简单微分方程的求解

简单微分方程的求解
简单微分方程的求解

一、一阶微分方程

1. 线性齐次方程

'y ()0p x y +=

①分离变量法求解

②两边同时乘以()p x dx e ?

,积分因子法 通解:()p x dx y Ce -?=

2. 线性非齐次方程

'y ()()p x y g x +=

①常数变易法

②两边同时乘以()p x dx e ?

,积分因子法 通解:()()(())p x dx p x dx y e C g x e dx -??=+?

线性微分方程的解有一些很好的性质,例如(1)齐次方程的解或者恒等于零,或者恒不等于零(2)齐次方程任何解的线性组合仍是它的解(3)齐次方程的任一解与非齐次方程任一解之和仍是非齐次方程的解(4)非齐次方程任意两解之差必是对应齐次方程的解(5)非齐次方程的任一解与对应齐次方程的通解之和是非齐次方程的通解。

3. Bernoulli 方程

'()()y p x y g x y α+=

(1)0α=时,该方程为线性非齐次方程

(2)1α=时,该方程为线性齐次方程

(3)0,1α≠时,作变量替换1z y α-=,该方程转化为

(1)()(1)()dz p x z g x dx

αα+-=-,这是关于未知函数z 的一阶线性方程 4. Riccati 方程

2()()()dy p x y q x y f x dx

=++

Riccati 方程在一般情况下无法用初等积分求出解,只是对一些特殊情况或者事先知道了它的一个特解,才能求出其通解。

(1)当()p x 、()q x 、()f x 都是常数时,是可分离变量方程,用分离变量法求解。

(2)当()0p x ≡时,是线性方程。

(3)当()0f x ≡时,是Bernoulli 方程。

当()f x r ≡,设已有一特解1()y x

命1()()()z x y x y x =-,代得211(2)dz dy dy pz py q z dx dx dx

=-=++ 这是一个关于z 的Bernoulli 方程。

(4)当Riccati 方程的形式为

22dy l b ay y dx x x

+=+,可利用变量替换z xy =,将方程化为可分离变量方程 2(1)dz x az l z b dx

=-+++ 当Riccati 方程的一个特解()y x ?=已知时,我们利用变换()y z x ?=+,代入方程后可得:

22()()(2()())()(())()dz d x p x z z x x q x z x f x dx dx

????+=+++++ 由于()y x ?=是方程的解,从上式消去相关的项后得:

2(2()()())()dz p x x q x z p x z dx

?=++,这是一个Bernoulli 方程。 (5)当Riccati 方程的形式为

2m dy ay bx dx

+=,其中a 、b 、m 都是常数,且设0a ≠,又设0x ≠和0y ≠,则当 440,2,,,(1,2,)2121

k k m k k k --=-=+-L 时,方程可通过适当的变换化为变量可分离方程。

5. 可分离变量方程

'()()y f x g y =

()()

dy f x dx g y =,通解为()()dy f x dx C g y =+?? 6. 齐次方程

()dy y g dx x

= 作变量替换y z x =,则dy dz z x dx dx =+,即()dz g z z dx x

-= 通解为ln ()dz x C g z z =+-?。

7. 全微分方程与积分因子

设(,)u F x y =是一个连续可微的二元函数,则它的全微分为:

(,)(,)(,)F x y F x y du dF x y dx dy x y

??==+?? 若有函数使得:(,)(,)(,)dF x y M x y dx N x y dy =+

则称(,)(,)0M x y dx N x y dy +=为全微分方程,此时,微分方程的解就是(,)F x y C = 微分方程的成立条件:设函数(,)M x y 和(,)N x y 在一个矩形区域R 中连续且有连续的一阶偏导数,则(,)(,)0M x y dx N x y dy +=是全微分方程的充要条件是

(,)(,)M x y N x y y x

??=?? 微分方程的解为000(,)(,)(,)x

y

x y F x y M s y ds N x s ds =+??(线积分法) 此时还可应用偏积分法与凑微分法

如:22

(cos sin )(1)0x x xy dx y x dy -+-=

重新分组整理为22cos sin ()0x xdx xy dx yx dy ydy -++=

如果有函数(,)x y μ,使得方程

(,)(,)(,)(,)0x y M x y dx x y N x y dy μμ+=是全微分方程(恰当方程),则(,)x y μ称为方程

(,)(,)0M x y dx N x y dy +=的一个积分因子

积分因子一般很难求解,但有如下情况可求:

