高一数学必修2圆方程与直线与圆、圆与圆关系

高一数学必修2圆方程与直线与圆、圆与圆关系
高一数学必修2圆方程与直线与圆、圆与圆关系

--

圆方程与直线与圆、圆与圆关系

一、圆的标准方程 1.圆的定义

(1)条件:平面内到定点的距离等于定长的点的__集合___. (2)结论:定点是_圆心____,定长是___半径__. 2.圆的标准方程

(1)圆心为A (a,b ),半径长为r 的圆的标准方程为 .

(2)圆心在原点,半径长为r的圆的标准方程为 2.点与圆的位置关系

圆C :(x -a )2

+(y-b)2=r2(r >0),其圆心为(a ,b ),半径为r ,点P (x 0,y 0),设d =|PC |=错误!. 位置关系 d 与r 的大小

图示

点P 的坐标的特点 点在圆外

d__>__r

(x 0-a )2+(y 0-b )2>r 2

点在圆上

d __=__r

(x 0-a)2+(y0-b )2=r 2

点在圆内

d __<__r

(x 0-a )2+(y 0-b )2

<r2

题型一:圆的标准方程 例1.写出下列各圆的方程:

(1)圆心在原点,半径是3;

(2)圆心在点C (3,4)处,半径是5;

(3)经过点P (5,1),圆心在点C (8,-3)处

题型二:点与圆的位置关系的判断

例2.

已知两点P1(3,8)和P 2(5,4),求以线段P 1P 2为直径的圆的方程,并判断点M(5,3),N (3,

4),P(3,5)是在此圆上,在圆内,还是在圆外?

变式:若原点在圆(x -1)2+(y +2)2=m 的内部,则实数m 的取值范围是( )

A .m >5 B.m <5 C .-2<m<2 D.0<m <2

题型三:圆标准方程的求解

例3.求下列条件所决定的圆的方程:

(1)已知圆 C 过两点 A (5,1),B (1,3),圆心在 x 轴上;

(x -a )2+(y -b )2=r 2

x 2+y 2=r 2

--

(2)求圆心在直线x-2y -3=0上,且过点A (2,-3),B(-2,-5)的圆心的标准方程.

(3)经过三点 A (1,-1),B (1,4),C (4,-2).

变式1:

变式2:如图,矩形ABCD 的两条对角线相交于点M(2,0),A B边所在直线的方程为x -3y -6=0,点T(-1,1)在AD 边所在的直线上.

(1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.

一、 圆的一般方程 1.圆的一般方程

(1)方程:当D2+E2-4F >0时,方程x 2+y 2

+Dx +Ey +F =0叫做圆的一般方程,其中圆心为______________,半径为r =________________. (2)说明:方程x2

+y 2+Dx +Ey +F=0不一定表示圆.当且仅当______________时,表示圆:当D 2+E 2

-4F =0时,表示一个点____(-D

2,-错误!)__;当D2+E2

-4F<0时,不表示任何图形.

(3)用“待定系数法”求圆的方程的大致步骤:

①根据题意,选择_标准方程_______或___一般方程_______; ②根据条件列出关于a ,b ,r或D ,E ,F 的_方程组_________; ③解出a,b ,r 或D ,E ,F ,代入标准方程或一般方程. 2.由圆的一般方程判断点与圆的位置关系 剖析:已知点M (x 2+y 222-4F >0),则其位置关系如下表:

位置关系 代数关系

点M在圆外 x 错误!+y 错误!+Dx 0+Ey 0+F>0 点M 在圆上 x \o \al(2,0)+y 2

0+Dx 0+Ey 0+F=0

点M在圆内

x错误!+y错误!+Dx 0+Ey 0+F <0

题型一:圆的一般方程

例1.圆x2+y 2-4x -1=0的圆心坐标及半径分别为( )

A .(2,0),5 B.(2,0),错误! C .(0,2),错误!

D.(2,2),5

变式2:下列方程各表示什么图形:

圆心为(1,1)且与直线x +y =4相切的圆的方程是( ) A .(x -1)2+(y -1)2=2 B .(x -1)2+(y -1)2=4 C .(x +1)2+(y +1)2=2 D .(x +1)2+(y +1)2=4 C (-D 2,-E 2) 12

D 2+

E 2-4

F D 2+E 2-4F >0 变式1:若方程x 2+y 2-4x +2y +5k =0表示圆,则实数k 的取值范围是( ) A .R B .(-∞,1) C .(-∞,1] D .[1,+∞)

(1)x 2

+y 2

-4x -2y +5=0; (2)x 2+y2-2x +4y-4=0; (3)x 2

+y2+ax -3a y=0.

题型二:圆的方程求解

例2.(1)过三点A (-1,5),B (5,5),C (6,-2)的圆的方程是( )

A.x 2+y 2+4x -2y-20=0 B.x2+y2-4x +2y -20=0 C.x 2

+y 2-4x -2y -20=0 D.x 2

+y 2+4x +4y -20=0

(2)已知圆C:x 2+y 2+Dx +Ey +3=0,圆心在直线x +y -1=0上,且圆心在第二象限,半径为2,求圆的一般方程.

