持下PM HSS技术在不断发展,促使PM HSS在工具钢领域将占有更大的市场份额。为机械和冶金等行业解决了部分材料难加工或不可加工的屏障,使其有了更广阔的发展空间和更快的发展速度。

参考文献

[1]吴元昌.粉末冶金高速钢生产工艺的发展叨.粉末冶金工业,2007.17(2):30.

[2]刘宇.超硬型高速钢发展动态叨.特殊钢,1993,14(3):17.

[3]吴晓春.粉末冶金的高速钢和冷作模具钢田.国外金属热处理,2000,21(2):17.

[4]曾巍.热等静压高速钢复合轧辊的特点和性能田.江苏冶金,2008。36(4):4—9.

[5]邓玉昆,陈景榕,王世章,等.高速工具钢[M].北京:冶金工业出版社,2002.

[6]黄伯云,易健宏.现代粉末冶金材料和技术发展现状叨.上海金属,2007,29(3):1.

粉末高速工具钢

粉末高速工具钢 杨秋 ((辽宁工程技术大学材料科学与工程学院阜新123000) 摘要:粉末高速钢是通过特殊方法把高速钢微细粉末成形并烧结而制成的高速钢材产品,简称PM HSS。粉末高速钢具有碳化物颗粒细小、夹杂物含量少、分布均匀等的显微组织特点,使高速钢的抗弯强度、硬度和切削性能得到了显著提高。 关键词:综述;粉末高速钢;研究趋势;进展 1 PM HSS钢种开发 2.1第一代PM HSs 上世纪70年代工业化生产的PM Hss由美国Crucible厂和瑞典Stora厂(现属法国Erasteel公司)相继投产,此为第一代的PM粉末高速工具钢HSS。第一代PM HSS生产者使用1-2 t的中间钢包,其钢材夹杂物含量相当电弧炉+U'钢包精炼钢的水平,但是第一代PMHSS的抗弯强度较普通熔炼高速钢提高了约1倍。 2.2第二代PM HSS 继第一代PM HSS之后,各生产厂对设备和生产工艺进行了改进和更新,谓ESH技术就是带有电渣加热和吹Ar设备的中间钢包系统,2个石墨电极浸入碱性电渣内。电流通过钢水表面的活性渣产生热量,可保证3 h内高速钢钢水雾化过程中温度稳定,又可使钢水脱硫、脱氧。同时自钢包底吹Ar搅拌,使中间钢包钢水温度均匀化,又促进钢水净化反应。采用ESH方法生产的PM HSS称为第二代PMHSS,其产品商标也改为ASP2000系列(如ASP 2030,以前第一代称ASP 30),它比第一代的PM HSS钢材更为纯净,非金属夹杂物含量可减少90%,淬回火后的钢材韧性可提高20%。钢材的质量和性能对化学成分的波动非常敏感,通常要求成分的波动范围愈小愈好。第二代钢较第一代钢达到了更高的技术水平,成分波动范围比第一代缩小近50%。此外,第二代PMHSS ASP 2000系列钢材的纵向与横向抗弯强度相差较小约为22%-32%,而普通熔炼HSS(M2、M42)的相应值达200%以上,并随钢材直径而变化,直径愈大,纵向和横向抗弯强度相差值也愈大。这一点正是大尺寸、高应力刀具使用PM HSS的理由之一。 2.3第三代PM HSS

什么是高速钢

高速钢种类详解 简介:高速钢又名风钢或锋钢,意思是淬火时即使在空气中冷却也能硬化,并且很锋利。它是一种成分复杂的合金钢,含有钨、钼、铬、钒等碳化物形成元素。合金元素总量达10~25%左右。它在高速切削产生高热情况下(约500℃)仍能保持高的硬度,HRC能在60以上。这就是高速钢最主要的特性——红硬性。而碳素工具钢经淬火和低温回火后,在室温下虽有很高的硬度,但当温度高于200℃时,硬度便急剧下降,在500℃硬度已降到与退火状态相似的程度,完全丧失了切削金属的能力,这就限制了碳素工具钢制作切削工具用。而高速钢由于红硬性好,弥补了碳素工具钢的致命缺点,可以用来制造切削工具。 高速钢的热处理工:艺较为复杂,必须经过退火、淬火、回火等一系列过程。退火的目的是消除应力,降低硬度,使显微组织均匀,便于淬火。退火温度一般为860~880℃。淬火时由于它的导热性差一般分两阶段进行。先在800~850℃预热(以免引起大的热应力),然后迅速加热到淬火温度1220~1250℃,后油冷。工厂均采用盐炉加热。淬火后因内部组织还保留一部分(约30%)残余奥氏体没有转变成马氏体,影响了高速钢的性能。为使残余奥氏体转变,进一步提高硬度和耐磨性,一般要进行2~3次回火,回火温度560℃,每次保温1小时。 高速钢种类: 有钨系高速钢和钼系高速钢两大类。钨系高速钢有W18Cr4V,钼系高速钢有W6Mo5Cr4V等。规格主要有圆钢和方钢。钢材的表面要加工良好,不得有肉眼可见的裂纹、折叠、结疤和发纹。冷拔钢材表面应洁净、光滑、无夹杂和氧化皮等。 高速钢是一种含多量碳(C)、钨(W)、钼(Mo)、铬(Cr)、钒(V)等元素的高合金钢,热处理后具有高热硬性。当切削温度高达600℃以上时,硬度仍无明显下降,用其制造的刀具切削速度可达每分钟60米以上,而得其名。高速钢按化学成分可分为普通高速钢及高性能高速钢,按制造工艺可分为熔炼高速钢及粉末冶金高速钢。 普通高速钢 图一:高速钢是制造形状复杂、磨削困难的刀具的主要材料。