(1)微分方程(,)(,)0M x y dx N x y dy +=有一个依赖于x 的积分因子的充要条件是 (,)(,)()/(,)M x y N x y N x y y x

??-??仅于x 有关,则积分因子可求: (,)(,)()/(,)()M x y N x y N x y dx y x x e μ??-???=

(2)微分方程(,)(,)0M x y dx N x y dy +=有一个依赖于y 的积分因子的充要条件是 (,)(,)()/(,)N x y M x y M x y x y

??-??仅于y 有关,则积分因子可求: (,)(,)()/(,)()M x y N x y M x y dy y x x e μ??-???=

积分因子是求解微分方程的一个极为重要的办法,绝大多数方程的求解都可以通过寻找到一个合适的积分因子来解决。但求一个微分方程的积分因子十分困难,需要灵活运用各种微分法的技巧与经验。例如,当一个微分方程中出现xdy ydx -的项时,函数1xy 、21x 、21y 和221x y +都有可能成为其积分因子,可以根据方程中其他项进行适当的选择。下面的几个方程和对应的积分因子分别为:

10,xy

xdy ydx xydx -+= 2210,

x xdy ydx x dx -+= 22

10,y xdy ydx y dx -+= 22221)(0,

x y xdy ydx x y dx ++-+=

另外,若有微分方程:

1122((,)(,))((,)(,))0M x y dx N x y dy M x y dx N x y dy +++=

其中第一组和第二组各有积分因子1(,)x y μ和2(,)x y μ,使得

1111(,)((,)(,))(,)x y M x y dx N x y dy dF x y μ+=

2222(,)((,)(,))(,)x y M x y dx N x y dy dF x y μ+=

由于对任意可微函数1()u G 和2()u G ,111(,)((,))x y F x y G μ是第一组的积分因子,222(,)((,))x y F x y G μ是第二组的积分因子。如果能选取的1()u G 和2()u G ,使得: 111222(,)((,))(,)((,))x y F x y x y F x y G G μμ=

则111(,)((,))(,)x y F x y x y G μμ=就是该微分方程的一个积分因子。

8. 变量替换法

(1)形如()f ax by c dy dx =++的方程

对于这种类型的方程,引入新变量z ax by c =++ 则a b dy dz dx dx =+,于是原方程就化为()a bf z dz dx

=+ 这是一个变可分离方程,它的通解为

()dz x C a bf z =++? 此时注意:形如111222

a x

b y

c a x b y c dy dx ++=++的微分方程,若上下二元一次方程组有解,则利用齐次解法依靠解的坐标点化简此式,若无解则利用变量替换法求解。

(2)形如()()0yf xy dx xg xy dy +=的方程

对于这类方程,引入新变量z xy =,则z x y =,2xdz zdx x dy -= 原方程可以化为(()())()0z f z g z dx g z dz x

-+=,这是一个可分离变量方程。 (3)用变量替换法求解微分方程是十分灵活的,依赖于方程的形式和求导的经验,在学

习过程中要多积累。

9. 一阶隐式微分方程解法

10. 近似解法

(1)逐次迭代法

逐次迭代法是利用证明初始值问题解的存在唯一性时所构造的Picard 迭代序列的前若

干项来近似初始值问题的解,其近似序列为:

00()y x y =

0100()(,())x x y x y f t y t dt =+

? L L L L

001()(,())x

n n x y x y f t y t dt -=+?

当初始值问题满足解的存在唯一性定理的条件时,上面的迭代序列在一个区间一致收

敛到它的解。故当n 较大时,()n y x 就是初始值问题解的一个较好的近似。

(2)Taylor 级数法

设初始值问题的解可以在0x 的邻域内展开为收敛幂级数:

00()()n n n y x a x x ∞

==-∑

由Taylor 级数理论知,n a 是由()y x 的n 阶导数确定的,即:

()000()()()!

n n n y x y x x x n ∞==-∑ 于是,级数形式的解实际上就是要求出()y x 在0x 点的各阶导数值。如果我们能计算出()y x 前面一些导数值()0()n y x 时,就可以利用函数

()000()()()!

n N n N n y x y x x x n ==-∑来近似初始值问题的解()y x 。 由复合链导法则和方程初始值得:

(0)000()()y x y x y ==

(1)000()(,)x x dy

y x f x y dx ===

02(2)''00000002()(,())(,)(,)(,)x y x x x x d y d y x f x y x f x y f x y f x y dx dx ====