变式:(1)已知圆经过A (2,-3)和B (-2,-5),若圆心在直线x -2y -3=0上,求圆的方程.

(2)求过点A(-1,0)、B (3,0)和C(0,1)的圆的方程.

题型三:轨迹问题

例3.

变式:已知点A在直线2x -3y +5=0上移动,点P 为连接M(4,-3)和点A 的线段的中点,求P的轨迹方程.

题型四:点与圆的位置关系

例4. 点(2a,2)在圆x 2+y 2

-2y -4=0的内部,则a 的取值范围是( )

A.-1

例5.圆C :x2+y 2+x -6y +3=0上有两个点P和Q 关于直线kx -y +4=0对称,则k =( )

A.2 B .-\r(3)

C.±错误!

D.不存在

变式:若圆x 2+y 2-2ax +3by =0的圆心位于第三象限,那么直线x +ay +b =0一定不经过( )

A .第一象限 B.第二象限 C .第三象限 D .第四象限

三、直线与圆的位置关系

1.直线与圆的位置关系有三种:

(1)直线与圆相交?直线与圆有_两__个公共点;

自圆x 2+y 2=4上的点A (2,0)引此圆的弦AB ,求弦AB 的中点轨迹方程.

(2)直线与圆相切?直线与圆有__一_个公共点; (3)直线与圆相离?直线与圆___无__公共点. 位置关系 相交 相切 相离 公共点个数

__2__个 __1__个 _0___个 判 定

方 法 几何法:设圆心到直线的距离d =错误! d __<__r d __=__r d __>__r 代数法:由错误!

消元得到一元二次方程的判别式Δ

Δ__>__0

Δ__=__0

Δ_<___0

3.弦长公式:①几何法:由圆的性质知,过圆心O 作l的垂线,垂足C 为线段AB 的中点.如图所示,在Rt △OCB 中,|BC |2=r 2-d 2,则弦长|AB |=2|BC |,即|AB |=2\r (r 2-d 2).

②代数法:解方程组错误!消元后可得关于x 1+x 2,x 1·x 或y 1+y 2,y1·y 2的关系式,则|A B|=错误!=错误!.

注:上述公式通常称为弦长公式.

题型一:直线与圆的位置关系

例1.

已知直线方程mx-y -m -1=0,圆的方程x 2+y 2

-4x-2y+1=0.当m为何值时,圆与直线

(1)有两个公共点;

(2)只有一个公共点; (3)没有公共点?

变式:

题型二:弦长问题

例2.求直线l :3x +y -6=0被圆C :x 2+y2

-2y -4=0截得的弦长.

变式1:设直线l 截圆x 2+y2

-2y=0所得弦A B的中点为(-错误!,错误!),则直线l 的方程为________;

|AB|=________.

变式2. 过点(2,1)的直线中,被圆x2+y 2-2x +4y =0截得的弦最长的直线的方程是( )

A.3x -y-5=0 B.3x +y -7=0 C.3x -y -1=0

D .3x +y -5=0

变式3. 变式4 已知直线x +7y =10把圆x2+y 2

=4分成两段弧,这两段弧长之差的绝对值等于( )

222若直线x -y +1=0与圆(x -a )2+y 2

=2有公共点,则实数a 取值范围是( )

A .[-3,-1]

B .[-1,3]

C .[-3,1]

D .(-∞,-3]∪[1,+∞) 过点(3,1)作圆(x -2)2+(y -2)2

=4的弦,其中最短的弦长为________.

A.\f(π,2) B.错误!C.π D.2π

变式5.直线l经过点P(5,5)并且与圆C:x2+y2=25相交截得的弦长为4\r(5),求l的方程.

题型三:圆的切线问题

例3.过点A(4,-3)作圆C:(x-3)2+(y-1)2=1的切线,求此切线的方程.

变式1:求满足下列条件的圆x2+y2=4的切线方程:

(1)经过点P(错误!,1); (2)斜率为-1,(3)过点Q(3,0)

变式2:已知圆x2+y2+2x+2y+k=0和定点P(1,-1),若过点P的圆的切线有两条,则k的取值范围是()

A.(-2,+∞)B.(-∞,2) C.(-2,2) D.(-∞,-2)∪(2,+∞)

变式3:若直线y=x+b与曲线y=\r(4-x2)有公共点,试求b的取值范围.

变式4:设圆(x-3)2+(y+5)2=r2(r>0)上有且仅有两个点到直线4x-3y-2=0的距离等于1,则圆半径r的取值范围是()

A.35

变式5:过直线x+y-2\r(2)=0上点P作圆x2+y2=1的两条切线,若两条切线的夹角是60°,则点P的坐标是________.

变式6:已知圆x2+y2+x-6y+m=0与直线x+2y-3=0相交于P、Q两点,O为原点,且

OP⊥OQ,求实数m的值.

