拉普拉斯变换在一阶和二阶电路的瞬态分析

拉普拉斯变换在一阶和二阶电路的瞬态分析
拉普拉斯变换在一阶和二阶电路的瞬态分析

拉普拉斯变换在一阶和二阶电路的瞬态分析

内容摘要:(1)一阶电路的解法:经典解法和拉普拉斯解法(2)二阶电路的拉普拉斯解法

通过这两个例子中的经典解法和拉普拉斯解法的对比来体现出拉普拉斯变换在解决复杂电路问题的快捷、省时、简便优越性!

关键词:拉普拉斯变换、一阶电路、二阶电路

引言:通常研究电路的稳态只要利用代数方程就行了,而研究电路的瞬态就需要借助于微分方程。因为只有微分方程才能不仅表明状态而且能表明状态的变换即过程!在分析解决电路瞬态问题时每一个不同的电路瞬态就要建立一个微分方程,解决一些简单问题的微分方程对我们打学生来说相对比较容易一些,而对于一些复杂的高阶微分方程将是一个大难题!本文将通过对一阶电路和二阶电路的微分方程的分析来证明拉普拉斯变换在解决瞬态电路问题是优越性!

正文:随着计算机的飞速发展,系统分析和设计的方法发生了革命化的变革,原来用传统的模拟系统来进行的许多工作现在都可以用数学的方法来完成。因此,数学电路、离散系统的分析方法就更显的重要了。拉普拉斯变换一直是分析这类系统的有效方法。下面用一个实例来证明其的优越性!

例一有一个电路如下图所示,其电源电动势为E=EmSinwt(Em、w都

是常数),电阻R 和电感L 都是常量,求电流i(t).

解法一——传统法

有电学知识知道,当电流变化时,L 上有感应电动势——L

(t →0 )

+ – L

Us R i +

-

第三章 电路的暂态分析1

第三章 电路的暂态分析 一、填空题: 1. 一阶RC 动态电路的时间常数τ=___RC____,一阶RL 动态电路的时间常数τ=__L/R______。 2. 一阶RL 电路的时间常数越__大/小 _ (选择大或小),则电路的暂态过程进行的越快 慢/快 (选择快或慢)。。 3. 在电路的暂态过程中,电路的时间常数τ愈大,则电压和电流的增长或衰减就 慢 。 4. 根据换路定律,(0)(0)c c u u +-=,()+0L i =()0L i — 5. 产生暂态过程的的两个条件为 电路要有储能元件 和 电路要换路 。 6. 换路前若储能元件未储能,则换路瞬间电感元件可看为 开路 ,电容元件可看为 短路 ;若储能元件已储能,则换路瞬间电感元件可用 恒流源 代替,电容元件可用 恒压源 代替。 7. 电容元件的电压与电流在关联参考方向下,其二者的关系式为1 u idt C = ?;电感元件的电压与电流在关联参考方向下,其二者的关系式为di u L dt =。 8. 微分电路把矩形脉冲变换为 尖脉冲 ,积分电路把矩形脉冲变换为 锯齿波 。 9.下图所示电路中,设电容的初始电压(0)10C u V -=-,试求开关由位置1打到位置2后电容电压上升到90 V 所需要的时间为 4.8*10-3 秒。 F μ100 10. 下图所示电路中,V U u C 40)0(0_==,开关S 闭合后需 0.693**10-3

秒时间C u 才能增长到80V ? + U C - 11. 下图所示电路在换路前处于稳定状态,在0t =时将开关断开,此时电路的时间常数τ为 (R 1 +R 2 )C 。 U 12. 下图所示电路开关S 闭合前电路已处于稳态,试问闭合开关的瞬间, )0(+L U 为 100V 。 1A i L 13. 下图所示电路开关S 闭合已久,t=0时将开关断开,则i L (0-)= 4A ,u C (0+)= 16V ,i C (0+)= 0 。 u c 14.下图所示电路,当t=0时将开关闭合,则该电路的时间常数为 0.05S 。

第二章_Laplace变换(答案)