=+ 0

(3)''''''0000000()((,)(,)(,)(,)2(,)(,)x y xx xy x x d y x f x y f x y f x y f x y f x y f x y dx ==+=++ ''2'''2000000000000(,)(,)(,)(,)((,))(,)yy y x y f x y f x y f x y f x y f x y f x y ++ 根据需要,当函数(,)f x y 已知时,我们可以计算出解()y x 在0x 点直到N 阶导数值 从而得出()y x 的近似表达式。 从另一观点看,近似解()000()()()!

n N n N n y x y x x x n ==

-∑实质上就是要确定()y x 的级数表 达式0

0()()n n n y x a x x ∞==-∑中的前面若干个系数n a ,我们可以将00()()n n n y x a x x ∞==-∑ 代入初始值问题00(,),()dy f x y y x y dx

==,比较所得等式两边0()x x -的同次幂的系数 即可,这种方法即为待定系数法。

(3)数值方法

如Runge-Kutta 微分方程数值求解方法。

二阶微分方程解法知识讲解

二阶微分方程解法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程: 方程 y ''+py '+qy =0 称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数. 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解. 我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程 y ''+py '+qy =0 得 (r 2+pr +q )e rx =0. 由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解. 特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出. 特征方程的根与通解的关系: (1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解. 这是因为,

函数x r e y 11=、x r e y 22=是方程的解, 又x r r x r x r e e e y y )(21212 1-==不是常数. 因此方程的通解为 x r x r e C e C y 2121+=. (2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解. 这是因为, x r e y 11=是方程的解, 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111=++++=q pr r xe p r e x r x r , 所以x r xe y 12=也是方程的解, 且x e xe y y x r x r ==1112不是常数. 因此方程的通解为 x r x r xe C e C y 1121+=. (3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解. 函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得 y 1=e (α+i β)x =e αx (cos βx +i sin βx ), y 2=e (α-i β)x =e αx (cos βx -i sin βx ), y 1+y 2=2e αx cos βx , )(2 1cos 21y y x e x +=βα, y 1-y 2=2ie αx sin βx , )(21sin 21y y i x e x -=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解. 可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解. 因此方程的通解为

微分方程公式运用表

微分方程公式运用表 一、 一阶微分方程 判断特征: (,)dy f x y dx = 类型一:()()dy g x h y dx =(可分离变量的方程) 解法(分离变量法): ()()dy g x dx h y =,然后两边同时积分。 类型二:()()dy P x y Q x dx +=(一阶线性方程) 解法(常数变易法):()()(())P x dx P x dx y e C Q x e dx -??=+? 类型三: (,)(,)dy f x y f tx ty dx ==(一阶齐次性方程) 解法(换元法):y u x =?令类型一 类型四:P()y=Q(x)y n dy x dx +(伯努利方程) 解法(同除法):1()()n n dy y P x y Q x dx --+=?类型二 二、 可降阶的高阶微分方程 类型一:()()n y f x = 解法(多次积分法):(1)()()n du u y f x f x dx -=? =?令多次积分求 类型二:''(,')y f x y = 解法:'(,)dp p y f x p dx =?=?令一阶微分方程 类型三:''(,')y f y y = 解法:'(,)dp dp dy dp p y p f y p dx dy dx dy =?==??令类型二 三、线性微分方程 类型一:''()'()0y P x y Q x y ++=(二阶线性齐次微分方程) 解法:找出方程的两个任意线性不相关特解:12(),()y x y x

则:1122()()()y x c y x c y x =+ 类型二:''()'()()y P x y Q x y f x ++=(二阶线性非齐次微分方程) 解法:先找出对应的齐次微分方程的通解:31122()()()y x c y x c y x =+ 再找出非齐次方程的任意特解()p y x ,则:1122()()()()p y x y x c y x c y x =++ 类型三:'''0y py q ++=(二阶线性常系数齐次微分方程) 解法(特征方程法):2 1,20p q λλλ++=?= (一)122121240x x p q y c e c e λλλλ?=->?≠?=+ (二)12120()x y c c x e λλλλ?=?==?=+ (三)12120,(cos sin )x i i y e c x c x αλαβλαβββ?