二、圆与圆的位置关系

1.判断圆与圆的位置关系

(1)几何法:圆O1:(x-x1)2+(y-y1)2=r21(r1>0),圆O2:(x-x2)2+(y-y2)2=r错误!(r2>0),两圆的圆心距d=|O1O2|=错误!,

图示

d与r 1,r

的关系

d>r 1

+r 2

d =r 1+r2

|r 1-2|

+r 2

d =|r1-2|

d <|r 1-r 2|

方程组解的个数 2组 1组 0组 两圆的公共点个数 ____2_个 ____1_个

____0_个

两圆的位置关系

___相交__

___外切__或__内切__

_

__内含___或__外离___

题型一:两圆的位置关系

例1.已知两圆C 1:x 2+y2+4x +4y -2=0,C 2:x 2+y 2

-2x-8y -8=0,判断圆C 1与圆C 2的位置关系,

题型二:两圆的公共弦问题

例2.

已知两圆x2+y 2-2x +10y -24=0和x 2

+y2+2x+2y -8=0.

(1)试判断两圆的位置关系; (2)求公共弦所在的直线方程; (3)求公共弦的长度.

变式1:求过两圆x 2+y 2+2x +8y-8=0,x 2+y2

-4x -4y -2=0的交点且面积最小的圆的方程.

变式2:求圆心在直线x +y =0上,且过两圆x 2

+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0的交点的圆的方程.

题型三:两圆相切有关问题

例3.

半径为6的圆与x 轴相切,且与圆x2+(y -3)2=1内切,则此圆的方程是( )

A .(x -4)2+(y -6)2=6 B.(x +4)2+(y -6)2=6或(x -4)2+(y -6)2

=6 C.(x -4)2+(y -6)2=36 D .(x +4)2+(y -6)2=36或(x-4)2+(y -6)2=36

(2)求与圆x 2+y 2-x =0外切且与直线x+错误!y=0相切于点M (3,-错误!)的圆的方程.

变式:求和圆(x-2)2+(y +1)2

=4相切于点(4,-1)且半径为1的圆的方程.

(2)代数法:圆O 1:x 2+y 2+D 1x +E 1y +F 1=0,圆O 2:x 2+y 2+D 2x +E 2y +F 2=0,两圆的方程联立得方程组,则有:

高一数学必修2圆方程与直线与圆、圆与圆关系

-- 圆方程与直线与圆、圆与圆关系 一、圆的标准方程 1.圆的定义 (1)条件:平面内到定点的距离等于定长的点的__集合___. (2)结论:定点是_圆心____,定长是___半径__. 2.圆的标准方程 (1)圆心为A (a,b ),半径长为r 的圆的标准方程为 . (2)圆心在原点,半径长为r的圆的标准方程为 2.点与圆的位置关系 圆C :(x -a )2 +(y-b)2=r2(r >0),其圆心为(a ,b ),半径为r ,点P (x 0,y 0),设d =|PC |=错误!. 位置关系 d 与r 的大小 图示 点P 的坐标的特点 点在圆外 d__>__r (x 0-a )2+(y 0-b )2>r 2 点在圆上 d __=__r (x 0-a)2+(y0-b )2=r 2 点在圆内 d __<__r (x 0-a )2+(y 0-b )2 <r2 题型一:圆的标准方程 例1.写出下列各圆的方程: (1)圆心在原点,半径是3; (2)圆心在点C (3,4)处,半径是5; (3)经过点P (5,1),圆心在点C (8,-3)处 题型二:点与圆的位置关系的判断 例2. 已知两点P1(3,8)和P 2(5,4),求以线段P 1P 2为直径的圆的方程,并判断点M(5,3),N (3, 4),P(3,5)是在此圆上,在圆内,还是在圆外? 变式:若原点在圆(x -1)2+(y +2)2=m 的内部,则实数m 的取值范围是( ) A .m >5 B.m <5 C .-2<m<2 D.0<m <2 题型三:圆标准方程的求解 例3.求下列条件所决定的圆的方程: (1)已知圆 C 过两点 A (5,1),B (1,3),圆心在 x 轴上; (x -a )2+(y -b )2=r 2 x 2+y 2=r 2

直线方程与圆的方程

一、直线的方程: 概念:倾斜角 (1)倾斜角的范围:001800<≤α,这样定义的倾斜角可以使平面上的任意一条直线都有唯一的一个倾 斜角. (2)特殊位置:当?=0α时,直线l 与x 轴平行;当?=90α时,直线l 与x 轴垂直. 2.直线的斜率. (1)斜率的概念 当倾斜角不是?90时,它的正切值叫做这条直线的斜率,记作:αtan =k . 说明:当?=90α时,直线l 没有斜率(但是有倾斜角);当?≠90α时,直线l 有斜率,且是一个确定的值.由此可知斜率是用来表示倾斜角不等于?90的直线对于x 轴的 倾斜程度的量. (2)斜率公式:1 212x x y y k --=,其中 ),(,),(2211y x y x 是直线l 上两点的坐标. 例1:已知两点(1,5), (3,2)A B ---,直线l 的倾斜角是直线AB 倾斜角的一半,求直线l 的斜率. 3.直线方程的五种形式: (1)点斜式:()11x x k y y -=-; (2)斜截式:b kx y +=; (3)两点式:1 21121x x x x y y y y --=--; (4)截距式: 1=+b y a x ; (5)一般式:0(,Ax By C A B ++=不同时为0). 例2.过点(2,1)P 作直线l 分别交,x y 轴正半轴于,A B 两点,当AOB ?的面积最小时,求直线l 的方程. 练习: 例2 把直线l 的方程x-2y+6=0化成斜截式,求出直线l 的斜率和在x 轴与y 轴上的截距, 并画图. 4.两条直线的位置关系: (1)平行(不重合)的条件: 212121,//b b k k l l ≠=?且;

