脂类酸水解法

脂类酸水解法

酸水解法

适用于各类食品中总脂肪含量的测定,但对含磷脂较多的一类食品,如鱼类、蛋类及其制品,在盐酸溶液中加热时,磷脂几乎完全分解为脂肪酸和碱,使测定结果偏低,多糖类遇强酸易炭化,影响测定结果。测定时间短,在一定程度上可防止之类物质的氧化。

一、实验原理

将试样与盐酸溶液一起加热进行水解,使结合或包埋在组织内的脂肪游离出来,再用有机溶剂提取脂肪,回收溶剂,干燥后称量,提取物的质量即为样品中脂类的含量。

二、仪器和试剂

100ml具塞刻度量筒、95%乙醇、乙醚、石油醚、盐酸。

三、操作步骤

1、样品处理。

固体样品,称取2g样品于50ml大试管中,加8ml水,混匀后加10ml盐酸。

液体样品,称取10g样品于50ml大试管中,加入10ml盐酸。

2、水解。将试管放入70~80℃水浴中,至脂肪游离完全为止,需40~50min。

3、提取。取出试管,加入10ml乙醇,混合,冷却后将混合物移入100ml具塞量筒中,用25ml乙醚分两次洗涤试管,一并倒入具塞量筒中,加塞振摇1min,静置15min,用乙醚-石油醚等量混合液冲洗塞及筒口附着的脂肪,静置10~20min,吸出上清液于已恒重的锥形瓶内,再加5ml乙醚于具塞量筒内,振摇,静置后,仍将上层乙醚吸出,放入锥形瓶内。

4、回收溶剂、烘干、称重。将锥形瓶水浴蒸干,于100~105℃烘箱中干燥2h,取出放入干燥器内冷却后称量,反复以上操作至恒重。

5、计算结果

W湿基=(m2-m1)/m*100%

W干基=[(m2-m1)/m(100%-M)]*100%

W为脂类质量分数,m1为空锥形瓶的质量,m2锥形瓶和脂肪的质量,m为样品的质量,M为试样水分含量。

四、注意事项

脂类酸水解法

酸水解法 适用于各类食品中总脂肪含量的测定,但对含磷脂较多的一类食品,如鱼类、蛋类及其制品,在盐酸溶液中加热时,磷脂几乎完全分解为脂肪酸和碱,使测定结果偏低,多糖类遇强酸易炭化,影响测定结果。测定时间短,在一定程度上可防止之类物质的氧化。 一、实验原理 将试样与盐酸溶液一起加热进行水解,使结合或包埋在组织内的脂肪游离出来,再用有机溶剂提取脂肪,回收溶剂,干燥后称量,提取物的质量即为样品中脂类的含量。 二、仪器和试剂 100ml具塞刻度量筒、95%乙醇、乙醚、石油醚、盐酸。 三、操作步骤 1、样品处理。 固体样品,称取2g样品于50ml大试管中,加8ml水,混匀后加10ml盐酸。 液体样品,称取10g样品于50ml大试管中,加入10ml盐酸。 2、水解。将试管放入70~80℃水浴中,至脂肪游离完全为止,需40~50min。 3、提取。取出试管,加入10ml乙醇,混合,冷却后将混合物移入100ml具塞量筒中,用25ml乙醚分两次洗涤试管,一并倒入具塞量筒中,加塞振摇1min,静置15min,用乙醚-石油醚等量混合液冲洗塞及筒口附着的脂肪,静置10~20min,吸出上清液于已恒重的锥形瓶内,再加5ml乙醚于具塞量筒内,振摇,静置后,仍将上层乙醚吸出,放入锥形瓶内。 4、回收溶剂、烘干、称重。将锥形瓶水浴蒸干,于100~105℃烘箱中干燥2h,取出放入干燥器内冷却后称量,反复以上操作至恒重。 5、计算结果 W湿基=(m2-m1)/m*100% W干基=[(m2-m1)/m(100%-M)]*100% W为脂类质量分数,m1为空锥形瓶的质量,m2锥形瓶和脂肪的质量,m为样品的质量,M为试样水分含量。 四、注意事项

脂肪酸含量的测定

AMAMFSAc23033 谷类脂肪酸度滴定法 AM-AM-FS-Ac-23033 脂肪酸度——谷类 1.仪器和试剂 1.1 仪器 (a)谷物研磨机—适用于磨碎小样品。 (b)脂肪提取设备—Soxhlet或其它适合的型号(耐用的纸套筒或铝质RA-360套筒适合提取用)。 1.2 试剂 (a)甲苯-乙醇-酚酞溶液—0.02%。向IL甲苯中加1L乙醇和0.4g酚酞。 (b)乙醇-酚酞溶液—0.04%。向1L乙醇中加0.4g酚酞。 (c)氢氧化钾标准溶液0.0178N。无碳酸盐的。1ml=1mgKOH。 2.试验过程 2.1.方法Ⅰ 用人工四分法或利用机械采样装置取得大约50g谷物(玉米200g)的代表性样品,尽量磨碎以便使不少于90%的样品能通过40号筛 (某些较粗颗粒不会明显地影响结果)。如果样品太湿不易磨碎,在约10O℃干燥到足以除去多余的水分。 在提取器中,用石油醚提取10±0.1g磨碎的样品大约16h。样品磨碎后尽快着手提取,切勿将磨碎的样品放置过夜。在蒸气浴上将溶剂从提取物中全部蒸发掉。在提取烧瓶中用5Oml甲苯-乙醇-酚酞溶液溶解残渣并用标准KOH溶液滴定到明显的粉色,或将黄色溶液滴定到桔红色。如果滴定中有乳状物形成,加入第二份5Oml甲苯-乙醇-酚酞来消除。终点颜 色应显示与向5Oml和滴定开始时原始溶液颜色相同的适当浓度的K 2Cr 2 O 7 溶液中加 2.5ml0.0l%KmnO 4。溶液得到的溶液颜色相同。(把0.5%的K 2 Cr 2 O 7 溶液滴到5OmlH 2 O中直到颜 色相当,然后加25ml0.0l%KMnO 4 溶液)。 用5Oml甲苯-乙醇-酚酞溶液进行空白滴定,从样品滴定值中减去空白值。如果加入了另一份5Oml甲苯-乙醇-酚酞溶液,则进行双份空白滴定。将脂肪酸度以中和从1OOg谷物(干成份)中分离出的脂肪酸所需要KOH的mg数报告。脂肪酸度=l0×(滴定值-空白值)。 2.2.方法Ⅱ 测定玉米的快速法 (可在1h内得到结果) 按2.1制备样品,称20±0.01g放入玻璃塞烧瓶或一般瓶中,准确加入5Oml苯,塞好瓶,摇几秒钟使苯蒸气饱和瓶内的空气,临时松塞降压后再塞好。在机械振荡器内振荡烧瓶3Omin,或用手定期振荡45min。将瓶子倾斜不少于3min使粗粉沉积在一个角上。小心地尽可能多地把液体倾泻入l5cm插在8cm玻璃漏斗中的折叠滤纸,用表面皿盖上漏斗减少蒸发。在25m1容量瓶中准确收集25ml滤液。将此滤液转入950ml平底烧瓶中,再用乙醇-酚酞溶液将容量瓶充至25ml刻度并转到含苯提取物的烧瓶中。 按C制备所用的色标,用标准KOH溶液滴定提取物。对白玉米滴定到明显粉色,对黄玉米滴到桔红色。如果滴定过程中有乳状液形成,加入苯和乙醇-酚酞溶液各95ml来消除。测定25ml苯和25m1乙醇-酚酞混合溶液空白滴定值。如果再次加了苯和乙醇,则重复空白滴定。将脂肪酸度报告为中和从1OOg玉米(干料)中的游离脂肪酸所需KOH的mg数。 脂肪酸度=10×(滴定值-空白值)。以干样计算。