各元素在高速钢中的作用

高速工具钢主要用于制造高效率的切削刀具。由于其具有红硬性高、耐磨性好、强度高等特性,也用于制造性能要求高的模具、轧辊、高温轴承和高温弹簧等。高速工具钢经热处理后的使用硬度可达HRC63以上,在600℃左右的工作温度下仍能保持高的硬度,而且其韧性、耐磨性和耐热性均较好。退火状态的高速工具钢的主要合金元素有多、钼、铬、钒,还有一些高速工具钢中加入了钴、铝等元素。这类钢属于高碳高合金莱氏体钢,其主要的组织特征之一是含有大量的碳化物。铸态高速工具钢中的碳化物是共晶碳化物,经热压力加工后破碎成颗粒状分布在钢中,称为一次碳化物;从奥氏体和马氏体基体中析出的碳化物称为二次碳化物。这些碳化物对高速工具钢的性能影响很大,特别是二次碳化物,其对钢的奥氏本晶粒度和二次硬化等性能有很大影响。碳化物的数量、类型与钢的化学成分有关,而碳化物的颗粒度和分布则与钢的变形量有关。钨、钼是高速工具钢的主要合金元素,对钢的二次硬化和其他性能起重要作用。铬对钢的淬透性、抗氧化性和耐磨性起重要作用,对二次硬化也有一定的作用。钒对钢的二次硬化和耐磨性起重要作用,但降低可磨削性能。 高速工个钢的淬火温度很高,接近熔点,其目的是使合金碳化物更多的溶入基体中,使钢具有更好的二次硬化能力。高速工具钢淬火后硬度升高,此为第一次硬化,但淬火温度越高,则回火后的强度和韧性越低。淬火后在350℃以下低温回火硬度下降在350℃以上温度回火硬度逐渐提高,至520~580℃范围内回火(化学成分不同,回火温度不同)出现第二次硬度高峰,并超过淬火硬度,此为二次硬化。这是高速工具钢的重要特性。 高速工个钢除了具有高的硬度、耐磨性、红硬性等使用性能外,还具有一定的热塑性、可磨削性等工艺性能。 多系高速工具钢主要合金元素是钨,不含钼或含少量钼。其主要特性是过热敏感性小,脱碳敏感性小、热处理和热加工温度范围较宽,但碳化物颗粒粗大,分布均匀性差,影响钢的韧性和塑性。 钨钼系高速工具钢的主要合金元素是钨和钼。其主要特性是碳化物的颗粒度和分布均优于钨系高速工具钢,脱碳敏感性和过热敏感性低于钼系高速工具钢,使用性能和工艺性能均较好。钼系高速工具钢的主要合金元素是钼,不含钨或含少量钨。其主要特性是碳化物颗粒细,分布均匀、韧性好,但脱碳敏感性和过热敏感性大、热加工和热处理范围窄。 含钻高速工具钢是在通用高速工具钢的基础上加入一定量的钴,可显著提高钢的硬度、耐磨性和韧性。 粉末高速工具钢是用粉末冶金方法产生的。首先用雾化法制取低氧高速工具钢预合金粉末,然后用冷、热静压机将粉末压实成全致密的钢坯,再经锻、轧成材。粉末高速工具钢的碳化物细小、分布均匀,韧性、可磨削性和尺寸稳定性等均很好,可生产用铸锭法个可能产生更高合金元素含量的超硬高速工具钢。粉末高速工具钢可分为3类,第一类是含钴高速工具钢,其特点是具有接近硬质合金的硬度,而且还具有良好的可锻性、可加工性、可磨性和强韧性。第二类是无钴高钨、钼、钒超硬高速工具钢。第三类是超级耐磨高速工具钢。其硬度不太高,但耐磨性极好,主要用于要求高耐磨并承受冲击负荷的工作条件。 Mn 1、在低含量范围内,对钢具有很大的强化作用,提高强度、硬度和耐磨性 2、降低钢的临界冷却速度,提高钢的淬透性 3、稍稍改善钢的低温韧性 4、在高含量范围内,作为主要的奥氏体化元素 Si 1、强化铁素体,提高钢的强度和硬度 2、降低钢的临界冷却速度,提高钢的淬透性 3、提高钢的氧化性腐蚀介质中的耐蚀性,提高钢的耐热性

高速钢工具

高速钢是加入了钨(W)、钼(Mo)、铬(Cr)、钒(V)等合金元素的高合金工具钢。按重量计,钨和钼占10—20%,铬约占4%,钒占1%以上,它们都是强烈的碳化物形成元素,在熔炼与热处理过程中与碳形成了高硬度的碳化物,从而提高了钢的耐磨性。另外,高速铜采用了接近熔点的淬火温度,得到细晶粒的合金化的马氏体组织,它在低温回火(约560℃)时又使合金碳化物析出,从而进一步提高了硬度与耐磨性。在高速钢中,钼和钨的作用基本相同,1%的钼可代替2%的钨。钼并能减少钢中碳化物的不均匀性,细化碳化物晶粒,提高韧性。 另外,在某些高速钢中,为了提高高温硬度,添加钴、铝、硅、铌等元素;为了提高耐磨性,可适当增加含钒量。但是,随着含钒量的增加,可磨削性变差,因此钒的含量不宜超过3%。表2—1、2—2分别列出了主要高速钢的成分和性能。从表中可见,高速钢在600℃时,仍能保持切削加工所要求的硬度,切削中碳钢时,切削速度可0.5m/s(30m/min)左右。 高速钢的强度、韧性和工艺性能均较好,能进行锻造,磨出的切削刃比较锋利,熔炼质量稳定,使用比较可靠。各种刀具都可用高速钢制造;尤其是形状复杂的刀具和小型刀

具,均大量使用着高速钢。目前,高速钢占刀具材料总使用量的60%以上。 按基本化学成分,高速钢可分为钨系、钨钼系和钼钨系。按切削性能分,则有普通高速钢和高性能高速钢。按制造方法分,则有熔炼高速钢和粉末冶金高速钢。 通高速钢的特点是工艺性好,切削性能可满足一般工程材料的常规加工,常用品种有: 1.W18Cr4V 属钨系高速钢。它的历史悠久,至今尚在普遍使用。其综合机械(力学)性能和可磨削性好,可用以制造包括复杂刀具在内的各类刀具. 2.W6Mo5Cr4V2 属钨铝系高速钢;其碳化物分布的均匀性、韧性和高温塑性均超过W18Cr4V,但是,可磨性比W18Cr4V略差,切削性能则大致相同。国外由于资源关系,已淘汰所谓传谓传统高速钢W18Cr4V而以W6Mo5Cr4V2代替。这一钢种目前我国主要用于热轧刀具(如麻花钻),也可用于制作大尺寸刀具。 3.W14Cr4VMn-RE