积分变换练习题 第二章 Laplace 变换 ________系_______专业 班级 姓名______ ____学号_______ §1 Laplace 变换的概念 §2 Laplace 变换的性质 一、选择题 1.设()(1)t f t e u t -=-,则[()]f t =L [ ] (A )(1)1s e s --- (B )(1)1s e s -++ (C )1s e s -- (D )1 s e s -+ 11[(1)][()];1[(1)](1)s s t s u t e u t se e u t s e --+??-== ? ? ?-= ?+?? 由延迟性质可得,再由位移性质可得,L L L 2.设2sinh ()t f t t = ,则[()]f t =L [ ] (A )1ln 1s s -+ (B )1ln 1s s +- (C )12ln 1s s -+ (D )1 2ln 1 s s +- 见课本P84 二、填空题 1.设2()(2)f t t u t =-,则[]()f t =L 。 22''222321[(2)][()];1442[(1)]s s s s u t e u t se s s t u t se s e -??-== ? ?++ ???-== ? ????? 由延迟性质可得,再由象函数的微分性质P83(2.7)可得,L L L 2.设2()t f t t e =,则[]()f t =L 。 (1)00'' 231[](Re()1);112[]1(1)t t st s t t e e e dt e dt s s t e s s +∞+∞---??===> ?- ? ???== ? ?--??? ???再由象函数的微分性质P83(2.7)可得,L L 三、解答题 1.求下列函数的Laplace 变换: (1)302()12404t f t t t ≤

放大电路的瞬态分析与稳态分析

放大电路的瞬态分析与稳态分析 对放大电路的研究,目前有稳态分析法和瞬态分析法两种不同的分析方法。 稳态分析法:也就是已讨论过的频率响应分析法。该方法以正弦波为放大电路的基本信号,研究放大电路对不同频率信号的幅值和相位的响应(或叫做放大电路的频域响应)。其优点是分析简单,便于测试;缺点是不能直观地确定放大电路的波形失真。 瞬态分析法:是以单位阶跃信号为放大电路的输入信号,研究放大电路的输出波形随时间变化的情况,它又称为放大电路的阶跃响应或时域响应。此方法常以上升时间和平顶降落的大小作为波形的失真标志。其优点是可以很直观地判断放大电路的波形失真,并可利用脉冲示波器直接观测放大电路瞬态响应。 在工程实际中,这两种方法可以互相结合,根据具体情况取长补短地运用。 单级放大电路的瞬态响应的上升时间 放大电路的阶跃响应分析以阶跃电压作为放大电路的基本信号,图1表示一个阶跃电压,它表示为 放大电路的阶跃响应主要由上升时间t r 和平顶降落来表示。阶跃响应分析其目的是求出这两个参数,并可将它与稳态分析中参数相联系。 分析单级共射放大电路的阶跃响应时,可采用小信号等效电路,将阶跃电压可分为上升阶段和平顶阶段并按其特点对电路进行简化。 图1 图 2

阶跃电压中上 升较快的部分,与 稳态分析中的高频 区相对应,可用RC 低通电路来模拟, 如图 2(a)所示。 由图可知 式中V S是阶跃 信号平顶部分电压 值。与时间 的关系如图2(b)所示。 上式表示在上升阶段时输出电压v O随时间变化的关系。输入电压v S在t=0 时是突然上升到最终值的,而输出电压是按指数规律上升的,需要经过一定时间,才能到达最终值,这种现象称为前沿失真。一般用输出电压从最终值的10%上升至90%所需的时间t r来表示前沿失真,t r称为上升时间。 由图2(b)经推导可得 已知可得 或 可见,上升时间t r与上限频率f H成反比,f H越高,则上升时间愈短,前沿失真越小。 单级放大电路的瞬态响应的平顶降落 阶跃电压的平顶阶段与稳态分析中的低频区相对应,所以可用如图1(a)所示RC 高通电路来模拟。

拉普拉斯变换公式总结

拉普拉斯变换、连续时间系统的S 域分析 基本要求 通过本章的学习,学生应深刻理解拉普拉斯变换的定义、收敛域的概念:熟练掌握拉普拉斯变换的性质、卷积定理的意义及它们的运用。能根据时域电路模型画出S 域等效电路模型,并求其冲激响应、零输入响应、零状态响应和全响应。能根据系统函数的零、极点分布情况分析、判断系统的时域与频域特性。理解全通网络、最小相移网络的概念以及拉普拉斯变换与傅里叶变换的关系。会判定系统的稳定性。 知识要点 1. 拉普拉斯变换的定义及定义域 (1) 定义 单边拉普拉斯变换: 正变换0[()]()()st f t F s f t dt e ζ∞ -- ==? 逆变换 1 [()]()()2j st j F s f t F s ds j e σσζπ+∞ -∞ == ? 双边拉普拉斯变换: 正变换 ()()st B s f t dt e F ∞ --∞ =? 逆变换1 ()()2j st B j f t s ds j e F σσπ+∞ -∞ = ? (2) 定义域