火腿肠(高温蒸煮肠)中淀粉含量的测定酸水解法

实验七火腿肠(高温蒸煮肠)中淀粉含量的测定—酸水解法基本知识点 1、掌握酸水解法测定淀粉的原理、基本过程和操作关键。 2、熟练称量、过滤、定容、滴定等基本操技术。 3、淀粉水解、可溶性糖去除的方法和关键环节。 重点: 1、熟练称量、过滤、定容、滴定等基本操技术 2、酸水解法测定淀粉的原理及注意事项。 难点: 酸水解法测定淀粉的原理和控制要点 复习与提问: 1、检查实验准备情况, (1)实验内容; (2)实验仪器与试剂有哪些? (3)酸水解法测定淀粉的程序。 2、酸水解法测定淀粉的原理和控制要点 【引入新课】 淀粉在食品工业中用途广泛常用于食品原料或辅料。淀粉是以葡萄糖为基本单位通过糖苷键而构成的多糖类化合物。淀粉是白色、无气味、无味道的粉末状物质,在热水里淀粉颗粒会膨胀破裂,有一部分淀粉溶解在水里,另一部分悬浮在水里,形成胶状淀粉糊,这一过程称为糊化作用。糊化是淀粉食品加热烹制时的基本变化,也就是常说的食物由生变熟。 淀粉不溶于冷水,也不溶于乙醇、乙醚或石油醚等有机溶剂,故可用这些溶剂淋洗、浸泡除去淀粉的水溶性糖或脂肪等杂质。 淀粉不显还原性,但它在酶(或酸)存在和加热条件下可以逐步水解,生成一系列比淀粉分子小的化合物,最后生成还原性单糖——葡萄糖。 淀粉酶的专一性高,但只能将淀粉逐步水解至麦芽糖阶段; 盐酸溶液对淀粉的专一性较差,但它能将淀粉水解至最终产物葡萄糖。故在测定淀粉时,使酶——稀盐酸分解法。 GB 20712-2006《火腿肠(Ham sausage)》规定: 火腿肠(高温蒸煮肠)Ham sausage(Autoclaved ham sauasge)以鲜或冻畜、禽、鱼肉为主要原料,经腌制、搅拌、斩拌(或乳化)、罐入塑料肠衣,经高温杀菌,制成的肉类灌肠制品。 感官要求应符合表1的规定。 表1.感官要求 项目指标 外观肠衣均匀饱满,无损伤,表面干净,良好,扎结牢固,肠衣的扎结部位无内容物渗出。 色泽具有产品固有的色泽。 质地组织紧密,有弹性,切片良好,无软骨及其它杂物,无气孔。 风味咸淡适中,鲜香可口,具固有风味,无异味。 理化要求应符合表2的规定。 表2.火腿肠理化要求 项目 指标 特级优级普通级无淀粉产品

脂肪的测定

脂肪的测定概述 脂类主要包括脂肪(甘油三酸脂)和类脂化合物(脂肪酸、糖脂、甾醇)。脂肪是食物中具有最高能量的营养素,也是中三大营养素之一,食品中脂肪含量是衡量食品营养价值高低的指标之一。在食品加工生产过程中,原料、半成品、成品的脂类含量对产品的风味、组织结构、品质、外观、口感等都有直接的影响,故食品中脂类含量是食品质量管理中的一向重要指标。 一、脂类的分类、组成、性质 1、分类(classification) 包括简单脂类(有两种组分组成的如脂肪酸和醇生成脂)、复合脂类(除以上两种组分外还含有其他组分的成分)、衍生脂(只含单一组分,由其他脂类水解得到,如脂肪酸(饱和的、不饱和的)、醇(丙三醇、长链醇、甾醇)、脂溶性物料(包括脂溶性维生素A、D、E和K)) 2、组成(composition) 脂肪是由一分子甘油和三分子高级脂肪酸脱水生成的。 甘油+脂肪酸脂肪+水

油脂的结构与类型取决于脂肪酸,如果三个脂肪酸的R烃基相同,就称简单脂,即醇与脂肪酸组成。如果脂肪酸的R烃基不同,则为复合脂。 3、性质(proporty) (1)物理性质(physical property) 脂类一般为无色,无臭、无味,呈中性,比重小于1,固体脂类比重约为0.8,液体脂类比重为0.915-0.940,脂肪不溶于水,而溶于有机溶剂,根据这点我们一般采用低沸点的有机溶剂萃取脂类。 (2)化学性质(chemical property) a) 水解与皂化(一切脂肪都能在酸、碱或酶的作用下水解为脂肪酸及甘油) b) 氢化与卤化(利用氢化将液体油氢化成半固体脂肪,人造猪油)。 c) 氧化与酸败 天然油脂暴露在空气中与氧会自发进行氧化作用,产生酸味,也就是我们所说的酸败统称哈败。例如油炸方便面,在夏季容易发哈。还有一些富含油的食品,长时间都容易发哈,哈败是由于脂肪中不饱和链被空气中的氧所氧化,生成过氧化物,过氧化物继续水解,产生低级的醛和羧酸,这些物质使脂肪产生不愉快的嗅感和味感。油脂酸败的另一个原因是微生物的作用下,脂肪分解成醇和脂肪酸,脂肪酸经过氧化后生