二次微分方程的通解

教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为

MATLAB求解常微分方程数值解

利用MATLAB求解常微分方程数值解

目录 1. 内容简介 (1) 2. Euler Method(欧拉法)求解 (1) 2.1. 显式Euler法和隐式Euler法 (2) 2.2. 梯形公式和改进Euler法 (3) 2.3. Euler法实用性 (4) 3. Runge-Kutta Method(龙格库塔法)求解 (5) 3.1. Runge-Kutta基本原理 (5) 3.2. MATLAB中使用Runge-Kutta法的函数 (7) 4. 使用MATLAB求解常微分方程 (7) 4.1. 使用ode45函数求解非刚性常微分方程 (8) 4.2. 刚性常微分方程 (9) 5. 总结 (9) 参考文献 (11) 附录 (12) 1. 显式Euler法数值求解 (12) 2. 改进Euler法数值求解 (12) 3. 四阶四级Runge-Kutta法数值求解 (13) 4.使用ode45求解 (14)

1.内容简介 把《高等工程数学》看了一遍,增加对数学内容的了解,对其中数值解法比较感兴趣,这大概是因为在其它各方面的学习和研究中经常会遇到数值解法的问题。理解模型然后列出微分方程,却对着方程无从下手,无法得出精确结果实在是让人难受的一件事情。 实际问题中更多遇到的是利用数值法求解偏微分方程问题,但考虑到先从常微分方程下手更为简单有效率,所以本文只研究常微分方程的数值解法。把一个工程实际问题弄出精确结果远比弄清楚各种细枝末节更有意思,因此文章中不追求非常严格地证明,而是偏向如何利用工具实际求解出常微分方程的数值解,力求将课程上所学的知识真正地运用到实际方程的求解中去,在以后遇到微分方程的时候能够熟练运用MATLAB得到能够在工程上运用的结果。 文中求解过程中用到MATLAB进行数值求解,主要目的是弄清楚各个函数本质上是如何对常微分方程进行求解的,对各种方法进行MATLAB编程求解,并将求得的数值解与精确解对比,其中源程序在附录中。最后考察MATLAB中各个函数的适用范围,当遇到实际工程问题时能够正确地得到问题的数值解。 2.Euler Method(欧拉法)求解 Euler法求解常微分方程主要包括3种形式,即显式Euler法、隐式Euler法、梯形公式法,本节内容分别介绍这3种方法的具体内容,并在最后对3种方法精度进行对比,讨论Euler法的实用性。 本节考虑实际初值问题 使用解析法,对方程两边同乘以得到下式

二阶常微分方程的解法及其应用.

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

简单微分方程的求解

一、一阶微分方程 1. 线性齐次方程 'y ()0p x y += ①分离变量法求解 ②两边同时乘以()p x dx e ? ,积分因子法 通解:()p x dx y Ce -?= 2. 线性非齐次方程 'y ()()p x y g x += ①常数变易法 ②两边同时乘以()p x dx e ? ,积分因子法 通解:()()(())p x dx p x dx y e C g x e dx -??=+? 线性微分方程的解有一些很好的性质,例如(1)齐次方程的解或者恒等于零,或者恒不等于零(2)齐次方程任何解的线性组合仍是它的解(3)齐次方程的任一解与非齐次方程任一解之和仍是非齐次方程的解(4)非齐次方程任意两解之差必是对应齐次方程的解(5)非齐次方程的任一解与对应齐次方程的通解之和是非齐次方程的通解。 3. Bernoulli 方程 '()()y p x y g x y α+= (1)0α=时,该方程为线性非齐次方程 (2)1α=时,该方程为线性齐次方程 (3)0,1α≠时,作变量替换1z y α-=,该方程转化为 (1)()(1)()dz p x z g x dx αα+-=-,这是关于未知函数z 的一阶线性方程 4. Riccati 方程 2()()()dy p x y q x y f x dx =++

Riccati 方程在一般情况下无法用初等积分求出解,只是对一些特殊情况或者事先知道了它的一个特解,才能求出其通解。 (1)当()p x 、()q x 、()f x 都是常数时,是可分离变量方程,用分离变量法求解。 (2)当()0p x ≡时,是线性方程。 (3)当()0f x ≡时,是Bernoulli 方程。 当()f x r ≡,设已有一特解1()y x 命1()()()z x y x y x =-,代得211(2)dz dy dy pz py q z dx dx dx =-=++ 这是一个关于z 的Bernoulli 方程。 (4)当Riccati 方程的形式为 22dy l b ay y dx x x +=+,可利用变量替换z xy =,将方程化为可分离变量方程 2(1)dz x az l z b dx =-+++ 当Riccati 方程的一个特解()y x ?=已知时,我们利用变换()y z x ?=+,代入方程后可得: 22()()(2()())()(())()dz d x p x z z x x q x z x f x dx dx ????+=+++++ 由于()y x ?=是方程的解,从上式消去相关的项后得: 2(2()()())()dz p x x q x z p x z dx ?=++,这是一个Bernoulli 方程。 (5)当Riccati 方程的形式为 2m dy ay bx dx +=,其中a 、b 、m 都是常数,且设0a ≠,又设0x ≠和0y ≠,则当 440,2,,,(1,2,)2121 k k m k k k --=-=+-L 时,方程可通过适当的变换化为变量可分离方程。