分析粉末冶金高速钢制造工艺

分析粉末冶金高速钢制造工艺 20世纪60年代后期在瑞典开发成功,并于70年代初期进入市场。该工艺可在高速钢中加入较多合金元素而不会损害材料的强韧性或易磨性,从而可制成具有高硬度、高耐磨性、可吸收切削冲击、适合高切除率加工和断续切削加工的刀具。 高速钢刀具材料主要由两种基本成分构成:一种是金属碳化物(碳化钨、碳化钼或碳化钒),它赋予刀具较好的耐磨性;二是分布在周围的钢基体,它使刀具具有较好的韧性和吸收冲击、防止碎裂的能力。制备普通高速钢时,是将熔化的钢水从钢水包中注入铸模,使其缓慢冷却凝固。此时,金属碳化物从溶液中析出,并形成较大的团块。高速钢中添加的合金含量越多,碳化物团块就越大。达到某一临界点时,可形成尺寸极大的碳化物团块(直径可达40mm)。出现大的碳化物团块的临界点根据钢锭的尺寸以及其它因素而略有不同,但一般是在碳化钒含量达到约4%时发生。通过对钢锭进行锻造、轧制等后续加工,可以粉碎其中一部分碳化物团块,但不可能将其完全消除。虽然增加钢材中金属碳化物颗粒的数量可以改善材料的耐磨性,但随着合金含量的增加,碳化物的尺寸及团块数量也会随之增加,这对于钢材的韧性会产生极其不利的影响,因为大的碳化物团快可能成为产生裂纹的起始点。 粉末冶金高速钢的制备工艺与普通高速钢的制备工艺不同,熔化的钢水不是直接注入铸模,而是通过一个小喷嘴将其吹入氮气流中进行雾

化,喷出的雾状钢水迅速冷却为细小的钢粒(直径小于1mm)。由于钢水溶液中的碳化物在快速冷却过程中来不及沉淀和形成团快,因此获得的钢粒中碳化物颗粒细小且分布均匀。将这些钢粉过筛后置入一个钢桶中,并将钢粉中间的空气抽净形成真空状态,然后在高温、高压下将钢桶中的钢粉压制成型,即可得到致密度为100%的粉末冶金高速钢毛坯。这一制备工艺被称为热等静压(hotisostaticpressing,HIPing)成型。然后可对毛坯进行锻造、轧制等后续加工。 利用热等静压成型工艺制备的粉末冶金高速钢中的碳化物颗粒非常细小,而且不管其合金含量为多少,这些碳化物颗粒都可均匀分布于整个高速钢基体中。

粉末冶金原理

1.粉末冶金:制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料, 经过成形和烧结制造金属材料、复合材料以及各种类型制品的工艺过程。 2.二次颗粒:单颗粒以某种方式聚集就构成二次颗粒 3.松装密度:粉末在规定条件下自然充填容器时,单位体积内自由松装粉末体的质量 g/cm3。 4.孔隙率:孔隙体积与粉末体的表观体积之比的百分数称为孔隙度(θ)。 5.中位径:将各种粒级粉末个数或百分数逐一相加累积并做图,可以得到累积分布曲线, 分布曲线对应50%处称为中位径 弹性后效:在压制过程中,粉末由于受力而发生弹性变形和塑性变形,压坯内存在着很大的内应力,当外力停止作用后,压坯便出现膨胀现象 6.合批:将成分相同而粒度不同的粉末进行混合,称为合批 7.烧结机构:研究烧结过程中各种可能的物质迁移方式及速率。 8.热压:热压又称为加压烧结,是把粉末装在模腔内,在加压的同时使粉末加热到正常 烧结温度或更低一些的温度,经过较短时间烧结成致密而均匀的制品。 9.活化烧结:是指采用化学或物理的措施,使烧结温度降低、烧结过程加快,或使烧结 体的密度和其它性能得到提高的方法。 10.单颗粒:粉末中能分开并独立存在的最小实体称为单颗粒。 11.振实密度:粉末装于振动容器,规定条件下,经振动敲打后测得的粉末密度。 12.粒度:以mm或μm的表示的颗粒的大小称颗粒直径,简称粒径或粒度。 13.混合:将两种或两种以上不同成分的粉末混合均匀。分为机械法和化学法。 14.搭桥:粉末在松装堆集时,由于表面不规则,彼此之间有摩擦,颗粒相互搭架而形成 拱桥孔洞的现象。 15.快速冷凝技术的特点:(1)急冷可大幅度地减小合金成分的偏析;(2)急冷可增加合 金的固溶能力;(3)急冷可消除相偏聚和形成非平衡相;(4)某些有害相可能由于急冷而受到抑制甚至消除;(5)由于晶粒细化达微晶程度,在适当应变速度下可能出现超塑性等。 16.粉末颗粒的聚集形式:聚合体、团粒、絮凝体;区别:通过聚集方式得到的二次颗 粒被称为聚合体或聚集颗粒;团粒是由单颗粒或二次颗粒靠范德华力粘接而成的,其结合强度不大,用研磨。擦碎等方法在液体介质中容易分散成更小的团粒或二次颗粒或单颗粒;絮凝体则是在粉磨悬浊液中,由单颗粒或二次颗粒结合成的更松软的聚集颗粒。 17.减少因摩擦出现的压力损失的措施:1)添加润滑剂、2)提高模具光洁度和硬度、3) 改进成形方式,如采用双面压制等。 18.粉末冶金技术的优点:1. 能生产用普通熔炼方法无法生产的具有特殊性能的材料:① 能控制制品的孔隙度(多孔材料、多孔含油轴承等);②能利用金属和金属、金属和非金属的组合效果,生产各种特殊性能的材料(钨-铜假合金型的电触头材料、金属和非金属组成的摩擦材料等);③能生产各种复合材料。 2.粉末冶金方法生产的某些材料,与普通熔炼法相比,性能优越:①高合金粉末冶金材料的性能比熔铸法生产的好(粉末高速钢可避免成分的偏析);②生产难熔金属材料或制品,一般要依靠粉末冶金法(钨、钼、铌等难熔金属)。缺点:1、粉末成本高;2、制品的大小和形状受到一定限制;3、烧结零件的韧性较差。 19.粉末料预处理的方式及作用:1、退火:还原氧化物,消除杂质,提高纯度;消除加工 硬化,稳定粉末的晶体结构;钝化金属,防止自燃。2、混合:使不同成分的粉末混合均匀,便于压制成形和后续处理。3、筛分:筛分的目的在于把颗粒大小不匀的原始粉