气相色谱法测定大豆油中脂肪酸成份

油脂中脂肪酸含量测定 ―――气相色谱法测定大豆油中脂肪酸成分一、目的与要求 油脂是食品加工中重要的原料和辅料,也是食品的重要组分和营养成分。必需脂肪酸是维持人体生理活动的必要条件,人体所必需的脂肪酸一般取自食品用油,即食用油脂。气相色谱法测定油脂脂肪酸组分是现在最常用的方法,也是一些相关标准(如:GB/T17377)规定应用的检测方法。 甲酯化是分析动植物油脂脂肪酸成分的常用的前处理方法,也是常用的标准方法(GB/T 17376-1998)。 本实验要求了解气相色谱法测食用油脂肪酸组成的原理,掌握样品的前处理方法,学习食用油脂中脂肪酸组分的色谱分析技术。 二、原理 本实验甲酯化方法采用国标--GB/T 17376-1998,甘油酯皂化后,释出的脂肪酸在三氟化硼存在下进行酯化,萃取得到脂肪酸甲酯用于气象色谱分析。 样品中的脂肪酸(甘油酯)经过适当的前处理(甲酯化)后,进样,样品在汽化室被汽化,在一定的温度下,汽化的样品随载气通过色谱柱,由于样品中组分与固定相间相互用的强弱不同而被逐一分离,分离后的组分,到达检测器(detceter)时经检测口的相应处理(如FID的火焰离子化),产生可检测的信号。根据色谱峰的保留时间定性,归一法确定不同脂肪酸的百分含量。 三、仪器与试剂 (一)仪器--------------北京普瑞分析仪器有限公司 1.气相色谱仪:GC---7800主机,配氢火焰离子化检测器(FID)。 2.恒温水浴锅 3.移液管 4.胶头滴管 5.小圆底烧瓶 6.冷凝管 7. 样品瓶

(二)试剂:.石油醚、乙醚、氢氧化钾、甲醇均为AR级。 四、实验步骤 (一)样品预处理 酯化测定: 取0.2g油样于10ml容量瓶中,家5.0ml 4:3石油醚—乙醚,使其溶解,在加4.0ml 0.5mol/L氢氧化钾—甲醇溶液,振摇1分钟,放置8min后加水1.0ml,静止20min使之分层,取上层液注入色谱仪,保留时间定性,面积归一化法定量。 测定: (1)气相色谱条件 ①色谱柱:石英弹性毛细管柱,0.32mm(内径)×30m,内膜厚度0.5um。 ②程序升温:150℃保持3min,5℃/min升温至220℃,保持10min;进样口温度250℃;检测器温度300℃。 ③气体流速:氮气:40mL/min,氢气:40mL/min,空气:450mL/min,分流比30﹕1。 ④柱前压:25kpa (2)色谱分析 自动进样,吸取0.4-1μL试样液注入气相色谱仪,记录色谱峰的保留时间和峰高。利用标准图谱确定每个色谱峰的性质(定性),利用软件自带的自动积分方法计算各脂肪酸组分的百分含量。 五、鉴别 1.测定常见植物油主要脂肪酸的构成比并查阅有关资料,经统计学处理,不同的植物油主要脂肪酸的组成大部分有相同之处,但是主要脂肪酸的含量是不相同的。根据脂肪酸组成与含量,即可鉴别油品种类。 2.气相色谱法测定脂肪酸,通常用硫酸—甲醇法,和AOAC-IUPAC 标准法,我们采用了氢氧化钾-甲醇法,经试验3种方法测定结果差异无显著性。

食品中脂肪的测定

食品中脂肪的测定 【实验目的】: 1.掌握食品中脂肪存在状态的相关概念和知识; 2.熟练地掌握乙醚、石油醚、乙醇等有机溶剂的安全使用方法,有机溶剂提取、萃取、回流、回收及分离技术。 3.了解各类食品中的脂肪测定方法,掌握索氏提取法的检测技能。 食品中脂肪是重要的营养成分之一,脂肪是人体组织细胞的一个重要成分,量种富含热能的营养素,也是脂肪溶性维生素的良好溶剂,有助于脂溶性维生素的吸收。脂肪与蛋白质结合生成的脂蛋白,在调节人本生理机能、完全生化反应方面具有重要的作用。因此,各种食品中脂肪的含量是重要的质量指标之一。食品中的脂肪有两种存在形式,即游离脂肪和结合脂肪。测定食品中脂肪含量的方法有索氏提取法、酸水解法、碱水解法、皂化法等。 一、标准方法(GB 5009.6-85) (一)索氏抽提法(第一法) 1.原理 样品用无水乙醚或石油醚等溶剂抽提后,蒸去溶剂所得的物质,在食品分析上称为脂肪或粗脂肪。因为除脂肪外,还含色素及挥发油、蜡、树脂等物。抽提法所测得的脂肪为游离脂肪。 2.试剂 (1)无水乙醚或石油醚; (2)海沙;同GB5009.3食品水分的测定方法。 3.仪器 索氏脂肪抽提器。 4.操作方法 (1)样品处理 ①固体样品。精密称取2 -5g (可取测定水分后的样品),必要时拌以海沙,全部移入滤纸筒内。(干样粉碎后过40目筛,肉绞两次,一般样品用组织捣碎机。) ②液体或半固体样品:称取5.0-10.0g ,置于蒸发皿中,加入海沙约20g 于沸水浴上蒸干后,再于95---105℃干燥,研细,全部移入滤纸筒内。蒸发皿及附有样品的玻棒,均用沾有乙醚的脱脂棉擦净,并将棉花放入滤纸筒内。 (2)抽提 将滤纸筒放入抽提管内,连接已干燥至恒量的接受瓶,由抽提器冷凝管上端加入无水乙醚或石油醚至瓶内容积的2/3处,于水浴上加热,使乙醚或石油醚不断回流抽提,一般抽提6-12h 。 (3)称量 取下接受瓶,回收乙醚或石油醚,待接受瓶内乙醚剩1-2mL 时在水浴上蒸干,再于95--105℃干燥2h ,放干燥器内冷却0.5h ,称量。 5.计算10020 1?-=m m m X …………………………(3-11) 式中:X---样品中脂肪的含量, % m 1---接受瓶和脂肪的质量,g; m 0---接受瓶的质量,g; m 2---样品的质量(如是测定水分后的样品中,按测定水分前的质量计),g 。 6.说明 (1)本法为索氏(SoxhLet )提取法,为经典方法,测定准确,但费时、费试剂。 (2)本法要求必须干燥无水,水分有碍有机溶剂对样品的浸润。 (3)本法测得的脂肪中,还含有少量的可溶于脂肪的有机酸、色素、香精、醛、酮等,故只可称为粗脂肪。 (4)索氏提取器如图3-7所示。有机溶剂在接受瓶中受热蒸发至冷凝管中,冷凝后于盛装