二阶微分方程

二阶微分方程 1 可降阶的二阶微分方程 一、 形如 ()y f x ''= (6.7) 型的微分方程 形如(6.7)式的微分方程是最简单的二阶微分方程,可以通过方程两边两次积分求解。 【例题1】 求微分方程21sin 2 x y e x ''=- 的通解. 解 对所给方程接连积分二次, 得 211cos 4 x y e x C '=++, 21211sin 82 x y e x C x C =+++, 这就是方程的通解. 【例题2】 质量为m 的质点受力F 的作用沿Ox 轴作直线运动. 设力F 仅是时间t 函数:F =F (t ). 在开始时刻t =0时F (0)=F 0, 随着时间t 的增大, 此力F 均匀地减小, 直到t =T 时, F (T )=0. 如果开始时质点位于原点, 且初速度为零, 求这质点的运动规律. 解 设x =x (t )表示在时刻t 时质点的位置, 根据牛顿第二定律, 质点运动的微分方程为 )(22t F dt x d m =. 由题设, 力F (t )随t 增大而均匀地减小, 且t =0时, F (0)=F 0, 所以F (t )=F 0-kt ; 又当t =T 时, F (T )=0, 从而 )1()(0T t F t F -=. 于是质点运动的微分方程又写为 )1(022T t m F dt x d -=, 其初始条件为0|0==t x , 0|0 ==t dt dx . 把微分方程两边积分, 得 120)2(C T t t m F dt dx +-=. 再积分一次, 得 21320)621(C t C T t t m F x ++-=. 由初始条件x|t =0=0, 0|0 ==t dt dx , 得

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r , 使rx e y =满足方程(2).

第二节 几类简单微分方程及其解法

第二节 几类简单微分方程及其解法 本节将介绍可分离变量的微分方程、齐次方程以及一阶线性微分方程等一阶微分方程的解法. 一阶微分方程是微分方程中最基本的、最常见的一类方程.它的一般形式可表示为: 0)',,(=y y x F 或),('y x F y =, 其中)',,(y y x F 为,,'x y y 的已知函数,),(y x F 为,x y 的已知函数. 一、可分离变量的微分方程 如果一阶微分方程),('y x F y =的等式右端能分解为: )()(),(y g x f y x F =, 即)()('y g x f y = (7.2.1) 则称方程(7.2.1)为可分离变量的微分方程. 设)(y g ≠0,则方程(6.2.1)改写为: dx x f dy y g )() (1=, 上式两边积分,可得 ??=dx x f dy y g )()(1. 上述将微分方程化成分离变量形式求解的方法,称为分离变量法. 注:在分离变量时,未知函数y 的函数和微分要写在等式的左边. 例1 求微分方程)3(2'+=y x y 的通解. 解1: 原方程可改写为)3(2+=y x dx dy . 分离变量,两边积分,得,23 1??=+xdx dy y ,3ln 12c x y +=+即.312-±=+c x e y 记1c e c ±=,则微分方程的通解为 32 -=x ce y (c 为任意常数). 解2:

原方程可改写为)3(2+=y x dx dy . 分离变量,两边积分,得,23 1??=+xdx dy y ,ln )3ln(2c x y +=+即,3ln 2x c y =+23x ce y =+ 则微分方程的通解为 32 -=x ce y (c 为任意常数). 注:为了简化运算,规定: (1) 微分方程中出现形为 ?u du 的积分时,可不按不定积分基本积分公式表写成 ln du u c u =+?,而是写成ln du u u =?; (2) 不定积分等式中至少有一个形为?u du 的积分时,任意常数不写成c ,而写成c ln 并放在等式右侧. 例2 求微分方程y xy ='的通解. 解: 分离变量,两边积分, 得 ,dy dx y x =?? c x y ln ln ln += cx ln = 则微分方程的通解为cx y = (c 为任意常数). 例3 求微分方程dx e x dy x e y y )1(2)1(2+=+的通解. 解: 分离变量,两边积分, 得 dx x x dy e e y y ??+=+2121, c x e y ln )1ln()1ln(2++=+ )1(ln 2x c +=, ).1(12x c e y +=+ 则微分方程的通解为 ]1)1(ln[2-+=x c y (c 为任意常数). 例4 求微分方程)'('2 y y a xy y +=-的通解.