粉末冶金模具材料之粉末冶金高速钢

粉末冶金模具材料之粉末冶金高速钢 粉末冶金模具材料之粉末冶金高速钢 2011年09月13日 粉末冶金高速钢(PMHSS)是高速钢中的上品,国内多数工具厂对它只有一个模糊的概念,只知它是一种性能优良的高级高速钢。硬度65HRC的高速钢,在表面粗糙度为Ra0.5μm时,抗弯强度为5GPa;另一种硬度为70HRC 的高速钢,在表面粗糙度为Ra0.2μm时,也能达到5GPa的抗弯强度。这只能只能在近代PMHSS上实现。在目前高性能刀具材料如硬质合金、金属陶瓷、金刚石、立方氮化硼等超硬材料不断发展的同时,高速钢尤其是粉末冶金高速钢,凭借其在强韧性、工艺性及可加工性等方面优良的综合性能,在复杂刀具特别是切齿刀具、拉刀和各类铣刀制造中仍占有明显优势,应用相当广泛。 在目前高性能刀具材料如硬质合金、金属陶瓷、金刚石、立方氮化硼等超硬材料不断发展的同时,高速钢尤其是粉末冶金高速钢,凭借其在强韧性、工艺性及可加工性等方面优良的综合性能,在复杂刀具特别是切齿刀具、拉刀和各类铣刀制造中仍占有明显优势,应用相当广泛。 粉末冶金高速钢的冶炼不同,经过电弧炉或感应熔炼炉熔化的钢液不是直接浇注成钢锭,而是将熔化的钢液通过喷嘴,喷入到高压氮气流中,钢液被迅速雾化冷却成细小的钢粒,其直径一般小于1mm。再将这样制成的钢粉装入钢桶,对钢桶抽真空,使桶中钢粉间的空气抽净成真空状态,然后焊合钢桶,再在高温高压下将钢桶中的钢粉压制成形,形成热等静压烧结制备工艺。由此可生产出致密度几乎为100%的粉末冶金高速钢坯料,然后接下来再锻造、轧制成钢材由于粉末冶金在喷雾制粉过程中,钢液冷却速度十分快,避免

了普通高速钢铸锭过程中的许多缺陷,雾化的钢液中碳化物来不及聚集长大形成团块状,因此碳化物颗粒细小而均匀,一般为1~3μm(最大尺寸不超过 6μm),这就大大提高了钢的强度和韧性。 高速钢含有大量W、Mo、Cr、V等元素,其与碳形成的合金碳化物提高了钢材性能。由于粉末高速钢冶炼的独特性,合金元素含量更高,尤其是高V、高Co钢的应用较为普遍。高速钢中的W、Mo作用相似,与碳形成的合金碳化物通过溶解及析出强化,使高速钢具有特殊的二次硬化效果,红硬性大大提高;钢中V是强的碳化物形成元素,VC细小弥散,提高了钢的耐磨性,随着V 含量的提高,高速钢的抗磨粒磨损性能大幅提升;Co是固溶强化最强的合金元素之一,通过固溶基体强化来提高高速钢的硬度及热硬性,改善了刀具切削性能,使刀具寿命大为提高。图1为几种粉末高速钢与典型高速钢的性能特点对比。 粉末冶金高速钢性能十分优越,它具有高强度、高硬度、高韧性、高耐磨性,以及可加工性好的特点,是一种介于硬质合金和高速钢之间的新材料。由于粉末冶金高速钢制造的刀具的切削性能在所有切削加工领域内全面超越了原来的高速钢,其韧性优于整体硬质合金刀具而越来越受到工具行业的青睐。 粉末高速钢由于良好的组织一致性和碳化物的无偏析,弥补了普通冶炼高速钢的严重缺陷,使钢材质量和性能全面提高。粉末冶金高速钢刀具在加工铁基高温合金、钛合金、超高强钢等难加工材料时表现出了良好的切削性能及综合力学性能。由于粉末高速钢冶炼及雾化制粉的特殊性,工艺及设备要求相对复杂,钢材制造成本较高,目前在精密复杂刀具生产中应用较多,还有待进一步推广应用。

ASP-60粉末高速钢

ASP-60特性简介: ASP-60跟ASP60是同义词,产自瑞典,是一种超高合金粉末高速钢,其钴与钒的含量非常高,且经粉末冶金的技术制造出来。如此能让钢材是非常均一且拥有一致的特性。通过奥氏体化也可以得到非常高的硬度和抗压强度,它拥有同其他ASP系列材料一样好的热处理尺寸稳定性,其特点: ★极高的耐磨性 ★极高的抗压强度 ★良好的淬透性 ★良好的韧性 ★良好的热处理稳定性 ★非常好的回火稳定性 ASP-60化学成分: C 2.3 ; Cr 4.0 ; W 6.5 ; Mo 7.0 ; V 6.5 ; Co 10.5 ASP-60出厂状态: 软性退火最高至HB340 ASP-60常用硬度:

HRC:67~69℃ ASP-60典型运用: ASP60是一种含钴高性能粉末冶金高速钢。10.5%的含钴量提升了材料的高温性能(如红硬性和抗回火性),抗压强度和弹性模量。ASP60含大量非常小、非常硬,分布均一的碳化物,是由高含量的碳与大量的碳化物形成元素(如铬,钼,钨和钒)结合形成的。ASP60中的小颗粒碳化物不利于萌生裂纹,并且提高了材料的耐磨损性能。 ASP60特别适合用于需要同时满足极高耐磨损性和抗压强度的冷作模具。 ★冲切薄的、具有磨损性的材料,例如电子封装材料,这是取代易发生开裂和崩角的硬质合金一个很好的选择★切边工具 ★冷作冲压工具 ASP60加工方式: ★机械加工(粗铣、研磨、车铣) ★塑性变形 ★放电加工、线切割 ★焊接(要预热及注意焊条的成份) ★抛光,在研磨时,一定要避免表面局部过热的现象产生,东莞市冠鼎金属材料有限公司工程师建议研磨砂轮选用CBN 砂轮。

高速钢(红硬性)