酸水解法测定脂肪

酸水解法测定脂肪 内容摘要:酸水解法适用于各类食品中脂肪的测定,对固体、半固体、黏稠液体或液体食品,特别是加工后的混合食品,容易吸湿、结块,不易烘干的食品,不能采用索氏提取法时,用此法效果较好。 1.酸水解法原理 强酸与样品一同加热进行水解,结合或包藏在组织里的脂肪可游离出来,然后用乙醚和石油醚提取脂肪,回收溶剂,除去溶剂后即为脂肪含量。 2.仪器 ①100 mL具塞刻度量筒。 ②烘箱。 3.试剂 ①95%乙醇。 ②乙醚(不含过氧化物)。 ③石油醚(30~60℃沸程)。 ④浓盐酸。 4.测定步骤 ①样品处理 a.固体样品:准确称取约2.0 g,置于50 mL试管中,加8 mL水,混匀后再加10 mL浓盐酸。 b.液体样品:准确称取10.0 g置于50mL试管中,加10 mL,浓盐酸。 ②水解:将试管放入70~80℃水浴中,每隔5~10 min用玻璃棒搅拌一次,至样品脂肪游离消化完全为止,时间约需40~50 rain。水解过程中,如水分蒸发,应适当补加水,保持溶液总体积不变,以避免酸浓度升高。 ③提取:取出试管,加入10 mL乙醇,混合。冷却后将混合物移人100 mL具塞量筒中,用25 mL乙醚分次洗试管,洗液一并倒人量筒中。加塞振摇1 rain,小

心开塞放出气体,再塞好,静置12 min,小心开塞,用石油醚一乙醚等量混合液冲洗塞及筒口附着的脂肪。静置10~20min,待上部液体澄清,吸出上清液于已恒重的烧瓶内,再加5 mL石油醚一乙醚等量混合液于具塞量筒内,振摇,静置后,仍将上层乙醚吸出,放人原烧瓶内。 ④回收溶剂、烘干、称重:回收烧瓶内乙醚后,将烧瓶于水浴上蒸干后,置100~105℃烘箱中干燥2 h,取出放进干燥器内,冷却30 min后称重,反复干燥冷却操作至恒重。 5.说明 ①测定的样品需充分磨细,液体样品需充分混合均匀,以使消化完全。 ②水解后加的乙醇可使蛋白质沉淀,促进脂肪球聚合,同时溶解一些碳水化合物、有机酸等。后面用乙醚提取,因乙醇可溶于乙醚,故需加入石油醚,降低乙醇在醚中的溶解度,使乙醇溶解物残留在水层,并使分层清晰。 ③挥干溶剂后,残留物中若有黑色焦油状杂质,是分解物与水一同混入所致,会使测定值增大,造成误差,可用等量的乙醚及石油醚溶解后过滤,再次进行挥干溶剂的操作。 ④因磷脂在酸水解条件下分解为脂肪酸和碱,故本法不宜用于测定含有大量磷脂的食品如鱼类、贝类和蛋品。此法也不适于含糖高的食品,因糖类遇强酸易碳化而影响测定结果。

浓酸水解技术的原理及其工艺简述

目录 1.浓酸水解方法简介 (2) 2.生产工艺流程 (2) 2.1水解反应系统 (3) 2.2稀酸洗调系统 (3) 2.3碱中和系统 (4) 2.4水煮系统 (4) 2.5氯化氢处理系统 (4) 2.6碳酸钠溶液系统 (4) 2.7放空系统 (5) 3.操作方法 (5) 3.1开车操作 (5) 3.1.1反应系统开车操作: (5) 3.1.2稀酸水洗系统操作: (7) 3.1.3碱洗系统操作: (7) 3.1.4三级水洗系统操作: (8) 3.1.5氯化氢处理系统操作: (8) 3.2停车操作 (9)

3.2.1正常停车操作 (9) 3.2.2水解反应系统停车操作: (10) 3.2.3稀酸水洗系统停车操作: (10) 3.2.4碱洗系统停车: (11) 3.2.5三级水洗系统停车操作: (12) 3.3紧急停车操作: (12) 3.4停车操作步骤操作 (12) 4.机泵操作 (14) 4.1机泵启动 (14) 4.2泵的停运操作: (15) 5设备的维护及保养 (15) 6安全技术及注意事项 (16) 7.总结 (16) 8.致谢 (17) 9.参考文献 (18)

浓酸水解技术的原理及其工艺简述 李y (黄石理工学院,应用化工技术, 435000) 摘要: 关键词:氯化氢;二甲基二氯硅烷:浓酸:水解工艺;硅氧烷;第二环路Concentrated acid hydrolysis technology, principles and processes outlined Liao Jun (Huangshi institute of technology,Application chemical technology, 435000) Abstract: Keywords:Hydrogen chloride; Dichlorodimethylsilane: concentrated acid: hydrolysis process; siloxane; Second Circle 引言 有机氯硅烷是整个有机硅化学的支柱,大部分的有机硅产品(如硅油、硅橡胶、硅树脂)是由二甲基二氯硅烷水解制得的聚二甲基硅氧烷(基础聚合物),再与调节剂、交联剂、封头剂等加工制成,被认为是有机硅的正规产品。聚硅氧烷具有很多优异的物理、化学性能,如耐高低温性能、耐辐射性、耐氧化性、高透气性、耐候