若0σσ>时,lim ()0t t f t e σ-→∞ =则()t f t e σ-在0σσ>的全部范围内收敛,积分0()st f t dt e +∞ -- ? 存 在,即()f t 的拉普拉斯变换存在。0σσ>就是()f t 的单边拉普拉斯变换的收敛域。0σ与函数()f t 的性质有关。 2. 拉普拉斯变换的性质 (1) 线性性 若11[()]()f t F S ζ=,22[()]()f t F S ζ=,1κ,2κ为常数时,则11221122[()()]()()f t f t F s F s ζκκκκ+=+ (2) 原函数微分 若[()]()f t F s ζ=则() [ ]()(0)df t sF s f dt ζ-=- 1 1()0 ()[]()(0)n n n n r r n r d f t s F s s f dt ζ----==-∑ 式中() (0)r f -是r 阶导数() r r d f t dt 在0-时刻的取值。 (3) 原函数积分 若[()]()f t F s ζ=,则(1)(0)()[()]t f F s f t dt s s ζ---∞ =+? 式中0(1) (0)()f f t dt ---∞=? (4) 延时性 若[()]()f t F s ζ=,则000[()()]()st f t t u t t e F s ζ---= (5) s 域平移

RC电路的瞬态分析

第二章电路的瞬态分析 课堂设计

讲授准备 1.写好教案,准备多媒体教室并试验课件; 3.清点到课人数,登记教学日志; 4.接受报告,如有首长听课,须向首长报告。 课目:RC电路的瞬态分析 目的:1、RC电路的零输入响应。 2、RC电路的零状态响应。 3、RC电路的全响应。 内容:一、RC电路的零输入响应 二、RC电路的零状态响应 三、RC电路的全响应 方法:理论讲解、多媒体演示、课堂练习 时间:2课时 地点:教室 要求:1.遵守课堂纪律,姿态端正,认真听讲; 2.理论联系实际,做到学用结合; 3.认真讨论,积极踊跃发言。 保障:1.教材和笔记本; 2.多媒体课件和教鞭。 3.多媒体教室。 讲授实施 2.4 RC电路的瞬态分析

本节导学:本节主要学习RC 电路的零输入相应、零状态相应和全相应的微分方程。公式比较多,其实都是全相应的微分方程的解。 一、RC 电路的零输入响应 如图RC 串联电路中,先将开关S 闭合在a 端,使电容两端的电压充至U 0,然后突然将开关S 合到b 端。这个时候是不是就没有电源,也就是换路后外部激励为零,但在内部储能的作用下,电容经电阻开始放电。那么,这个时候电路的输出也就是电路的响应为零输入响应。 那么,我们研究RC 电路的零输入响应也就是研究电容的放电规律。 换路以后,根据KVL ,由换路后的电路可列出方程式: 0=+C C u Ri 由于电容的电流和电容的存在这样一个关系:dt du C i =,带入上面的方程,就有:0=+C C u dt du RC 。那么,这是一个一阶线性齐次常微分方程。所以我们也称这样的电路为一阶动态电路。 t RC t RC c C C C C C C C C Ae e e u c t RC u dt RC u du u dt du RC u Ri 1111 1 ln 1 00- -==+-=-==+=+ 那么,A 是任意常数。

电路的暂态分析习题解答

电路的暂态分析习题解 答 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-

第五章 电路的暂态分析 题图所示各电路在换路前都处于稳态,求换路后电流i 的初始值和稳态值。 解:(a )A i i L L 32 6)0()0(===-+, 换路后瞬间 A i i L 5.1)0(2 1)0(==++ 稳态时,电感电压为0, A i 32 6== (b )V u u C C 6)0()0(==-+, 换路后瞬间 02 ) 0(6)0(=-= ++C u i 稳态时,电容电流为0, A i 5.12 26=+= (c )A i i L L 6)0()0(11==-+,0)0()0(22==-+L L i i 换路后瞬间 A i i i L L 606)0()0()0(21=-=-=+++ 稳态时电感相当于短路,故 0=i (a)(b) (d) (c) C C 2Ω 2 +6V - 题5.1图 i