高速钢的红硬性 开放分类:冶金1. 概述高速钢又名风钢或锋钢,意思是淬火时即使在空气中冷却也能硬化,并且很锋利。它是一种成分复杂的合金钢,含有钨、钼、铬、钒等碳化物形成元素。合金元素总量达10~25%左右。它在高速切削产生高热情况下(约500℃)仍能保持高的硬度,HRC能在60以上。这就是高速钢最主要的特性——红硬性。而碳素工具钢经淬火和低温回火后,在室温下虽有很高的硬度,但当温度高于200℃时,硬度便急剧下降,在500℃硬度已降到与退火状态相似的程度,完全丧失了切削金属的能力,这就限制了碳素工具钢制作切削工具用。而高速钢由于红硬性好,弥补了碳素工具钢的致命缺点,可以用来制造切削工具。高速钢的热处理工艺较为复杂,必须经过退火、淬火、回火等一系列过程。退火的目的是消除应力,降低硬度,使显微组织均匀,便于淬火。退火温度一般为860~880℃。淬火时由于它的导热性差一般分两阶段进行。先在800~850℃预热(以免引起大的热应力),然后迅速加热到淬火温度1220~1250℃,后油冷。工厂均采用盐炉加热。淬火后因内部组织还保留一部分(约30%)残余奥氏体没有转变成马氏体,影

响了高速钢的性能。为使残余奥氏体转变,进一步提高硬度和耐磨性,一般要进行2~3次回火,回火温度560℃,每次保温1小时。(1)生产制造方法:通常采用电炉生产,近来曾采用粉末冶金方法生产高速钢,使碳化物呈极细小的颗粒均匀地分布在基体上,提高了使用寿命。(2)用途:用于制造各种切削工具。如车刀、钴头、滚刀、机用锯条及要求高的模具等。2. 主要生产厂我国大连钢厂、重庆钢厂、上海钢厂是生产高速钢的主要生产厂。3. 主要进口生产国家我国主要从日本、俄罗斯、德国、巴西等国进口。 4. 种类有钨系高速钢和钼系高速钢两大类。钨系高速钢有W 18 CR 4 V,钼系高速钢有W6 Mo 5 Cr 4 V 2 等。 热处理概述 金属热处理是将金属工件放在一定的介质中加热、保温、冷却,通过改变金属材料表面或内部的组织结构来控制其性能的工艺方法。 1.金属组织 金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。

粉末冶金在刀具上的应用

粉末冶金在刀具上的应用 性能优异的粉末冶金高速钢刀具 随着汽车、航天、航空、军工、信息技术产业及机械制造业的迅速发展,现代的机械加工越来越追求“高精度、高效率、高可靠性和专业化”目标,这就需要工具行业提供高切削性能的刀具,为此开发用于制造 刀具的优质材料更显得十分重要。 粉末冶金高速钢于20世纪60年代后期开始研制生产,并在70年代投入应用。粉末冶金高速钢特殊 而先进的冶炼方法是高速钢冶炼的一种创新,它造就了性能介于硬质合金和普通高速钢之间的新钢种,使机械制造加工业的刀具用材有了新的突破。作为一种性能优异的新钢种,粉末冶金高速钢正逐渐被人们认识和接受,在机械加工业中发挥越来越大的作用。 1. 粉末冶金高速钢的冶炼特性 与普通高速钢的冶炼相比,粉末冶金高速钢的冶炼更具有其特殊性和先进性。普通高速钢通过电弧炉或感应熔炼炉熔炼后,直接将钢液浇注成钢锭,然后再通过锻造、轧制加工成钢材,但由于钢液浇注冷凝成钢锭时,凝固速度十分缓慢,从钢液中析岀大量的金属碳化物,形成鱼骨状的莱氏体和团块状的粗大共晶碳化物,并产生碳化物偏析,直接影响到钢的各种力学性能,特别是钢的韧性。 而粉末冶金高速钢的冶炼则不同,经过电弧炉或感应熔炼炉熔化的钢液不是直接浇注成钢锭,而是将熔化的钢液通过喷嘴,喷入到高压氮气流中,钢液被迅速雾化冷却成细小的钢粒,其直径一般小于1 mm。再将这样制成的钢粉装入钢桶,对钢桶抽真空,使桶中钢粉间的空气抽净成真空状态,然后焊合钢桶,再在高温高压下将钢桶中的钢粉压制成形,形成热等静压烧结制备工艺。由此可生产岀致密度几乎为100 % 的粉末冶金高速钢坯料,然后接下来再锻造、轧制成钢材由于粉末冶金在喷雾制粉过程中,钢液冷却速度十分快,避免了普通高速钢铸锭过程中的许多缺陷,雾化的钢液中碳化物来不及聚集长大形成团块状,因此碳化物颗粒细小而均匀,一般为1?3卩m (最大尺寸不超过6卩m),这就大大提高了钢的强度和韧性。 2. 粉末冶金高速钢的性能和特点 粉末冶金高速钢性能十分优越,它具有高强度、高硬度、高韧性、高耐磨性,以及可加工性好的特点,是 一种介于硬质合金和高速钢之间的新材料。由于粉末冶金高速钢制造的刀具的切削性能在所有切削加工领域内全面超越了原来的高速钢,其韧性优于整体硬质合金刀具而越来越受到工具行业的青睐。 3. 粉末冶金高速钢的应用 粉末冶金高速钢因具有极佳的韧性和机加工性能、良好的红硬性、较高的抗压强度和高的耐磨性,具有高合金含量、高纯度无偏析、细小的碳化物颗粒和各向同性同质的特点,而得到广泛的应用。它被用作加工钛和铝合金等有色金属的刀具,用作加工齿轮铣刀、滚刀、插齿刀、剃齿刀等刀具,也可用作侧面铣刀、成形铣刀和拉刀,也常用于麻花钻、机用丝锥、铰刀等制造。在锯条行业用作带锯双金属钢带,还用作精密冲切工具和冲头冲模的制造、以及其他模具制造。由于粉末冶金价格较贵(一般是普通高速钢的 4?8倍),所以考虑成本因素,粉末冶金高速钢通常用于制造精密复杂刀具或数控机床用刀具。 粉末冶金高速钢制造的切削刀具性能优于普通高速钢,使用寿命高于普通高速钢(一般2?3倍), 在冲击负荷大的切削场合又可替代硬质合金刀具,因此粉末冶金高速钢刀具在工具行业的应用前景十分看好,越来越受到人们的关注。 亘]自20世纪70年代以来,高速钢刀具的市场份额逐渐被硬质合金刀具所蚕食。但近年来,随着粉末冶金高速钢(P/M HSS )刀具切削性能的提高,高速钢刀具的市场占有率又有所回升。与普通高速钢刀具相比,粉末冶金高速钢刀具硬度更高、韧性更好、更耐磨损,因此在某些应用领域(如高冲击性、大切除量的 加工场合),粉末冶金高速钢刀具有逐渐取代脆性较大、在切削冲击下易发生碎裂的整体硬质合金刀具的趋势。