常微分方程数值解

第四章常微分方程数值解 [课时安排]6学时 [教学课型]理论课 [教学目的和要求] 了解常微分方程初值问题数值解法的一些基本概念,如单步法和多步法,显式和隐式,方法的阶数,整体截断误差和局部截断误差的区别和关系等;掌握一阶常微分方程初值问题的一些常用的数值计算方法,例如欧拉(Euler)方法、改进的欧拉方法、龙贝-库塔(Runge-Kutta)方法、阿达姆斯(Adams)方法等,要注意各方法的特点及有关的理论分析;掌握构造常微分方程数值解的数值积分的构造方法和泰勒展开的构造方法的基本思想,并能具体应用它们导出一些常用的数值计算公式及评估截断误差;熟练掌握龙格-库塔(R-K)方法的基本思想,公式的推导,R-K公式中系数的确定,特别是能应用“标准四阶R-K公式”解题;掌握数值方法的收敛性和稳定性的概念,并能确定给定方法的绝对稳定性区域。[教学重点与难点] 重点:欧拉方法,改进的欧拉方法,龙贝-库塔方法。 难点:R—K方法,预估-校正公式。 [教学内容与过程] 4.1 引言 本章讨论常微分方程初值问题 (4.1.1) 的数值解法,这也是科学与工程计算经常遇到的问题,由于只有很特殊的方程能用解析方法求解,而用计算机求解常微分方程的初值问题都要采用数值方法.通常我们假定(4.1.1)中 f(x,y)对y满足Lipschitz条件,即存在常数L>0,使对,有 (4.1.2) 则初值问题(4.1.1)的解存在唯一. 假定(4.1.1)的精确解为,求它的数值解就是要在区间上的一组离散点 上求的近似.通常取 ,h称为步长,求(4.1.1)的数值解是按节点的顺序逐步 推进求得.首先,要对方程做离散逼近,求出数值解的公式,再研究公式的局部截

常微分方程教材

第九章 微分方程 一、教学目标及基本要求 (1) 了解微分方程及其解、通解、初始条件和特解的概念。 (2) 掌握变量可分离的方程和一阶线性方程的解法,会解齐次方程。 (3) 会用降阶法解下列方程:),(),,(),()(y y f y y x f y x f y n '='''=''=。 (4) 理解二阶线性微分方程解的性质以及解的结构定理。 (5) 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。 (6) 会求自由项多项式、指数函数、正弦函数、余弦函数,以及它们的和与二阶常系数非齐次线性微分方程的 特解和通解。 (7) 会用微分方程解决一些简单的应用问题。 二、本章教学内容的重点和难点 1、理解和熟悉微分方程的一些基本概念; 2、掌握一阶和高阶微分方程的各种初等积分法; 3、熟悉线性方程的基础理论,掌握常系数二阶线性齐次与非齐次方程的解法; 4、会列微分方程及其始值问题去解决实际问题。 三、本章教学内容的深化和拓宽: 1、分离变量法的理论根据; 2、常用的变量代换; 3、怎样列微分方程解应用题; 4、黎卡提方程; 5、全微分方程的推广; 6、二阶齐次方程; 7、高阶微分方程的补充; 8、求线性齐次方程的另一个线性无关的解; 9、求线性非齐次方程的一个特解; 10、常数变易法。 本章的思考题和习题 解下列方程(第1-6题) 1、2)0(,)1(==+'+y x y y x 2、()[]f dx x f e e x f x x x ,)(02?+=可微 3、212 22sin 22sin 1X e y x y y x ++='?+ 4、0)3(24=+-xydx dy x y 5、21)0(,1)0(,022- ='=='+''y y y x y 6、2y y y x y '-'+'= 7、已知可微函数)(x f 满足 ?-=+x x f f x f x x f dx x f 12)()1(,1)()()(和求; 8、已知)(,,1)(2 1)(10x f f x f da ax f 求可微+= ?; 9、求与曲线族C y x =+2232相交成ο45角的曲线; 10、一容器的容积为100L ,盛满盐水,含10kg 的盐,现以每分钟3L 的速度向容器内注入淡水冲淡盐水,又以同样的速度将盐水抽入原先盛满淡水的同样大小的另一容器内,多余的水便从容器内流出,问经过多少时间,两容器内的含盐量相等?