(d )2 (0)(0)6322 C C u u V +-==?=+ 换路后瞬间 6(0)63 (0)0.75224 C u i A ++--= ==+ 稳态时电容相当于开路,故 A i 12 226 =++= 题图所示电路中,S 闭合前电路处于稳态,求u L 、i C 和i R 的初始值。 解:换路后瞬间 (0)6L i A +=, (0)3618C u V +=?= (0)6(0)0R L i i ++=-= (0)18 (0)(0)6033 C C L u i i +++=-=-= (0)(0)(0)0L C R u u Ri ++++==, (0)(0)18L C u u V ++=-=- 求题图所示电路换路后u L 和i C 的初始值。设换路前电路已处于稳态。 解:换路后,(0)(0)4L L i i mA +-==, 所以换路后4mA 电流全部流过R 2,即 (0)4C i mA += 由于(0)(0)8C C u u V +-==,故 2(0)(1)(0)(0)20812L L c u R R i u V +++=-++=-+=- Ω +u L -题5.2图 题5.3图 C

最新动态电路的暂态分析

动态电路的暂态分析

第六章 动态电路的暂态分析 本章的主要任务是认识动态电路的过渡过程,学习动态电路过渡过程的变化规律,掌握动态电路过渡过程的基本分析方法。 本章基本要求 1. 了解动态电路过渡过程产生的原因。 2. 正确理解电路的换路定律。 3. 求解电路的初始值和稳态值。 4. 正确理解动态电路的零输入响应、零状态响应和全响应。 5. 掌握动态电路暂态分析的经典法。 6. 掌握一阶电路的三要素分析法。 7. 一阶电路过渡过程变化规律及其物理意义。 本章习题解析 6-1 电路如图6-1所示,已知6=U V ,Ω=51R ,Ω=12R ,Ω=43R ,开关S 闭合前电路已处于稳态。0=t 时开关S 闭合。试求+=0t 时的C u 、L u 、i 、i C 和i L 。 图6-1 3 i R 1 R 3 3

t = 0-时等效电路 t = 0+时等效电路 图6-1(a) 图6-1 (b) 解 (1)画出换路前t = 0-时的等效电路,如图6-1(a)所示,得 A 1)0(2 1=+= -R R U i L 1)0(22 1=+= -R R R U u C V 由换路定律,得 A 1)0()0(==-+L L i i , V 1)0()0(==-+C C u u (2)画出换路后t = 0+时的等效电路,如图6-1(b)所示,得 ()25.14 1 60=-= +C i A ()25.010)0(=-=++C i i A ()()5100=?-=++C C i u u V 6-2 电路如图6-2所示,已知220=U V ,Ω=1201R ,Ω=3202R , Ω=1003R ,1=L H ,10=C μF ,0=t 时开关S 闭合。试求:(1)+=0t 时的i 、 1i 、2i 、L u 、C u ;(2)当电路进入稳态后)(∞=t ,计算上述电流和电压的值。 3 图6-2

第4章拉普拉斯变换

第四章 连续信号与系统的S 域分析 1、如下方程和非零起始条件表示的连续时间因果LTI 系统, ()()t f dt df t y dt dy dt y d 52452 2+=++ 已知输入()()t e t f t ε3-=时,试求(1)系统的零状态响应;(2)判断系统的稳定性 解:(1) 方程两边取拉氏变换; ()()()() 4 5524 55 22 2+++=?+++= ?=s s s s F s s s s F s H s Y ()()() t e e e t y s s s s s s s s Y t t t zs z ε?? ? ??--=+- +-+=+++?+= ---422121214 2122111459221 (2) 对于因果连续系统,()s H 的全部极点位于s 平面的左半平面, ()t h 才是衰减信号,由此可以得出,在复频域有界输出的充要条件是系统函数()s H 的全部极点位于s 平面的左半平面,若系统函数的极点是虚轴上的单阶共轭极点。则系统临界稳定,若系统函数的极点在右半平面,则系统不稳定,如下图。 该题中,()1 1 4145522+++=+++=s s s s s s H ,其极点分别为4,121-=-=s s ,都在左半平面,所以 系统稳定。 2、如下方程和非零起始条件表示的连续时间因果LTI 系统 ()()()()?? ???==+=++--30,20223'22y y t f dt df t y dt dy t d y d

已知输入()()t e t f t ε3-=时,试用拉普拉斯变换的方法求系统的零状态响应()t y zs 和零输入响应 ()t y zi , 0≥t 以及系统的全响应()0,≥t t y 。 解:方程两边取拉氏变换 ()()()()()()[]()() ()()()()()() ()()()() ()()() t e e e t y t e e t y s s s s s s Y t e e e t y s s s s s s s s Y s s s s s s s s Y s s F s F s y y sy s Y s s t t t t t zi zi t t t zs ZS εεε?? ? ??+--=+-=+++-=+++=??? ??-+-=+-++++-=+?+++=++++++?+++=+= +=---+++-----------213225 751 7 25239232132 5 1 2 123325312312223632312312;3112030'023********* 22