粉末冶金高速钢的选择与应用

粉末冶金高速钢的选择与应用 粉末冶金高速钢的选择与应用 作者:哈尔滨第一工具有限公司宋学全 切削技术的发展依靠刀具技术和高 速机床技术的进步,刀具与机床的正确选用常起着决定性作用。采用耐热性更好的新型刀具材料及涂层、公道设计刀具结构与几何参数、选择最佳的切削速度是实现切削加工优化的重要保障。在目前高性能刀具材料如硬质合金、金属陶瓷、金刚石、立方氮化硼等超硬材料不断发展的同时,高速钢尤其是粉末冶金高速钢,凭借其在强韧性、工艺性及可加工性等方面优良的综合性能,在复杂刀具特别是切齿刀具、拉刀和各类铣刀制造中仍占有明显上风,应用相当广泛。 1 高速钢发展及粉末高速钢冶炼工艺特点 以切削刀具为主要用途的高速钢已经历了百年的发展历程。1900 年法国巴黎世界展览会上,美国人Taylor和White成功进行的高速切削演示标志着高速钢的应用拉开了序幕。多年来,高速钢刀具一直占据着机械加工领域的主导地位,其发展简史见表1。 表1 高速钢发展简史

冶炼,钢水容量大,成分均匀,可通过炉外精炼、真空脱气等进步钢水质量;但由于钢锭浇铸尺寸较大,钢水冷却缓慢,且高速钢化学成分复杂,合金元素含量高,使其莱氏体组织粗大,碳化物偏析严重。碳化物偏析程度反映了高速钢质量的优劣,严重的偏析降低了高速钢的性能,使钢的锻、轧加工困难,高合金、高性能高速钢的发展受限。 粉末冶金高速钢改变了传统的高速钢浇铸与成锭工艺,采用了雾化制粉及压力加工成形。国际上较先进的粉末高速钢制造基本工艺是将冶炼完、符合化学成分要求的钢水经强力高压氮气雾化,细小液滴瞬间迅速凝固成合金粉末颗粒,其粒度相当于一般铸锭亿万分之一的“超细小钢锭”,形成了极快冷凝固制粉。雾化制粉完成后,合金粉末颗粒经筛分、装包套、摇实、抽真空脱气等工序,再经冷、热等压力加工成锭。粉末冶金高速钢的优点为成分均匀、碳化物无偏析,易实现高合金化;与电炉钢比较,其强韧性大幅度进步,热处理变形小,尺寸稳定性高,可磨削性能好。 2 粉末冶金高速钢主要牌号及成分 传统冶炼生产的高速钢牌号均可运用粉末冶金方法生产,而高钒、高钴等高合金高性能高速钢却是粉末冶金高速钢所独占的牌号(如ASP2060、ASP2080等)。表2为粉末冶金高速钢主要牌号及成分范围。 表2 粉末冶金高速钢主要牌号及成分(wt%)

粉末冶金原理

课程名称:粉末冶金学 Powder Metallurgy Science 第一章导论 1粉末冶金技术的发展史History of powder metallurgy 粉末冶金是采用金属粉末(或非金属粉末混合物)为原料,经成形和烧结操作制造金属材料、复合材料及其零部件的加工方法。 粉末冶金既是一项新型材料加工技术,又是一项古老的技术。 .早在五千年前就出现了粉末冶金技术雏形,古埃及人用此法制造铁器件; .1700年前,印度人采用类似方法制造了重达6.5T的“DELI柱”(含硅Fe合金,耐蚀性好)。 .19世纪初,由于化学实验用铂(如坩埚)的需要,俄罗斯人、英国人采用粉末压制、烧结和热锻的方法制造致密铂,成为现代粉末冶金技术的基础。 .20世纪初,现代粉末冶金的发展起因于爱迪生的长寿命白炽灯丝的需要。钨灯丝的生产标志着粉末冶金技术的迅速发展。 .1923年硬质合金的出现导致机加工的革命。 .20世纪30年代铜基含油轴承的制造成功,并在汽车、纺织、航空、食品等工业部门的广泛应用。随后,铁基粉末冶金零部件的生产,发挥了粉末冶金以低的制造成本生产高性能零部件的技术优点。 .20世纪40年代,二战期间,促使人们开发研制高级的新材料(高温材料),如金属陶瓷、弥散强化合金作为飞机发动机的关键零部件。 .战后,迫使人们开发研制更高性能的新材料,如粉末高速钢、粉末超合金、高强度铁基粉末冶金零部件(热锻)。大大扩大了粉末冶金零部件及其材料的应用领域。 .粉末冶金在新材料的研制开发过程中发挥其独特的技术优势。 2粉末冶金工艺 粉末冶金技术的大致工艺过程如下: 原料粉末+添加剂(合金元素粉末、润滑剂、成形剂) ↓ 成形(模压、CIP、粉浆浇注、轧制、挤压、温压、注射成形等) ↓ 烧结(加压烧结、热压、HIP等) ↓ 粉末冶金材料或粉末冶金零部件—后续处理 Fig.1-1 Typical Processing flowchart for Powder Metallurgy Technique 3粉末冶金技术的特点 .低的生产成本: 能耗小,生产率高,材料利用率高,设备投资少。 ↑↑↑ 工艺流程短和加工温度低加工工序少少切削、无切削

高速钢HSS

高速钢 1. 概述 高速钢High Speed Steels 又名风钢或锋钢,意思是淬火时即使在空气中冷却也能硬化,并且很锋利。它是一种成分复杂的合金钢,含有钨、钼、铬、钒、钴等碳化物形成元素。合金元素总量达10~25%左右。它在高速切削产生高热情况下(约500℃)仍能保持高的硬度,HRC 能在60以上。这就是高速钢最主要的特性——红硬性。而碳素工具钢经淬火和低温回火后,在室温下虽有很高的硬度,但当温度高于200℃时,硬度便急剧下降,在500℃硬度已降到与退火状态相似的程度,完全丧失了切削金属的能力,这就限制了碳素工具钢制作切削工具用。而高速钢由于红硬性好,弥补了碳素工具钢的致命缺点,可以用来制造切削工具。 高速钢的热处理工艺较为复杂,必须经过退火、淬火、回火等一系列过程。退火的目的是消除应力,降低硬度,使显微组织均匀,便于淬火。退火温度一般为860~880℃。淬火时由于它的导热性差一般分两阶段进行。先在800~850℃预热(以免引起大的热应力),然后迅速加热到淬火温度1190~1290℃(不同牌号实际使用时温度有区别),后油冷或空冷或充气体冷却。工厂均采用盐炉加热,现真空炉使用也相当广泛。淬火后因内部组织还保留一部分(约30%)残余奥氏体没有转变成马氏体,影响了高速钢的性能。为使残余奥氏体转变,进一步提高硬度和耐磨性,一般要进行2~3次回火,回火温度560℃,每次保温1小时。