高一数学必修二《圆与方程》知识点整理

《圆与方程》知识点整理 一、标准方程()() 222 x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b和半径r ①待定系数:往往已知圆上三点坐标,例如教材 119 P例2 ②利用平面几何性质 往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 二、一般方程 () 2222 040 x y Dx Ey F D E F ++++=+-> 1.220 Ax By Cxy Dx Ey F +++++=表示圆方程则 22 22 00 00 40 40 A B A B C C D E AF D E F A A A ? ? =≠=≠ ? ? ?? =?= ?? ??+-> ? ???? ?+-?> ? ? ????? ? 2.求圆的一般方程一般可采用待定系数法: 3.2240 D E F +->常可用来求有关参数的范围 三、圆系方程: 四、参数方程: 五、点与圆的位置关系 1.判断方法:点到圆心的距离d与半径r的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B,圆上一动点P,讨论PB的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A,圆上一动点P,讨论PA的最值 m i n P A A N r A C ==- max PA AM r AC ==+ 思考:过此A点作最短的弦?(此弦垂直AC)

六、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ? (2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?< 这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点 ①基本图形 ②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么? 圆心C 到直线l 的距离恰好等于半径r (2)常见题型——求过定点的切线方程 ①切线条数 点在圆外——两条;点在圆上——一条;点在圆内——无 ②求切线方程的方法及注意点... i )点在圆外 如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22 200x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=- 第二步:通过d r =k ?,从而得到切线方程 特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上——千万不要漏了! 如:过点()1,1P 作圆22 46120x y x y +--+=的切线,求切线方程. 答案:3410x y -+=和1x = ii )点在圆上 1) 若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r += 会在选择题及填空题中运用,但一定要看清题目. 2) 若点()00x y ,在圆()()22 2x a y b r -+-=上,则切线方程为 ()()()()200x a x a y b y b r --+--= 碰到一般方程则可先将一般方程标准化,然后运用上述结果. 由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数. ③求切线长:利用基本图形,222AP CP r AP =-?= 3.直线与圆相交 (1)求弦长及弦长的应用问题 垂径定理....及勾股定理——常用

直线和圆的方程知识点总结讲课稿

直线和圆的方程知识 点总结

一、直线方程. 1. 直线的倾斜角 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 3. ⑴两条直线平行: 1l 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=?l . ⑵两条直线垂直: 两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=?⊥k k l l 4. 直线的交角: 5. 过两直线? ??=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内) 6. 点到直线的距离: ⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200B A C By Ax d +++= . 注: 1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=. 2. 定比分点坐标分式。若点P(x,y)分有向线段1212 PP PP PP λλ=u u u r u u u r 所成的比为即,其中P 1(x 1,y 1),P 2(x 2,y 2).则 λλλλ++=++=1,121 21y y y x x x 特例,中点坐标公式;重要结论,三角形重心坐标公式。 3. 直线的倾斜角(0°≤α<180°)、斜率:αtan =k 4. 过两点1212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:. 12()x x ≠

人教版数学必修二第四章 圆与方程 知识点总结

第四章 圆与方程 4.1 圆的方程 4.1.1 圆的标准方程 1.以(3,-1)为圆心,4为半径的圆的方程为( ) A .(x +3)2+(y -1)2=4 B .(x -3)2+(y +1)2=4 C .(x -3)2+(y +1)2=16 D .(x +3)2+(y -1)2=16 2.一圆的标准方程为x 2+(y +1)2=8,则此圆的圆心与半径分别为( ) A .(1,0),4 B .(-1,0),2 2 C .(0,1),4 D .(0,-1),2 2 3.圆(x +2)2+(y -2)2=m 2的圆心为________,半径为________. 4.若点P (-3,4)在圆x 2+y 2=a 2上,则a 的值是________. 5.以点(-2,1)为圆心且与直线x +y =1相切的圆的方程是____________________. 6.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=1 7.一个圆经过点A (5,0)与B (-2,1),圆心在直线x -3y -10=0上,求此圆的方程. 8.点P (5a +1,12a )在圆(x -1)2+y 2=1的内部,则a 的取值范围是( ) A .|a |<1 B .a <1 13 C .|a |<1 5 D .|a |<1 13 9.圆(x -1)2+y 2=25上的点到点A (5,5)的最大距离是__________. 10.设直线ax -y +3=0与圆(x -1)2 +(y -2)2 =4相交于A ,B 两点,且弦AB 的长为