按键消抖电路瞬态分析和设计

按键消抖电路瞬态分析和设计 按键是仪器仪表中普遍采用的人机输入接口电路。在按键电路中必须考虑对按键的抖动进行软件消抖和硬件消抖。软件消抖具有使用硬件数量少的优点,但也具有以下两个缺点:(1)在仪器键盘电路中,多个按键安装在仪器面板上,键盘的输出通过排线连接到主控板上,此时键盘导线寄生电感和寄生电容的存在,寄生电感寄生电容和排线电阻将组成二阶振荡系统,二阶振荡将形成负电平脉冲,而负电平脉冲很容易超出数字芯片的输入最大允许电平范围,导致数字芯片容易损坏。(2)按键闭合和断开时,电压信号下降沿非常陡峭,剧烈变化的电压信号将通过互容传递到相邻导线上。硬件消抖电路的设计主要是要考虑以下三个因素:(1)消除信号的抖动,确保按键电路输出信号的平整;(2)消除信号的下冲,因为下冲电平超出了后续数字芯片的最大输入电平范围;(3)降低信号变化的速度,避免在邻线上引起容性串扰;(4)不影响按键电路的正常功能。常见的硬件消抖电路包括电容滤波消抖和触发器消抖。电容滤波消抖采用电阻和电容组成低通滤波器,具有电路结构简单可靠的优点,因此本文将重点阐述该消抖电路。1 按键消抖电路结构与电路模型图1为某仪器按键电路原理图,按键安装在仪器面板上,通过导线连接到主控板上,按键的一端接上拉电阻并连接后续电路,按键的另一端接地,当按键没有按下时,按键输出高电平,当按键按下时,按键输出低电平。图2为加上滤波电容后的按键电路。 图1 某仪器按键电路 图2 按键消抖电路 图3为按键消抖电路的电路模型。图中R0为连接按键导线的电阻,L 为导线电感,C0为导线对地电容,C f为滤波电容,C p为按键后续电路的输入电容,R i为按键后续电路的输入阻抗,R 为上拉电阻,V CC为电源电压,U为按键消抖电路的输出电压。

傅里叶变换和拉普拉斯变换的性质及应用

1.前言 1.1背景 利用变换可简化运算,比如对数变换,极坐标变换等。类似的,变换也存在于工程,技术领域,它就是积分变换。积分变换的使用,可以 使求解微分方程的过程得到简化,比如乘积可以转化为卷积。什么是积 分变换呢?即为利用含参变量积分,把一个属于A函数类的函数转化属 于B函数类的一个函数。傅里叶变换和拉普拉斯变换是两种重要积分变 换。分析信号的一种方法是傅立叶变换,傅里叶变换能够分析信号的成 分,也能够利用成分合成信号。可以当做信号的成分的波形有很多,例 如锯齿波,正弦波,方波等等。傅立叶变换是利用正弦波来作为信号的 成分。Pierre Simon Laplace 拉普拉斯变换最早由法国数学家天文学家 (拉普拉斯)(1749-1827)在他的与概率论相关科学研究中引入,在他 的一些基本的关于拉普拉斯变换的结果写在他的著名作品《概率分析理 论》之中。即使在19世纪初,拉普拉斯变换已经发现,但是关于拉普拉 斯变换的相关研究却一直没什么太大进展,直至一个英国数学家,物理 学家,同时也是一位电气工程师的Oliver Heaviside奥利弗·亥维赛 (1850-1925)在电学相关问题之中引入了算子运算,而且得到了不少 方法与结果,对于解决现实问题很有好处,这才引起了数学家对算子理 论的严格化的兴趣。之后才创立了现代算子理论。算子理论最初的理论 依据就是拉普拉斯变换的相关理论,拉普拉斯变换相关理论的继续发展 也是得益于算理理论的更进一步发展。这篇文章就是针对傅里叶变换和 拉普拉斯变换的相关定义,相关性质,以及相关应用做一下简要讨论, 并且分析傅里叶变换和拉普拉斯变换的区别与联系。 1.2预备知识 定理1.2.1(傅里叶积分定理) 若在(-∞,+∞)上,函数满足一下条件:

第四章 拉普拉斯变换

第四章拉普拉斯变换 第一题选择题 1.系统函数H(s)与激励信号X(s)之间 B 。 A、是反比关系; B、无关系; C、线性关系; D、不确定。 2.如果一连续时间系统的系统函数H(s)只有一对在复平面左半平面的共轭极点,则它的h(t)应是 B 。 A、指数增长信号 B、指数衰减振荡信号 C、常数 D、等幅振荡信号 3.一个因果稳定的连续系统,其H(s)的全部极点须分布在复平面的 A 。 A、左半平面 B、右半平面 C、虚轴上 D、虚轴或左半平面 4.如果一连续时间系统的系统函数H(s)只有一个在左半实轴上的极点,则它的h(t)应是B 。 A、指数增长信号 B、指数衰减振荡信号 C、常数 D、等幅振荡信号 5.一个因果稳定的连续系统,其H(s)的全部极点须分布在复平面的 A 。 A 左半平面 B 右半平面 C 虚轴上 D 虚轴或左半平面 6.若某连续时间系统的系统函数H(s)只有一对在复平面虚轴上的一阶共轭极点,则它的h(t)是D 。 A 指数增长信号 B 指数衰减信号 C 常数 D 等幅振荡信号 7.如果一连续时间系统的系统函数H(s)只有一对在虚轴上的共轭极点,则它的h(t)应是D A、指数增长信号 B、指数衰减振荡信号 C、常数 D、等幅振荡信号 8.如果系统函数H(s)有一个极点在复平面的右半平面,则可知该系统 B 。 A 稳定 B 不稳定 C 临界稳定 D 无法判断稳定性 9.系统函数H(s)是由 D 决定的。 A 激励信号E(s) B 响应信号R(s) C 激励信号E(s)和响应信号R(s) D 系统。10.若连续时间系统的系统函数H(s)只有在左半实轴上的单极点,则它的h(t)应是 B 。 A 指数增长信号 B 指数衰减信号 C 常数 D 等幅振荡信号 11、系统函数H(s)与激励信号X(s)之间 B A、是反比关系; B、无关系; C、线性关系; D、不确定。

第三章 电路的暂态分析1培训资料

第三章电路的暂态分 析1

第三章 电路的暂态分析 一、填空题: 1. 一阶RC 动态电路的时间常数τ=___RC____,一阶RL 动态电路的时间常数τ=__L/R______。 2. 一阶RL 电路的时间常数越__大/小 _ (选择大或小),则电路的暂态过程进行的越快 慢/快 (选择快或慢)。。 3. 在电路的暂态过程中,电路的时间常数τ愈大,则电压和电流的增长或衰减就 慢 。 4. 根据换路定律,(0)(0)c c u u +-=,()+0L i =()0L i — 5. 产生暂态过程的的两个条件为 电路要有储能元件 和 电路要换路 。 6. 换路前若储能元件未储能,则换路瞬间电感元件可看为 开路 ,电容元件可看为 短路 ;若储能元件已储能,则换路瞬间电感元件可用 恒流源 代替,电容元件可用 恒压源 代替。 7. 电容元件的电压与电流在关联参考方向下,其二者的关系式为1 u idt C = ? ;电感元件的电压与电流在关联参考方向下,其二者的关系式为di u L dt =。 8. 微分电路把矩形脉冲变换为 尖脉冲 ,积分电路把矩形脉冲变换为 锯齿波 。 9.下图所示电路中,设电容的初始电压(0)10C u V -=-,试求开关由位置1打到位置2后电容电压上升到90 V 所需要的时间为 4.8*10-3 秒。

F μ100 10. 下图所示电路中,V U u C 40 )0(0_==,开关S 闭合后需 0.693**10-3 秒时间C u 才能增长到 80V ? + U C - 11. 下图所示电路在换路前处于稳定状态,在0t =时将开关断开,此时电路的时间常数τ为 (R 1 +R 2 )C 。 U 12. 下图所示电路开关S 闭合前电路已处于稳态,试问闭合开关的瞬间,)0(+L U 为 100V 。 1A i L