二阶常微分方程解

二阶常微分方程解

————————————————————————————————作者: ————————————————————————————————日期:

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 §7.1 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 ?? 22 dx y d +p dx dy +qy=0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22dx y d ,dx dy ,y 各乘以 常数因子后相加等于零,如果能找到一个函数y,其

22dx y d ,dx dy ,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y=e r x (其中r 为待定常数)来试解 将y =e rx ,dx dy =re r x,22dx y d =r 2e r x 代入方程(7.1) 得 r 2e rx +pre rx +qerx =0 或 e r x(r 2+pr+q )=0 因为e rx ≠0,故得 ? r 2 +pr +q=0 由此可见,若r 是二次方程 ?? r 2+pr +q=0 (7.2) 的根,那么e r x就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1)的特征方程。 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程(7.2)有两个不相等的实根r 1, r 2,此时e r 1x ,e r2x 是方程(7.1)的两个特解。

二次微分方程的通解

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程: 方程 y ''+py '+qy =0 称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数. 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解. 我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程 y ''+py '+qy =0 得 (r 2+pr +q )e rx =0. 由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解. 特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出. 特征方程的根与通解的关系: (1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解. 这是因为, 函数x r e y 11=、x r e y 22=是方程的解, 又 x r r x r x r e e e y y )(212121-==不是常数. 因此方程的通解为 x r x r e C e C y 2121+=. (2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微

微分方程中的几个基础概念

微分方程中的几个基础概念 微分方程—基础 微分方程(Differential equation, DFQ)是一种用来描述函数与其导数之间关系的数学方程。与之前所接触初等数学代数方程的解不同,它的解不是数,而是符合方程关系的函数。 微分方程的起源约在十七世纪末,为了解决自然科学发展中遇到物理及天文学问题而产生,随着微积分的诞生与在各个科学领域中的广泛应用,很多问题被归化为某类微分方程的问题。 在微分方程分支中,存在很多各种各样已知类型的微分方程。实事上,提高对微分方程的理解的最好的方法之一是首先处理基本的分类系统。为什么?因为你可能永远不会遇到完全陌生的微分方程。大多数微分方程已经被解决了,因此,普遍适用的解决方法很可能已经存在。 除了描述方程本身的性质外,对微分方程进行分类和识别的真正附加值来自于为跳转点提供一张导图。求解微分方程的诀窍不是创造原始解法,而是对已证明的解法进行分类和应用;有时,可能需要几步把一类方程转换为另一类等效方程,以获得可实现的广义解。 最常用于描述微分方程的四个属性是: ?常微分与偏微分 ?线性与非线性 ?齐次与非齐次

?微分阶数 虽然这个列表并非详尽无遗,但是它是我们学习首先要掌握的知识,通常在微分方程学期课程的前几周会进行回顾;通过快速回顾每一个类别,我们将会配备基本的入门工具包来处理常见的微分方程问题。 常微分与偏微分 首先,我们在自然中所发现的微分方程最常见的分类来源于从我们手边的问题中所发现的导数类型;简单地说,方程是否包含偏导数? 如果不包含,那么它是一个常微分方程(, Ordinary differential equation)。如果包含,那么它是一个偏微分方程(, Partial differential equation)。 常微分方程是未知函数只含有一个自变量的微分方程,其微分基于该单一的自变量,通常是时间。一个常微分方程有一组离散的(有限的)变量;它们通常是一维动力系统的模型,例如:钟摆随时间的摆动。 另一方面,偏微分方程相当复杂,因为它们通常涉及多个自变量,其多种多样的偏微分方程可能基于也可能并不基于一个已知的自变量。偏微分方程常被用来描述自然界中各种各样的现象,例如:热,空间中的流体速度,或电动力学。这些似乎完全不同的物理现象被化为偏微分方程;它们在随机偏微分方程中得到推广。 下面的这些例子有助于我们分辨微分方程的导数类型包括:

常微分方程计算

实验八 常微分初值问题的数值解法 8.1实验目的 ① 掌握常微分方程数值解的常用算法; ② 培养编程与上机调试能力. 8.2算法描述 8.2.1改进欧拉法 求解 '0 ()(,)()()y x f x y a x b y a y ?=≤≤?=? 对给定的(,)f x y ,用改进的欧拉公式 1111()[()()]2 n n n n n n n n n n y y hf x y h y y f x y f x y ++++=++???=++++??求解常微分方程初值问题的解. 8.2.2四阶龙格-库塔法 对上述给定的(,)f x y ,用四阶龙格-库塔法求解常微分方程初值问题 112341213243(22)6(,) 11(,)2211(,)22(,)n n n n n n n n n n h y y k k k k k f x y k f x h y hk k f x h y hk k f x h y hk +?=++++??=???=++???=++??=++?? 8.3实验题目 (1) 用改进的欧拉公式,求解常微分方程初值问题的解 20.10.4(0)1 dy y x dx y ?=?≤≤??=? (2) 用四阶龙格-库塔公式解初值问题: / 2.0 2.6,0.2(2.0)1dy x y x h dx y ?=?≤≤=??=?

8.4实验要求 (1)选择一种计算机语言设计出改进欧拉法和四阶龙格-库塔法方法求解常微分方程初值问题的程序,观察运行结果. (2)利用Matlab求解常微分方程初值问题 函数dsolve()用于求解微分方程.Dy表示:dy/dt(t 为缺省的自变量),Dny表示y对t 的n阶导数. Matlab6.1环境下操作如下: >> y=dsolve('Dy=y*y','y(0)=1') %求解题目1 >> y=dsolve('Dy=y/t','y(2.0)=1') %求解题目2 (3)利用最小二乘法拟合通过改进欧拉法求出微分方程的一系列数值解的近似函数方程.并利用Matlab的绘图功能画出函数的曲线 8.5思考 一阶微分方程初值问题有哪些数值解法?比较各种方法的优缺点并举具体例子说明之?

二阶常微分方程的降阶解法教程文件

二阶常微分方程的降 阶解法

郑州航空工业管理学院 毕业论文(设计) 2015届数学与应用数学专业1111062班级 题目二阶常微分方程的降阶解法 姓名贾静静学号111106213 指导教师程春蕊职称讲师 2015年4月5号

二阶常微分方程的降阶解法 摘要 常微分方程是数学领域的一个非常重要的课题,并在实践中广泛于解决问题,分析模型。常微分方程在微分理论中占据首要位置,普遍应用在工程应用、科学研究以及物理学方面,不少应用范例都归结为二阶线性常微分方程的求解问题。而正常情况下,常系数微分方程依据线性常微分方程的日常理论是可以求解的.不过对于变系数二阶线性常微分方程的求解却有一定程度的困难,迄今为止还没有一个行之有效的普遍方法。 本文主要考虑了二阶常系数线性微分方程的降阶法。关于二阶常系数线性微分方程的求解问题,首先,我们给出二阶齐次常系数线性微分方程的特征方程,并求解出特征方程的两个特征根;其次,利用积分因子乘以微分方程和导数的运算,将二阶常系数线性微分方程化为一阶微分形式;最后,将一阶微分形式两边同时积分,求解一阶线性微分方程,可求得二阶常系数线性微分方程的一个特解或通解。关于二阶变系数齐次线性微分方程的求解问题,化为恰当方程通过降阶法求解二阶齐次变系数微分方程的通解。对于非齐次线性微分方程,只需再运用常数变易法求出它的一个特解,问题也就相应地解决了。 关键词 二阶常微分方程;降阶法;特征根;常数变易法;一阶微分形式

Order reduction method of second order ordinary differential equations Jingjing Jia Chunrui Cheng 111106213 Abstract Ordinary differential equation is a very important topic in the field of mathematics, it has been widely used in solving the problem and analyzing model in practice . Ordinary differential equations in the theory of differential occupied first place, it has been widely used in engineering application and scientific research as well as physics, many application examples are attributed to second order linear ordinary differential equation solving problem. And under normal circumstances,ordinary coefficient differential equation on the basis of the linear often daily theory of differential equations is can be solved. But for the solution for variable coefficient second order linear ordinary differential equations have a certain degree of difficulty, so far we haven't a well-established general method. This paper mainly introduces the method of reduction of order two order linear differential equation with constant coefficients.On the problem of solving the linear differential equation with two order constant coefficients,first, we give homogeneous ordinary coefficient linear differential equation of the characteristic equation and solve the two characteristic roots of characteristic equation;secondly,we should use the integral factor times

相关文档
最新文档