人教版高中数学必修二圆与方程题库完整

(数学2必修)第四章 圆与方程 [基础训练A 组] 一、选择题 1.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A .22(2)5x y -+= B .22(2)5x y +-= C .22(2)(2)5x y +++= D .22(2)5x y ++= 2.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A. 03=--y x B. 032=-+y x C. 01=-+y x D. 052=--y x 3.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .2 21+ D .221+ 4.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与 圆22 240x y x y ++-=相切,则实数λ的值为( ) A .37-或 B .2-或8 C .0或10 D .1或11 5.在坐标平面,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 6.圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x 二、填空题 1.若经过点(1,0)P -的直线与圆03242 2=+-++y x y x 相切,则此直线在y 轴上的截距是 __________________. 2.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0 ,,60A B APB ∠=,则动点P 的轨迹方程为 。 3.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 . 4.已知圆()4322 =+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ?的值为________________。

人教新课标版数学高一人教数学必修2课时作业24直线与圆的方程的应用

一、选择题 1.(2012·山东高考)圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为 () A.内切B.相交 C.外切D.相离 【解析】两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d=42+1=17. ∵3-2

-1,∴(x -5)2+(y +7)2=9. 【答案】 D 4.(2013·济南高一检测)过原点的直线与圆x 2+y 2+4x +3=0相切,若切点在第三象限,则该直线的方程是( ) A .y =3x B .y =-3x C .y =33x D .y =-3 3x 【解析】 因为圆心为(-2,0),半径为1,由图可知直线的斜率为r 4-r 2 = 33,所以直线方程为y =33x . 【答案】 C 5.(2013·黄冈高二检测)若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是( ) A .[1-22,1+22] B .[1-2,3] C .[-1,1+22] D . [1-22,3] 【解析】 数形结合,利用图形进行分析.由y =3- 4x -x 2得(x -2)2+(y -3)2=4(0≤x ≤4,1≤y ≤3),它表示以(2,3)为圆心,2为半径的下半圆,如图所示,|2-3+b |12+1 2=2,得b =1-22,故选D. 【答案】 D 二、填空题 6.若圆x 2+y 2=4与圆x 2+y 2-2ax +a 2-1=0相外切,则a =________.

最新苏教版直线与圆的方程练习3(必修2)

y x z O 南京市高一数学单元过关检测题 (苏教版·必修2·解析几何初步) (满分100分,检测时间100分钟) 一. 选择题 1. 如果直线0=++C By Ax 的倾斜角为 45,则有关系式 A.B A = B.0=+B A C.1=AB D.以上均不可能 2. 直线122=-b y a x 在y 轴上的截距是 A. b B. 2b C. 2b - D. b ± 3. 下列命题中正确的是 A .平行的两条直线的斜率一定相等 B.平行的两条直线的倾斜角一定相等 C . 垂直的两直线的斜率之积为-1 D.斜率相等的两条直线一定平行 4. 圆2)3()2(22=++-y x 的圆心和半径分别是 A .)3,2(-,1 B .)3,2(-,3 C .)3,2(-,2 D .)3,2(-,2 5. 如果直线l 上的一点A 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后, 又回到直线l 上,则l 的斜率是 A .3 B . 13 C .-3 D .-13 6. 结晶体的基本单位称为晶胞,如图是食盐晶胞的 示意图。其中实点 代表钠原子,黑点·代表氯原子。 建立空间直角坐标系O —xyz 后,图中最上层中间的钠 原子所在位置的坐标是 A .(12,1 2,1) B .(0,0,1) C .(1,12,1) D .(1,12,1 2 ) 7. 已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为 3 1 ,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8. 已知点P(0,-1),点Q 在直线x-y+1=0上,若直线PQ 垂直于直线x+2y-5=0,则点Q 的坐标是 A .(-2,1) B .(2,1) C .(2,3) D .(-2,-1) 9. 已知三角形ABC 的顶点A(2,2,0),B(0,2,0),C(0,1,4),则三角形ABC 是 A .直角三角形; B .锐角三角形; C .钝角三角形; D .等腰三角形; 10. 平行于直线2x-y+1=0且与圆x 2+y 2=5相切的直线的方程是 A .2x -y+5=0 B .2x -y -5=0

直线与圆的方程公式

第三章 直线与方程 3、1直线的倾斜角与斜率 3、1倾斜角与斜率 1、直线的倾斜角的概念:当直线l 与x轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°. 2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就就是 k = tan α ⑴当直线l 与x 轴平行或重合时, α=0°, k = ta n0°=0; ⑵当直线l 与x轴垂直时, α= 90°, k 不存在、 由此可知, 一条直线l的倾斜角α一定存在,但就是斜率k不一定存在. 4、 直线的斜率公式: 给定两点P1(x 1,y 1),P2(x2,y 2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 3.1.2两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它 们平行,即 注意: 上面的等价就是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即:12121l l k k ⊥?=- 3.2.1 直线的点斜式方程 1、 直线的点斜式方程:直线l 经过点),(000 y x P ,且斜率为k )(00x x k y y -=- 2、、直线的斜截式方程:已知直线l 的斜率为k ,且与 y 轴的交点为),0(b b kx y += 3.2.2 直线的两点式方程 1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠ y -y 1 /y-y2=x-x1/x -x2 2、直线的截距式方程:已知直线l 与 x 轴的交点为 A )0,(a ,与y 轴的交点为 B ),0(b ,其中 0,0≠≠b a 3.2.3 直线的一般式方程 1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A,B 不同时为0) 2、各种直线方程之间的互化。 3、3直线的交点坐标与距离公式