第二章 拉普拉斯变换的数学方法

第二章 拉普拉斯变换的数学方法 2-1 试求下列函数的拉氏变换 (1)23)(2 ++=t t t f 解:3 2232()=++F s s s s (2)t t t f 2cos 32sin 5)(?= 解:22 103()44=?++s F s s s (3)at n e t t f ?=)( 解:1 ! ()()+=?n n F s s a (4)t e t f t 6sin )(2?= 解:2 6 ()(2)36 =++F s s (5)at t t f cos )(= 解:1()cos ()2 ?==+jat jat f t t at t e e 22 2222222 111()2()()()4??+=+=??+??+??s a F s s ja s ja s a a s (6)t t f 2 cos )(= 解:1cos 2()2+= t f t 22 2211112 ()()22424(4) +=+?=+=+++s s s F s s s s s s s (7))(5)(2t e t f t δ+= 解:1 ()52 = +?F s s (8))(sin )(cos )(t u t t t t f ???=δ 解:1 111)(22 2+=+?=s s s s F 2-2 已知) 1(10 )(+= s s s F (1)利用终值定理,求∞→t 时的)(t f 值。 解:0 01010 lim ()lim ()lim lim 10(1)1 →∞ →→→====++t s s s f t sF s s s s s (2)通过取)(s F 拉氏反变换,求∞→t 时的)(t f 值

电路的暂态分析

第8章电路的暂态分析 含有动态元件L和C的线性电路,当电路发生换路时,由于动态元件上的能量不能发生跃变,电路从原来的一种相对稳态过渡到另一种相对稳态需要一定的时间,在这段时间内电路中所发生的物理过程称为暂态,揭示暂态过程中响应的规律称为暂态分析。 本章的学习重点: ●暂态、稳态、换路等基本概念; ●换路定律及其一阶电路响应初始值的求解; ●零输入响应、零状态响应及全响应的分析过程; ●一阶电路的三要素法; ●阶跃响应。 8.1 换路定律 1、学习指导 (1)基本概念 从一种稳定状态过渡到另一种稳定状态需要一定的时间,在这一定的时间内所发生的物理过程称为暂态;在含有动态元件的电路中,当电路参数发生变化或开关动作等能引起的电路响应发生变化的现象称为换路;代表物体所处状态的可变化量称为状态变量,如i L和u C就是状态变量,状态变量的大小显示了储能元件上能量储存的状态。 (2)基本定律 换路定律是暂态分析中的一条重要基本规律,其内容为:在电路发生换路后的一瞬间,电感元件上通过的电流i L和电容元件的极间电压u C,都应保持换路前一瞬间的原有值不变。此规律揭示了能量不能跃变的事实。 (3)换路定律及其响应初始值的求解 一阶电路响应初始值的求解步骤一般如下。 ①根据换路前一瞬间的电路及换路定律求出动态元件上响应的初始值。 ②根据动态元件初始值的情况画出t=0+时刻的等效电路图:当i L(0+)=0时,电感元件在图中相当于开路;若i L(0+)≠0时,电感元件在图中相当于数值等于i L(0+)的恒流源;当 u C(0+)=0时,电容元件在图中相当于短路;若u C(0+)≠0,则电容元件在图中相当于数值等于u C(0+)的恒压源。

拉氏变换与Z变换的基本公式及性质

1拉氏变换的定义 若时间函数 f (t ) 在 t > 0 有定义,则 f (t ) 的拉普拉斯变换(简称拉氏变换)为 ? ∞ -?= =0 )()()]([dt e t f s F t f L ts ???)()(t f s F 2拉普拉斯反变换 s s F t f st d e )(j 21 )( j j ?∞ +∞ -=σσ π ,可表示为:f (t ) =L -1[F (s )] 1.表A-1 拉氏变换的基本性质 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = -=][ '- -=-=----=-∑1 1)1() 1(1 22 2) ()() 0()()(0)0()(])([)0()(]) ([ k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时 )(])([s F s dt t f d L n n n = 3 积分定理 一般形式 ∑???????????==+-===+=+ +=+= n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 10 102 2022 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L ) (]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 )()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ 像 原像

拉氏变换定义及性质

2.5 拉氏变换与反变换 机电控制工程所涉及的数学问题较多,经常要解算一些线性微分方程。按照一般方法解算比较麻烦,如果用拉普拉斯变换求解线性微分方程,可将经典数学中的微积分运算转化为代数运算,又能够单独地表明初始条件的影响,并有变换表可查找,因而是一种较为简便的工程数学方法。 2.5.1 拉普拉斯变换的定义 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0 e d st F s L f t f t t ∞ -=?????? (2.10) s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0e st 称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式(2.10)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 1.单位阶跃函数 )(1t 的拉氏变换 单位阶跃函数是机电控制中最常用的典型输入信号之一,常以它作为评价系统性能 的标准输入,这一函数定义为 ?? ?≥s ,则 0 e lim →-∞ →st t 。 所以:

各种激励信号的设置及瞬态分析

中南大学 CAD实验 题目各种激励信号的设置及瞬态分析学生姓名 指导教师 学院 专业班级 学生学号 年月日

一、实验目的 1、了解各种激励信号中参数的意义,掌握其设置方法。 2、掌握对电路进行瞬态分析的设置方法,能够对所给出的实际电路进行规 定的瞬态分析,得到电路的瞬态响应曲线。 二、实验内容 1、正确设置正弦信号、脉冲信号、周期性分段线性信号,参数自行确定,要求屏幕上正好显示4个完整周期的信号曲线。 (1)正弦信号voff=1v, vampl=2v, vfreq=1khz, phase=60, df=0, td=0 (2)脉冲信号Pulse:v1=1v, v2=3v,per=2s, pw=1s,td=1s,tf=0.6s,tr=0.2s (3)PWL(piece-wise Linear) t1=0s, t2=1s, t3=1.2s,t4=1.3s, t5=2s, t6=3.5s

t7=4s,t8=4.5s V1=0, v2=2, v3=0.5, v4=2, v5=1, v6=3, v7=1, v8=2 2、对下图单管放大电路进行瞬态分析,信号源采用正弦波,频率从1kHz 到20kHz任意选定。根据信号频率,合理选择分析结束时间,观测输出端的波形,屏幕上正好显示5个完整周期的波形。

设置如下:正弦信号:voff=1v, vampl=2v, vfreq=1khz, phase=60, df=0, td=0 3、在瞬态分析的同时对输出节点(out)的电压波形进行傅里叶分析,分析计算到6次谐波。 FOURIER COMPONENTS OF TRANSIENT RESPONSE V(OUT) DC COMPONENT = 2.174553E+00 HARMONIC FREQUENCY FOURIER NORMALIZED PHASE NORMALIZED NO (HZ) COMPONENT COMPONENT (DEG) PHASE (DEG) 1 1.000E+03 5.468E+00 1.000E+00 -1.190E+0 2 0.000E+00 2 2.000E+0 3 1.451E+00 2.653E-01 -1.466E+02 9.135E+01 3 3.000E+03 1.265E+00 2.314E-01 5.004E-01 3.574E+02 4 4.000E+03 1.192E+00 2.180E-01 -2.589E+01 4.500E+02 5 5.000E+03 2.318E-01 4.240E-02 1.074E+02 7.022E+02 6 6.000E+03 8.352E-01 1.528E-01 9.329E+01

拉普拉斯变换的基本性质变换及反变换

拉普拉斯变换的基本性质、变换及反变换1.表A-1 拉氏变换的基本性质

2.表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= +

常用拉普拉斯变换及反变换

附录A 拉普拉斯变换及反变换1.表A-1 拉氏变换的基本性质 419

2.表A-2 常用函数的拉氏变换和z变换表 420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =????L L (m n >) 式中系数n n a a a a ,,...,,110?,m m b b b b ,,,110?L 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=?=?++?++?+?=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)(L L (F-1) 式中,n s s s ,,,21L 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i ?=→ (F-2) 或 i s s i s A s B c =′= )() ( (F-3) 式中,)(s A ′为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []???????==∑=??n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c ?=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ???= +L = n n i i r r r r r r s s c s s c s s c s s c s s c s s c ?++?++?+?++?+?++??L L L 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;

拉普拉斯变换表及一些性质

419 1.表A-1 拉氏变换的基本性质 1 线性定理 齐次性 )()]([s aF t af L = 叠加性 )()()]()([2121s F s F t f t f L ±=± 2 微分定理 一般形式 = -=][ '- -=-=----=-∑1 1 )1() 1(1 22 2) ()() 0()()(0)0()(])([)0()(]) ([ k k k k n k k n n n n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L )( 初始条件为0时 )(])([s F s dt t f d L n n n = 3 积分定理 一般形式 ∑???????????==+-===+=+ +=+= n k t n n k n n n n t t t dt t f s s s F dt t f L s dt t f s dt t f s s F dt t f L s dt t f s s F dt t f L 10 102 2022 ]))(([1)(])()([]))(([])([)(]))(([])([)(])([个 共个 共 初始条件为0时 n n n s s F dt t f L ) (]))(([=??个 共 4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts -=-- 5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=- 6 终值定理 )(lim )(lim 0 s sF t f s t →∞ →= 7 初值定理 )(lim )(lim 0 s sF t f s t ∞ →→= 8 卷积定理 ) ()(])()([])()([210 210 21s F s F d t f t f L d f t f L t t =-=-??τττττ

相关文档
最新文档