脂肪酸的测定

2.2.1.脂肪酸的变化分析 试剂:0.3%甲醛、6 mol/l HCl-CH3OH溶液、三氯甲烷 方法:GC—MS联用分析测定,步骤如下: (1)菌体的培养与收集 Ⅰ组实验菌株用YPD液体培养基培养,在培养基中添加一定量的抗冻保护剂,接种后放入30℃、150 r/min的摇床中培养24 h。细胞振荡培养至生长对数中期,移取适量细胞悬浮液至-30℃冰箱冷冻7d,取出30℃下解冻5-10min,用0.3%甲醛灭活后,4000 r/min下离心5 min,弃去上清液,用蒸馏水洗涤,离心收集细胞,-18℃冷冻,冷冻真空干燥制得干细胞后备用。 空白样用0.3%甲醛灭活后,4000 r/min下离心5 min,弃去上清液,用蒸馏水洗涤,离心收集细胞,-18℃冷冻24h,冷冻真空干燥制得干细胞后备用。 Ⅱ组实验菌株用于面包冷冻面团的制备,添加抗冻保护剂,于-20℃冷冻30d 后取出解冻,取20g解冻后的面团,分散于180ml无菌水中,震荡30min,静置15min,离心并取上清液。用0.3%甲醛灭活后,4000 r/min下离心15 min,弃去上清液,用蒸馏水洗涤,离心收集细胞,-18℃冷冻,冷冻真空干燥制得干细胞后备用。空白样则不添加抗冻保护剂,其余处理方法一样。 (2)脂肪酸的甲基化与提取 取50 mg冻干细胞加入6 mol/l HCl-CH3OH溶液2 ml,置100℃的条件下盐酸水解甲基化3 h,溶液呈现棕褐色(或黑褐色),取出,置室温下冷却。加入正己烷1.5ml振荡。经4000 r/min离心10min,收集上清液再加入正己烷1.5ml 抽提一次,合并两次上清液,加入蒸馏水3ml,经4000 r/min离心10 min,收 吹干,加入10μl三氯甲烷制备脂肪酸酯化液。集上清液于离心管中。用流动N 2 (3)薄层层析 用玻璃毛细管取脂肪酸酯化液点在硅胶G-TLC薄层板上,以正己烷+无水乙醚(1+1)为展层系统,待层析液至硅胶板上缘后立即取出薄层板,风干。在UV254灯下检查制备的脂肪酸纯度与相对浓度。将脂肪酸甲酯带做好标记,轻轻刮下, 吹干后加入0.5ml无水甲醇振荡溶解,然后进行GC—用二乙醚抽提两次,经N 2 MS分析。(4)GC—MS操作条件程序升温:初温130℃,保持1 min;终温280℃,维持min,升温速度7.6℃/min。检测器温度250℃;载气(He)流速30 ml/min;分流比50:1;流速(He)49.9 ml/min;进样量1μl。(2)中质谱条件用电子轰击源(Ⅱ)分析,电子能量为70eV,离子源温度230℃,接口温度280℃,质量扫描范围35—500。

食品中淀粉的测定-酸水解法讲解学习

食品中淀粉的测定-酸 水解法

淀粉的测定----酸水解法 【内容摘要】样品经乙醚除去脂肪,乙醇除去可溶性糖类后,用酸水解淀粉为葡萄糖,按还原糖测定方法测定还原糖含量,再折算为淀粉含量。 淀粉的测定 淀粉是由多个葡萄糖缩合而成的多糖,测定淀粉的方法有酸水解法、酶水解法和旋光法等。 酸水解法 此法操作简单,但选择性和准确性不够高。适用于淀粉含量较高,而半纤维素和多缩戊糖等其他多糖含量较少的样品。对富含半纤维素、多缩戊糖及果胶质的样品,因水解时它们也被水解为木糖、阿拉伯糖等还原糖,测定结果会偏高。 1.原理 样品经乙醚除去脂肪,乙醇除去可溶性糖类后,用酸水解淀粉为葡萄糖,按还原糖测定方法测定还原糖含量,再折算为淀粉含量。 2.仪器 ①回流冷凝管。 ②水浴锅。 ③高速组织捣碎机。 ④回流装置。 3.试剂

①乙醚。 ②85%乙醇。 ③6 tool·L叫盐酸溶液。 ④10 tool·L叫氢氧化钠。 ⑤2.5 tool·L-i氢氧化钠。 ⑥甲基红指示剂:称取2 g甲基红,用乙醇溶解稀释至100 mL。 ⑦精密pH试纸。 ⑧20%中性醋酸铅溶液。 ⑨lO%硫酸钠溶液。其余试剂同“还原糖的测定”中高锰酸钾法或直接滴定法中的试剂。 4.测定步骤 ①样品提取 a·粮食、豆类、糕点、饼干、代乳粉等较干燥、易研细的样品:称取2.O~5.0 g(含淀粉0.5 g左右)磨碎过40目筛的样品,置于铺有慢速滤纸的漏斗中,用30 mL乙醚分三次洗去样品中的脂肪,再用150 mL 85%乙醇分数次洗涤残渣以除去可溶性糖类。以100 mL水把漏斗中残渣全部转移至250 mL锥形瓶中。 b-蔬菜、水果、粉皮、凉粉等水分较多,不易研细、分散的样品:先按1:1加水在组织捣碎机中捣成匀浆(蔬菜、水果需先洗净、晾干,取可食部分)。称取5~10 g(含淀粉0.5 g左右)匀浆于250 mL锥形瓶中,加30 mL乙

脂肪酸检测方法

脂肪酸检测方法 脂肪酸(fatty acid),是指一端含有一个羧基的长的脂肪族碳氢链,是有机物,直链饱和脂肪酸的通式是C(n)H(2n+ 1)COOH,低级的脂肪酸是无色液体,有刺激性气味,高级的脂肪酸是蜡状固体,无可明显嗅到的气味。脂肪酸是最简单的一种脂,它是许多更复杂的脂的组成成分。脂肪酸在有充足氧供给的情况下,可氧化分解为CO2和H2O,释放大量能量,因此脂肪酸是机体主要能量来源之一。 科标检测参照国标及各种文献将脂肪酸衍生化成脂肪酸甲酯,使用十九酸内标,用正己烷提取后稀释后用气相色谱质谱联用仪,外标法结合内标法定量分析。科标检测出具专业脂肪酸检测报告。 检测方法: 1、样品提取 称取适量样品,加入4mL的甲醇/CH2Cl2(1:3)混合溶液,摇匀;恒温在30℃以下超声抽提10min。取出离心管,放于离心机中离心(1800rpm,10min),收集上清液,重复3次;将萃取液在柔和氮气流下吹干。 2、萃取液的皂化 加入3mL 6%KOH的甲醇溶液(配制:6gKOH/甲醇118mL左右),超声10min,放置30min,重复3次,室温放置过夜(瓶盖盖紧)进行碱水解;加入2mL正己烷,超声10min,摇匀,震荡离心,弃除上层正己烷萃取液,重复3次。在上述萃取完剩下的溶液中(水相),加入约1mL 4N的HCl使pH<2,再用2mL正己烷萃取3次。 3、脂肪酸的衍生化 将上述萃取液,转移到带盖玻璃管中,用氮气吹干后,加入约2mL BF3-MeOH,玻璃管上空间冲入氮气后盖盖密闭,于90℃下加热2h;待样品冷却后,加入5%NaCl溶液约1ml,用2ml正己烷萃取3次,并将萃取液转移到2mL进样瓶中,氮气吹干,待分析。 4、色谱条件 色谱柱:Thermo TG-5MS 30m x 0.25mm x 0.25μm 升温程序:80度起始温度,保持1分钟;10度/min升温到200度,5度/min升温到225度,2度/min升温到250度,保持5min。 MS,EI源, 分流模式:不分流