(1)生产制造方法:通常采用电炉生产,近来曾采用粉末冶金方法生产高速钢,使碳化物呈极细小的颗粒均匀地分布在基体上,提高了使用寿命。 (2)用途:用于制造各种切削工具。如车刀、钴头、滚刀、机用锯条及要求高的模具等。 2. 主要生产厂 我国上钢五厂、河冶科技是生产高速钢的主要生产厂。 3. 主要进口生产国家 我国主要从日本、俄罗斯、德国、奥地利、法国、乌克兰、巴西等国进口。 4. 种类 有钨系高速钢、钼系高速钢和钴系高速钢三大类。钨系高速钢有W 18 CR 4 V,钼系高速钢有W 6 Mo 5 Cr 4 V 2 ,钴系高速钢有W6Mo 5Cr 4 V 2Co5、W 2 Mo 9 Cr 4 V Co 8等。 5. 规格和外观质量 规格主要有圆钢和方钢、板材。钢材的表面要加工良好,不得有肉眼可见的裂纹、折叠、结疤和发纹。冷拔钢材表面应洁净、光滑、无夹杂和氧化皮等。 6. 化学成分 我国国标和日本工业标准中主要钢号的化学成分如表6—7—26。 . 物理性能

日本(日立)HAP40含钴co粉末高速钢.

日本(日立)HAP40含钴co粉末高速钢 1.概述 日立金属HAP40是日立研发生产的含钴CO粉末高速钢。该钢具有极高的硬度,耐磨性与韧性兼备的泛用型高速钢。适合制造所有的切削工具,适合大量生产的冲压模具用钢。优于其他高合金的冷作钢。 出厂状态︰hb250 2.HAP40的主要特性: a) 良好的磨削性能 b) 良好的热处理尺寸稳定性 c) 良好的韧性 d) 良好的红硬性 e) 良好的耐磨性 3.HAP40的主要用途: 适合制作多刀刃的刀具,例如:麻花钻,铰刀、丝锥、铣刀,拉刀、滚刀及成型刀具等;单刃刀具如刀具、切断车刀和成形刀具等。 HAP40也适用于制作一般要求的单刃刀具。HAP40也适合作为对耐磨性有严格要求的冷作模具。例如:冲孔,成形,冲压模等。 相当瑞典标准︰asp60 4.化学成分(%) C:2.03 Si:4.0 Mn:7.0 Cr:6.5 Mo:10.5 V:6.5 Co:4.8 5.钴高速钢的热处理特点

( 1 ) 钴在高速钢中增加了碳的活度,因而使含钴高速钢的脱碳趋势较大,在热处理时应加以重视,在高温去应力退火、淬火加热等工序中要注意防止发生严重的脱碳,如果是在盐浴炉中进行淬火加热,要注意对盐浴炉的充分脱氧,对丝具等应进行涂层保护。在最终的淬火加热时,并不能因为要发挥钴促进二次硬化的作用,就要采用较高的加热温度,以增大碳和合金元素在奥氏体中的溶解量,从而来达到增大合金碳化物的弥散析出效果。反而是因为要注意防止奥氏晶粒长大,而不能采用较高的加热温度。一般而言,含钴高速钢的淬火加热温度较成份类似的不含钴的高速钢低一些。为充分发挥钴在高温回火中提高二次硬化作用的效果,充分保证回火时问,防止回火不足,每次回火的时问应较一般高速钢延长一些。 此材料经淬回火后硬度可达到 6 4 ~6 6 H R C,回火的硬度峰值约在5 4 0 ~ C 左右。其 热处理工艺为: ( 1 )软化退火:7 7 0 —8 4 0 o c N热保温,炉内缓慢冷却,其退火后最高硬度约为2 8 0 HB 。 ( 2 )经多道机加工形状复杂工件的去应力退火:6 0 0 —6 5 0 ~ C ~ I 热,在保护气氛中保温1 - 2小时,随炉缓慢冷却。 一次预热:5 5 0 ℃;二次预热:8 5 0 ℃;三次预热:1 0 5 0 ℃( 形状不复杂的工件可不必经过此工序) 。 淬火加热:1 1 8 0 —1 2 3 0 ℃;形状简单的工件采用较高的加热温度,形状复杂的工件采用较低的加热温度,如果工件要求较高的韧性,也应采用较低的加热温度。 淬火冷却:可采用油冷淬火;盐浴分级 淬火;干燥风冷淬火。 回火:第一次回火至硬度峰值温度( 约 5 4 0 ℃) ;第二次回火至所要求的工作硬度; 第三次回火用于消除应力( 温度比前两次最高的回火温度低3 O 一5 O ℃) 。 回火保温时间:工件厚度每2 0 r a m一小时,但不少于2小时。

常用高速钢介绍

钼系高速钢M2 ?牌号对照: ?化学成分(%): ?特性: 耐磨性好、韧性大的通用切削工具、各种模具用高速钢 ?用途: 制作载荷大、形状复杂、贵重的刀具(如刮刀、齿轮、铣刀、钻头、攻牙刀等)冷锻模、锻造工具 切条机、打头成型模 ?热处理温度及参考办法: 退火:加热到800℃~850℃,然后缓冷; 淬火:加热到1160℃~1220℃,油淬火或热浴; 回火:加热到550℃~580℃,然后空冷。 ?供应状态: 退火≤HB255、圆棒或板材