高一数学必修二圆与方程知识点整理

高一数学必修二圆与方程 知识点整理 LELE was finally revised on the morning of December 16, 2020

高一数学必修二《圆与方程》知识点整理 一、标准方程 1.求标准方程的方法——关键是求出圆心(),a b 和半径r ①待定系数:往往已知圆上三点坐标,例如教材119P 例2 ②利用平面几何性质 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件方程形式 圆心在原点()2220x y r r +=≠ 过原点()()()22 22220x a y b a b a b -+-=++≠ 圆心在x 轴上()()2220x a y r r -+=≠ 圆心在y 轴上()()2220x y b r r +-=≠ 圆心在x 轴上且过原点()()2220x a y a a -+=≠ 圆心在y 轴上且过原点()()2220x y b b b +-=≠ 与x 轴相切()()()2220x a y b b b -+-=≠ 与y 轴相切()()()22 20x a y b a a -+-=≠ 与两坐标轴都相切()()()2220x a y b a a b -+-==≠ 二、一般方程 1.220Ax By Cxy Dx Ey F +++++=表示圆方程则 2.求圆的一般方程一般可采用待定系数法:如教材122P 例r 4 3.2240D E F +->常可用来求有关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值

(完整版)高中数学必修2圆与方程典型例题(可编辑修改word版)

标准方程(x - a )2 + (y - b )2 = r 2 ,圆心 (a , b ),半径为 r 11 11 11 11 0 0 第二节:圆与圆的方程典型例题 一、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。二、圆的方程 (1) ; 点 M (x , y ) 与圆(x - a )2 + ( y - b )2 = r 2 的位置关系: 当(x - a )2 + ( y - b )2 > r 2 ,点在圆外 当(x - a )2 + ( y - b )2 = r 2 ,点在圆上 当(x - a )2 + ( y - b )2 < r 2 ,点在圆内 (2) 一般方程 x 2 + y 2 + Dx + Ey + F = 0 当 D 2 + E 2 - 4F > 0 时,方程表示圆,此时圆心为?- D E ? ,半径为r = 当 D 2 + E 2 - 4F = 0 时,表示一个点; 当 D 2 + E 2 - 4F < 0 时,方程不表示任何图形。 ,- ? ? 2 2 ? 2 (3) 求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出 a ,b ,r ;若利用一般方程,需要求出 D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 例 1 已知方程 x 2 + y 2 - 2(m - 1)x - 2(2m + 3) y + 5m 2 + 10m + 6 = 0 . (1) 此方程表示的图形是否一定是一个圆?请说明理由; (2) 若方程表示的图形是是一个圆,当 m 变化时,它的圆心和半径有什么规律?请说明理由. 答案:(1)方程表示的图形是一个圆;(2)圆心在直线 y =2x +5 上,半径为 2. 练习: 1.方程 x 2 + y 2 + 2x - 4 y - 6 = 0 表示的图形是( ) A.以(1,- 2) 为圆心, 为半径的圆 B.以(1,2) 为圆心, 为半径的圆 C.以(-1,- 2) 为圆心, 为半径的圆 D.以(-1,2) 为圆心, 为半径的圆 2.过点 A (1,-1),B (-1,1)且圆心在直线 x +y -2=0 上的圆的方程是( ). A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 3.点(1,1) 在圆(x - a )2 + ( y + a )2 = 4 的内部,则 a 的取值范围是( ) A. -1 < a < 1 B. 0 < a < 1 C. a < -1 或 a > 1 D. a = ±1 4.若 x 2 + y 2 + ( -1)x + 2y + = 0 表示圆,则的取值范围是 5. 若圆 C 的圆心坐标为(2,-3),且圆 C 经过点 M (5,-7),则圆 C 的半径为 . 6. 圆心在直线 y =x 上且与 x 轴相切于点(1,0)的圆的方程为 . 7. 以点 C (-2,3)为圆心且与 y 轴相切的圆的方程是 . 1 D 2 + E 2 - 4F

直线与圆的方程公式资料

直线与圆的方程公式

第三章 直线与方程 3.1直线的倾斜角和斜率 3.1倾斜角和斜率 1、直线的倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°. 2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tan α ⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在. 4、 直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 3.1.2两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等, 那么它们平行,即 注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即:12121l l k k ⊥?=-g 3.2.1 直线的点斜式方程 1、 直线的点斜式方程:直线l 经过点), (000y x P ,且斜率为k )(00x x k y y -=- 2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y += 3.2.2 直线的两点式方程 1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠ y-y1/y-y2=x- x1/x-x2 2、直线的截距式方程:已知直线l 与 x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中 0,0≠≠b a 3.2.3 直线的一般式方程 1、直线的一般式方程:关于y x ,的二元一次方程 0=++C By Ax (A ,B 不同时为0)