《水解酸化反应器污水处理工程技术规范》

附件3 水解酸化反应器污水处理工程技术规范(征求意见稿)编制说明

项目名称:水解酸化反应器污水处理工程技术规范 项目统一编号:247-1392 项目承担单位:中国环境保护产业协会 编制组主要成员:王凯军,燕中凯,王焕升,尚光旭,刘媛,薛念涛,高志永,朱民,刘晓剑 标准所技术管理负责人:姚芝茂 技术处项目管理人:姜宏

目次 1 任务来源 (1) 2 标准制定必要性 (1) 3 主要工作过程 (1) 4 国内相关标准研究 (2) 5 同类工程现状调研 (4) 5.1 水解酸化法的反应器类型 (4) 5.2 水解酸化法应用现状 (6) 5.3 水解酸化法存在的问题 (8) 5.4 水解酸化法的发展趋势 (9) 6 主要技术内容及说明 (9) 6.1 水解酸化法的机理 (9) 6.2 水解酸化法的适用性 (10) 6.3 水量和水质 (11) 6.4 污染物去除率 (11) 6.5水解酸化法污水处理工艺流程 (12) 6.6 预处理 (12) 6.7 升流式水解反应器 (13) 6.8 复合式水解反应器 (16) 6.9 完全混合式水解反应器 (16) 6.10 后续处理 (17) 6.11 剩余污泥及处理 (17) 6.12 检测与控制 (17) 6.13 运行与维护 (18) 7 标准实施的环境效益与经济技术分析 (19) 8 标准实施建议 (19)

《水解酸化反应器污水处理工程技术规范》编制说明 1 任务来源 2009年,环境保护部下达了“关于开展2009年度国家环境保护标准制修订项目工作的通知”(环办函【2009】221号),其中提出了制定《污水厌氧生物处理工程技术规范水解酸化法》(项目编号247-1392号)行业标准的任务。 本标准主要起草单位:中国环境保护产业协会、清华大学、北京市环境保护科学研究院。 2 标准制定必要性 环境保护标准化是我国环境保护的一项重要的发展战略,建立与国际接轨的环境工程服务技术标准体系和环境技术评估体系,是当前加快环境保护标准化步伐的一项重要任务。它对于提升我国环境工程服务业的国际竞争能力,规范环境工程服务业市场,保证环境工程建设和运行管理质量,为环境管理提供技术支撑和保障具有重要意义。 环境工程服务技术标准包括工程类技术标准和产品类技术标准两大类,是环境工程立项、科研、招投标、设计、建设施工、验收、运行全过程服务的技术依据。 水解酸化法作为有效改善水质可生化性的工艺在我国污水处理工程实践中已得到广泛应用。很多管理部门、设计部门和技术研究单位,在从事水解酸化法污水处理工程的设计及运行管理工作中已经积累了一些实践经验,但是国内尚缺乏可操作的技术规范指导水解酸化法污水处理设施的建设与运行。为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》、和国家其他有关污水处理领域的法规,规范水解酸化反应器污水处理工程的规划、设计、施工、验收和运行管理,需要制定《污水厌氧生物处理工程技术规范水解酸化法》作为污水水解酸化法污水处理技术工程设计工作的指导性文件,为水解酸化法设备的施工、验收和运行管理提出相关要求。使水解酸化法污水处理设施从建设到运行全过程能有一个技术规范进行指导,对于保证水解酸化法污水处理工程的建设质量和稳定运行,以及保证环境保护主管部门的有序监管都具有重要意义。 因此,《污水厌氧生物处理工程技术规范水解酸化法》的编制是十分必要和及时的。 3 主要工作过程 2009年3月,环境保护部下达《污水厌氧生物处理工程技术规范水解酸化法》编制任务后,中国环境保护产业协会组织成立了标准编制组,编制组由中国环境保护产业协会、清华大学、北京市环境保护科学研究院等相关单位的人员组成。

酸水解法

浓酸水解法 浓酸水解法一般情况下指的是酸浓度为70%的硫酸、40%的盐酸或80%的硝酸等无机酸作为酸催化剂水解纤维素的方法,该方法的原理主要是纤维素在酸性条件下的水解是均相反应,纤维素在浓酸中溶胀或溶解后,通过与酸形成复合物后,再降解生成聚合度较低的可溶性寡聚糖(以纤维四糖为主)和葡萄糖。而后加水稀释,一定温度下加热一段时间后可溶性糖即可水解为葡萄糖。用此方法转化纤维素到葡萄糖的产率较高(最高可达90%以上)。但是浓酸水解法所需的反应时间较长,对设备的腐蚀相当严重,对生态环境污染也比较大,且所用的酸必须回收,因此限制了浓酸水解的广泛的工业应用。 稀酸水解 在较高温度下,纤维素的复杂网络状结构使其在稀酸(通常指的是浓度低于10%的盐酸或硫酸等无机酸)中发生于固相纤维素和稀酸溶液之间的多相水解反应,其中此过程分为两个阶段:一是纤维素的非结晶区的水解,由于非结晶区结构松散,氢离子较易进入,因而水解较快, 非结晶区水解的同时,也会发生结晶区的溶胀,在非结晶区水解完全后,结晶区的水解产物会从表面逐渐分离。纤维素的稀酸水解,H3O+与氧原子结合,打破纤维素链中的糖苷键和葡萄糖分子中的C-O-C键,纤维素长链断裂,生成可溶性低聚糖和葡萄糖的同时又将氢离子释放出来。 稀酸水解纤维素的可能机理为,稀酸水溶液中的氢离子对β-1,4糖苷键的氧原子进行质子化,然后水分子进攻α-C原子而使β-1,4糖苷键断裂,从而使纤维素分解为小分子糖类。但是,所得到的糖类在酸性条件下还会进一步的分解产生甲酸,乙酸及乙酰丙酸等副产物。 稀酸水解法的缺点是水解反应所需的温度较高,副产物较多,容易使生成的产物葡萄糖继续分解为5-HMF、乙酰丙酸和甲酸、乳酸等小分子物质,而且影响反应的因素也较多,比如:无机酸的种类及浓度、反应的温度及时间、原料粉碎的程度及反应的固液比等。该方法所得到的糖类产率(大约为50% -70%)也较低。 稀酸水解纤维素的方法是目前研究最广泛的方法,稀酸水解一般采用硫酸,盐酸和磷酸等无机酸,但稀酸水解和浓酸水解一样面临着具有对设备腐蚀和生态环境污染等严重的缺点,酸液的回收及其后处理同样面临着困难和麻烦。