钼、钴系高速钢M35 ?牌号对照 ?化学成分(%): ?特性: 高红热硬度、高耐磨耗性与切削能力、高冲击韧性、晶粒细致均匀,韧性高?用途: 刀具业:刮刀、滚齿刀、铣刀、钻头等 锻造业:锻造模具 螺丝业:六角等打头成型模、牙攻、冲头 ?热处理温度及参考办法: 退火:温度800~880℃,以10~20℃/Hr炉冷至约600℃,硬度在HB269以下; 应力消除:温度650~750℃,炉中冷却 淬火: 预热1:温度550~600℃,每25mm保持30分钟 预热2:温度850~900℃,每1mm保持20 ~30秒 预热3:温度1050~1100℃,每1mm保持20~30秒,适于大型复杂工件 奥斯田铁化:温度1170~1240℃,每1mm保持10~15秒 淬火介质:油、热浴、空气或气体; 回火: 温度540~570℃,每25mm保持60分钟以上,回火次数3次以上,硬度HRC64以上

钼、钴系高速钢M42 ?牌号对照 ?化学成分(%): ?特性: 高红热硬度、高耐磨耗性与切削能力、高冲击韧性、晶粒细致均匀,韧性高?用途: 刀具业:刮刀、滚齿刀、铣刀、钻头等 锻造业:锻造模具 螺丝业:六角等打头成型模、牙攻、冲头 ?热处理温度及参考办法: 退火:温度800~880℃,以10~20℃/Hr炉冷至约600℃,硬度在HB269以下; 应力消除:温度650~750℃,炉中冷却 淬火: 预热1:温度550~600℃,每25mm保持30分钟 预热2:温度850~900℃,每1mm保持20 ~30秒 预热3:温度1050~1100℃,每1mm保持20~30秒,适于大型复杂工件 奥斯田铁化:温度1170~1220℃,每1mm保持10~15秒 淬火介质:油、热浴、空气或气体; 回火: 温度540~570℃,每25mm保持60分钟以上,回火次数3次以上,硬度HRC66以上

2020版粉末冶金基础知识

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 2020版粉末冶金基础知识 Safety management is an important part of production management. Safety and production are in the implementation process

2020版粉末冶金基础知识 (一)粉末的化学成分及性能 尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。 1.粉末的化学成分 常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。 2.粉末的物理性能 ⑴粒度及粒度分布 粉料中能分开并独立存在的最小实体为单颗粒。实际的粉末往往是团聚了的颗粒,即二次颗粒。实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。 ⑵颗粒形状即粉末颗粒的外观几何形状。常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。

⑶比表面积 即单位质量粉末的总表面积,可通过实际测定。比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。 3.粉末的工艺性能 粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。 ⑴填充特性 指在没有外界条件下,粉末自由堆积时的松紧程度。常以松装密度或堆积密度表示。粉末的填充特性与颗粒的大小、形状及表面性质有关。 ⑵流动性 指粉末的流动能力,常用50克粉末从标准漏斗流出所需的时间表示。流动性受颗粒粘附作用的影响。⑶压缩性 表示粉末在压制过程中被压紧的能力,用规定的单位压力下所达到的压坯密度表示,在标准模具中,规定的润滑条件下测定。影响粉末压缩性的因素有颗粒的塑性或显微硬度,塑性金属粉末比硬、脆材料的压缩性好;颗粒的形状和结构也影响粉末的压缩性。

粉末高速钢的应用与推广

粉末高速钢的应用与推广 一、粉末高速钢的制程与优点 高速钢的制造方法有两种,一为传统的钢锭浇铸,另一种则为利用粉末冶金方法制造。传统冶炼制造通常又分为二次精炼(EAF+LF+VD)或电渣重熔(ESR)制程两类,上述方法中由于金属液缓慢冷却,会造成合金的不均匀偏析和合金碳化物的生长粗大化,而影响到高速钢的性能。虽然后续的热作制程,可将钢锭的铸造组织加以改变及细化,使不良影响减低,但是却无法消除原先的铸造组织,因而对物理及机械性质有负面的影响。由于人们希望能改善传统高速钢的质量,特别是希望大直径高速钢碳化物颗粒尺寸能够细小且分布均匀,巨观的偏析产生,使得横向及纵向的机械性质没有差别。因而在1965年于美国开始发展合金粉末制程。生产出组织均匀无方向性钢种。发展至今,粉末冶金制程正成为当今制造高性能工具钢的主要方法。此制程主要原理是将已调配合合金成份的高温熔融钢液,流出时加以高压氮体雾化,使其快速凝固成均匀组成之粉末颗料,再经过筛选并充镇至已抽真空且密封的圆柱形钢瓶中,进行热均压(HIP),使钢瓶内的颗粒成为完全密实的材料,再直接经由传统锻造,辊轧成不同形状之产品,如:圆棒、板材、片材和线材料来供应工业界使用。 粉末高速钢在实际使用上的主要优点有: 1.磨削性好 2.热处理变形小及硬度均匀性佳 3.韧性高 4.耐磨耗性佳 5.使用寿命长且稳定 由于生产粉末高速钢具有一定之技术门槛,目前在全世界粉末高速钢的生产厂家并不多,主要集中在欧洲、日本及美国,代表厂有美国Crucible,欧洲(ASSAB、Soderfors、Erasteel、Bohler、DSS、Carpenter),日本(Hitachi、Daido、Nachi、Kobe)。中国目前并没有实际商业化生产粉末高速钢,全部由国外进口。因此在多数中国使用者印象中对粉末高速钢只存有模糊的概念,只知它代表一种性能优良且价格很贵的高级高速钢。其它的了解及如何应用并不清楚。由于粉末高速钢品种牌号相当多,笔者仅就几种本公司经常库存同时较常用到的四类钢种做说明,提供广大使用客户参考及选择。 二、高速钢工具钢的分类与性质比较 选择合适的高速钢作为切削工具及模具时,有三项重要的性质是必须慎重的考虑。分别是耐磨性、韧性及高温硬度,以传统M2为基础,从合金元素的角度来看,三个主要发展方向是: (1)提高钒(V)含量,以增加耐磨耗性 (2)提高钴(Co)含量,以增加热间硬度 (3)同时提高钒及钴的含量,而兼顾耐磨耗性及热间硬度 (A) PM-A23 PM-A23是目前使用上最多的粉末高速钢,它相当于ASP23 是目前所有高速钢中韧性最好材料,同时又有极佳之耐磨耗性钢种。一般来说高速钢中耐磨性会随总合金成份和最高硬度增加而提高,而韧性则会随合金量的增加而降低,因此才会在传统高速钢M2的基础上

相关文档
最新文档