数学必修2圆与方程知识点专题讲义

必修二圆与方程专题讲义 一、标准方程 ()()2 2 2x a y b r -+-= 1.求标准方程的方法——关键是求出圆心(),a b 和半径r 2.特殊位置的圆的标准方程设法(无需记,关键能理解) 二、一般方程 ( )222 2040x y D x E y F D E F ++++=+- > 1.220Ax By Cxy Dx Ey F +++++=表示圆方程,则 2222 0004040 A B A B C C D E AF D E F A A A ? ? =≠=≠????=?=????+->??????+-?> ? ?????? ? 2.求圆的一般方程方法 ①待定系数:往往已知圆上三点坐标

②利用平面几何性质 涉及点与圆的位置关系:圆上两点的中垂线一定过圆心 涉及直线与圆的位置关系:相切时,利用到圆心与切点的连线垂直直线;相交时,利用到点到直线的距离公式及垂径定理 3.2240D E F +->常可用来求有关参数的范围 三、点与圆的位置关系 1.判断方法:点到圆心的距离d 与半径r 的大小关系 d r ?点在圆外 2.涉及最值: (1)圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ (2)圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3.以1122(,),(,)A x y B x y 为直径两端点的圆方程为 1212()()()()0x x x x y y y y --+--= 四、直线与圆的位置关系 1.判断方法(d 为圆心到直线的距离) (1)相离?没有公共点?0d r ? (2)相切?只有一个公共点?0d r ?=?= (3)相交?有两个公共点?0d r ?>?<

十一、线性规划、直线与圆的方程2(必修二)

卜一、线性规划、直线与圆的方程(必修二) 第一部分线性规划 1.已知点(x, y )所在的可行域如图 2所示?若要使目标函数 z =ax ■ y 取得最大值的最优解有无数多个,则 1 5 A ? 4 B ? - C ? - D 4 3 2x — y —2 兰0 2.若实数x, y 满足不等式组 ’则2x - y 的最大值是(B ) x 30, y -0- A . 5 B . 6 C . 7 D . 8 "x - y + 8 K 0 3.设一元二次不等式组 2x y -14乞0所表示的平面区域为 M,使函数y =a x 的图象过 x 2y -19 _0 区域M 的a 取值范围是(D ) A. [2, .10] B . [ ..10, 9] C . (2, 9) 4.在“家电下乡”活动中,某厂要将 100台洗衣机运往邻近的乡镇?现有4辆甲型货车和8 辆乙型货车可供使用?每辆甲型货车运输费用 400元,可装洗衣机20台;每辆乙型货车运输 费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为 (B ) a 的值为(D ) 3 5 D x

A.2000 元 B.2200 元 C.2400 元 D.2800 元

y 沁 x y _2 6.已知点P (x, y )满足约束条件 y - 3x -6,则z = x - 2y 的最大值是( 2 y ■ x 的最小值为(D ) x - y 2 丄 0 10 .如果实数x, y 满足条件 y ? 2 _ 0 ,那么z =2x - y 的最小值为 _______________ 。答案:-6。 x y 2 岂 0 x_2, y _1, 所表示的平面区域为 M 若曲线 x 2y -6 _0 经过区域M 则实数m 的取值范围是(D ) 3 「 3 3 A . (-口) B . 15, :: C . ,15) D . [— ,15] 5 ?设二元一次不等式组 x 2 「my 2 二 1 总 (A ) -3 (B ) -2 (C) -1 (D ) 2 7.如果实数 A. 2 x - y 1 _0 x 、y 满足条件 y ? 1 _ 0 ,那么2x - y 的最大值为( x y 1 乞 0 C .-3 &在平面直角坐标系中,不等式组 (一;为常数)表示的平面区域的面积是 4,则 A . 2 B . -2 C .-4 x _0 9.设x, y 满足约束条件 y _ x ,则 4x 3y 叮2 x 2y 3 x 1 取值范围是(D ) A.[1,5] B.[2,6] C. [3,10] D.[3,11]

直线与圆及其方程高考真题分类解析

直线与圆及其方程高考真题分类解析(文科全国卷)一、高考考点梳理 (一)、直线的倾斜角与斜率 1.直线的倾斜角 ①定义:在平面直角坐标系中,对于一条与x轴相交的直线L,把x轴(正方向)按逆时针方向绕着交点旋转到和直线L重合所成的角,叫作直线L的倾斜角,当直线L和x轴平行时,它的倾斜角为0. ②范围:直线倾斜角的取值范围是[0,π). 2.直线的斜率 ①定义:一条直线的倾斜角α的正切值叫作这条直线的斜率。斜率常用小写字母k表示,即k=tanα,倾斜角是90°的直线斜率不存在. ②过两点的直线的斜率公式 经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为:k=y 2 -y1 x 2 -x1 . (二) 、直线方程的五种形式 (三) 、两条直线的平行与垂直 1.两条直线平行:对于两条不重合的直线l1,l2,其斜率分别为k1,k2, 则有l1∥l2?k1=k2. 特别地,当直线l1,l2的斜率都不存在时,l1与l2也平行. 2.两条直线垂直:如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2?k1·k2=-1. 特别地,当一条直线斜率为零,另一条直线斜率