测定方法-游离脂肪酸

2.1.4游离脂肪酸测定方法2.141 试剂 乙醇-乙醚混合溶液:无水乙醚与95沱醚1:1(V)混合,每100mL溶剂加入0.3mL酚酞指示剂 0.1M KOH标准溶液:称取5.8gKOH溶于1000mL新沸冷却蒸馏水中,摇匀,按下 法标定其摩尔浓度。称取在125 C烘至恒重的基准邻苯二甲酸氢钾 0.8608g ,精确至0.0002g ,置于250mL锥形瓶中,以50mL蒸馏水溶解, 加入2-3滴酚酞指示剂,用上述KOH容液滴定至粉红色,同时做空白试 验,KOH标准溶液摩尔浓度M G— (V V。)0.2042 式中:G—邻苯二甲酸氢钾质量,g V —KOH容液用量,mL V 。一空白试验KOH溶液的用量,mL 0.2042 —每mol邻苯二甲酸氢钾的质量,g 计算结果:M KOH二0.86080.0942 (44.85 0.10) 0.2042 1獅酞指示剂:1g酚酞溶于100mL95乙醇中 2.1.4.2 仪器 250mL锥形瓶,25mL滴定管分析天平 2.2.5游离脂肪酸(FFA)含量的测定⑴: 精确称取样品5.0g,置于锥形瓶中,用水浴微热熔融,加入预先中和的乙醚、乙醇混合液50mL使之溶解,加入1%酚酞5滴,然后用氢氧化钾标准溶液滴至呈粉红色,10s 内不退色为终点,记录消耗氢氧化钾标准液的毫升数。游离脂肪酸质量分数(以油酸计)为

m 式中FFA 游离脂肪酸的质量分数 V-消耗氢氧化钾标准溶液的体积(mL C-氢氧化钾标准溶液的浓度(mol/L ) 282-油酸的摩尔质量(g/mol ) m 样品质量(g ) 2.1.5游离氨基酸测定方法 2.1.5.1 试齐I 」 40%中性甲醛:40mL 甲醛溶于60mL 蒸馏水中,用1mol/L NaOH 调pH 为8.1 0.1%百里酚酞:0.1g 百里酚酞溶于90mL 乙醇,加水至100mL 0.1M NaOH B 准溶液:称取110gNaOH 溶于100mL 无CO 的水中,摇匀,注入聚乙烯容器 中,密闭放置至溶液清亮。用塑料管量取5.1m 上层清液,用无CO 的水稀释至1000mL 摇匀。 称取0.75g 于105-110 C 烘至恒重的邻苯二甲酸氢钾,加入无 CO 水溶解,加2滴酚酞指示液,用配好的NaOH 底至溶液呈粉红色, 并保持30s ,同时做空白实验。NaOH 标准溶液的摩尔浓度 M NaOH m 1000 (V 1 V 2)M 式中:m —邻苯二甲酸氢钾 质量, g V 1 —NaOH 体积,mL V 2 —空白试验消耗NaO 啲体积, mL M —邻苯二甲酸氢钾的摩尔质量, 204.22g/mol 计算结果: M NaOH =—— 0.7512 1000 — =0.11026 (33.41 0.05) 204.22 FFA V C 282 1000 100

粗脂肪含量的测定

粗脂肪含量的测定-索氏抽提法 摘要:测定脂肪的含量,可以作为鉴别其品质优劣的一个指标.脂肪含量的测定有很多方法,如抽提法、酸水解法、比重法、折射法、电测和核磁共振法等.目前国内外普遍采用抽提法,其中索氏抽提法是公认的经典方法,也是我国粮油分折首选的标准方法.通过本实验的学习,掌握索氏抽提法测定粗脂肪含量的原理和操作方法. 一、目的 脂肪广泛存在于许多植物的种子和果实中,测定脂肪的含量,可以作为鉴别其品质优劣的一个指标.脂肪含量的测定有很多方法,如抽提法、酸水解法、比重法、折射法、电测和核磁共振法等.目前国内外普遍采用抽提法,其中索氏抽提法(Soxhlet extractor method)是公认的经典方法,也是我国粮油分折首选的标准方法.通过本实验的学习,掌握索氏抽提法测定粗脂肪含量的原理和操作方法. 二、原理 本实验采用索氏抽提法中的残余法,即用低沸点有机溶剂(乙醚或石油醚)回流抽提,除去样品中的粗脂肪,以样品与残渣重量之差,计算粗脂肪含量.由于有机溶剂的抽提物中除脂肪外,还或多或少含有游离脂肪酸、甾醇、磷脂、蜡及色素等类脂物质,因而抽提法测定的结果只能是粗脂肪. 三、实验材料、主要仪器和试剂 1、实验材料

油料作物种子、中速滤纸 2、仪器: 1)索氏脂肪抽提器(图1)或YG-Ⅱ型油分测定器2)干燥器(直径15-18cm,盛变色硅胶) 3)不锈钢镊子(长20cm) 4)培养皿 5)分析天平(感量0.001g) 6)称量瓶 7)恒温水浴 8)烘箱

9)样品筛(60 目) 3、试剂 无水乙醚或低沸点石油醚(A.R.) 四、操作步骤 1、准备工作 将滤纸切成8cm×8cm,叠成一边不封口的纸包,用硬铅笔编写顺序号,按顺序排列在培养皿中.将盛有滤纸包的培养皿移入105±2℃烘箱中干燥2h,取出放入干燥器中,冷却至室温.按顺序将各滤纸包放人同一称量瓶中称重(记作a)、称量时室内相对湿度必须低于70%. 2、包装和干燥 在上述已称重的滤纸包中装入3g 左右研细的样品,封好包口,放入105±2℃的烘箱中干燥3h,移至干燥器中冷却至室温.按顺序号依次放入称量瓶中称重(记作b). 3、抽提 将装有样品的滤纸包用长镊子放入抽提筒中,注入一次虹吸量的1.67 倍的无水乙醚,使样品包完全浸没在乙醚中.连接好抽提器各部分,接通冷凝水水流,在恒温水浴中进行抽提,调节水温在70-80℃之间,使冷凝下滴的乙醚成连珠状(120-150 滴/min 或回流7次/h 以上),抽提至抽取筒内的乙醚用滤纸点滴检查无油迹为止(约需6-12h).抽提完毕后,用长镊子取出滤纸包,在通风处使乙醚挥发(抽提室温以12-25℃为宜).提取瓶中的乙醚另行回收. 4、称重

双相酸水解法提取薯蓣皂苷元的研究

1991;1:43. [4]王永实,范治全.阿胶复脉汤对大鼠内毒素血症血小板血液 凝固性与脂质过氧化变化的影响[J].第二军医大学学报, 1993;14(1):55. [5]郑筱祥,杨勇,叶剑峰,等.东阿阿胶的升白作用及机制研究 [J].中国现代应用药学杂志,2005,22(2):102. [6]王志海,何秀敏.阿胶补血作用机理初探[J].山东中医杂 志,1992,11(3):35. [7]郭成浩,金毅.阿胶药理作用的结构学说[J].中国中药杂 志,1999,24(1):54. [8]Ryffel B,M ihatsch MJ.I m munosupp ressi on and cancer:the cicl os porin case[J].D rug Che m Toxicol,1992;15(2):95. [9]Luo JS,Ka mmerer R.Modulati ons of the effect or functi on and cy2 t okine p r oducti on of human ly mphocytes by secreted fact ors de2 rived fr om col orectal2carcinoma cells[J].I nt J Cancer,1997,72 (1):142.[10]Buggins AG,M il ojkovic D.M icr oenvir onment p r oduced by acute myel oid leuke m ia cells p revents T cell activati on and p r oliferati on by inhibiti on of NF2kappa B,c2Myc,and pRb pathways[J].J I m munol,2001,167(10):6021. [11]杨业金,陈兆聪.白血病细胞产生的免疫抑制因子对I L2作 用的影响[J].癌症,1994,13(1):4. [12]Kels o A,Tr outt AB.Heter ogenerity in ly mphokine p r ofiles of CD4+and CD8+T cells and cl ones activated in vivo and vitr o [J].I m munol Rev,1991,123:85. [13]Seder RA,Paul W E.Acquisiti on of ly mphokine2p r oducing phe2 notype by CD4+T cells[J].Annu Rev I m munol,1994,12: 635. [14]Rohrer J W,Coggin J M J r.CD8T cell cl ones inhibit antitumor T cell functi on by secreting I L210[J].J I m munol,1995,155(12): 5719. 收稿日期:2003205223 双相酸水解法提取薯蓣皂苷元的研究 杨欢,杨克迪,陈钧(江苏大学生物与环境工程学院,江苏镇江212013) 摘要:目的 建立双相酸水解法提取薯蓣皂苷元的最佳条件。方法 以薯蓣皂苷元得率为指标,采用单因素法建立双相酸水解法从穿山龙中提取薯蓣皂苷元的最佳条件。结果 按照穿山龙样品∶浓盐酸∶甲醇∶水∶石油醚(10∶21∶60∶19∶100)的比例加入反应体系,在沸水浴中加热回流提取6h,获得比传统方法更高的得率。结论 双相酸水解法提取薯蓣皂苷元简便易行,周期短,提取率高。 关键词:薯蓣皂苷元;穿山龙;双相酸水解法 中图分类号:T Q467;R977.1 文献标识码:A 文章编号:100727693(2005)0420270203 The research on two2pha se ac i d hydrolysis of extracti n g d i osgen i n Y ANG Huan,Y ANG Ke2di,CHEN Jun(School of B iological and Environm ental Engineering,J iangsu U niversity,Zhenjiang 212013,China) ABSTRACT:O BJECT I VE T o establish the op ti m u m conditi ons of t w o2phase acid hydr olysis t o extract di osgenin.M ETHOD U sing single2fact or method,with the yield of di osgenin as the index,we established the op ti m u m conditi ons.RESUL TS Rhizoma D i2 oscoreae ni pponicae extracted with t w o2phase system(sa mp le∶HCl∶Me OH∶H2O∶petr oleu m ether=10∶21∶60∶19∶100)under the boil2 ing water bath for6h could get higher recovery of di osgenin than that of traditi onal methods.CO NCL US I O N This method is conven2 ient,ti m e saving and higher. KE Y WO R D:di osgenin;Rhizoma D i oscoreae ni pponicae;t w o2phase acid hydr olysis 薯蓣皂苷元(di osgenin)是合成甾体激素的主要中间体原料,传统提取方法分为两种,一种是先提取出薯蓣皂苷,再用酸水解皂苷,最后萃取出苷元[1~3]。另一种是将植物置于酸液中反应,再提取干燥后的滤渣[4~5]。这两种方法操作复杂,周期长,提取率低。 Rozanski[6]用盐酸与二甲苯的混合体系对薯蓣皂苷元提取工艺进行简化,利用皂苷极性大,易溶于极性溶剂,而苷元易溶于非极性溶剂的性质,使水解获得的薯蓣皂苷元快速地由水相转移至二甲苯相,减少了不良反应的发生,此后, W eissenberg[7]将该法用于提取甾体生物碱。笔者以穿山龙为原料,对反应温度、酸和甲醇的浓度、反应时间等因素进行了考察,并与传统方法相比较。 1 仪器与材料 Büchi Rotavapor R2200型旋转蒸发器(瑞士Büchi公 ? 7 2 ?Chin J MAP,2005August,Vol.22No.4 中国现代应用药学杂志2005年8月第22卷第4期

相关文档
最新文档