不存在时,两条直线也垂直. (四) 、两条直线的交点坐标 1.直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组???A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0 的解一一对应. (1).相交?方程组有唯一解,交点坐标就是方程组的解; (2).平行?方程组无解; (3).重合?方程组有无数个解. (五) 、距离公式 1. 两点间的距离公式 平面上任意两点A (x 1,y 1),B (x 2,y 2)间的距离公式为|AB |=(x 2-x 1)2+(y 2-y 1)2 2.点到直线的距离公式: 平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C | A 2+ B 2 . 3.两条平行直线间的距离公式 :一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离 。 (六) 、线段的中点坐标公式 若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ), 则? ????x =x 1 +x 2 2,y =y 1 +y 2 2, (七) 、圆的定义和圆的方程

新课标高中数学必修二第四章圆与方程-经典例题-[含答案]

习题精选精讲圆标准方程 已知圆心),(b a C 和半径r ,即得圆的标准方程222 )()(r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆 心),(b a C 和半径r ,进而可解得与圆有关的任何问题. 一、求圆的方程 例1 (06卷文) 以点)1,2(-为圆心且与直线0543= +-y x 相切的圆的方程为( ) (A)3)1()2(22=++-y x (B)3)1()2(2 2=-++y x (C)9)1() 2(22 =++-y x (D)9)1()2(22=-++y x 解 已知圆心为)1,2(-,且由题意知线心距等于圆半径,即2 243546+++= d r ==3,∴所求的圆方程为9)1()2(22=++-y x , 故选(C). 点评:一般先求得圆心和半径,再代入圆的标准方程222 )()(r b y a x =-+-即得圆的方程. 二、位置关系问题 例2 (06卷文) 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值围是( ) (A))12,0(- (B))12,12(+- (C))12,12(+-- (D))12,0(+ 解 化为标准方程222 )(a a y x =-+,即得圆心),0(a C 和半径a r =. ∵直线 1=+y x 与已知圆没有公共点,∴线心距a r a d =>-= 2 1,平方去分母得 2 2212a a a >+-,解得 1212-<<--a ,注意到0>a ,∴120-<r d 线圆相离;?=r d 线圆相切;?

高中数学必修2知识点总结:第四章_圆与方程

高中数学必修2知识点总结 第四章 圆与方程 4.1.1 圆的标准方程 1、圆的标准方程:2 22() ()x a y b r -+-= 圆心为A(a,b),半径为r 的圆的方程 2、点00(,)M x y 与圆2 22()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)220 0()()x a y b -+-<2r ,点在圆内 4.1.2 圆的一般方程 1、圆的一般方程:022 =++++F Ey Dx y x 2、圆的一般方程的特点: (1)①x2和y2的系数相同,不等于0. ②没有xy 这样的二次项. (2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了. (3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。 4.2.1 圆与圆的位置关系 1、用点到直线的距离来判断直线与圆的位置关系. 设直线l :0=++c by ax ,圆C :02 2 =++++F Ey Dx y x ,圆的半径为r ,圆心)2 ,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交; 4.2.2 圆与圆的位置关系 两圆的位置关系. 设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点: (1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆2C 外切; (3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;

高中数学直线与圆的方程知识点总结

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程: ①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接 带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可

必修二圆与方程复习小结

必修2 第四章 圆与方程复习小结 一、知识点归纳 (一).圆的两种方程 (1)圆的标准方程 222()()x a y b r -+-=,表示_____________. (2)圆的一般方程 022=++++F Ey Dx y x . ①当D 2+E 2 -4F >0时,方程 ② 表示(1)当0422>-+F E D 时,表示__________; : ②当0422=-+F E D 时,方程只有实数解2D x -=,2 E y -=,即只表示_______; ③当0422<-+ F E D 时,方程_____________________________________________. 综上所述,方程022=++++F Ey Dx y x 表示的曲线不一定是圆. (二).点00(,)M x y 与圆222 ()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+->2r ,点在_____;(2)2200()()x a y b -+-=2r ,点在______; (3)2200()()x a y b -+-<2r ,点在______. (三).直线与圆的位置关系 设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2 ,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: # (1)当r d >时,直线l 与圆C ______;(2)当r d =时,直线l 与圆C ________; (3)当r d <时,直线l 与圆C ________. (四).圆与圆的位置关系 设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点: (1)当21r r l +>时,圆1C 与圆2C _______;(2)当21r r l +=时,圆1C 与圆2C ______; (3)当<-||21r r 21r r l +<时,圆1C 与圆2C ____;(4)当||21r r l -=时,圆1C 与圆2C ___; (5)当||21r r l -<时,圆1C 与圆2C ______.

相关文档
最新文档