巧用三余弦定理解题教程文件

巧用三余弦定理解题教程文件
巧用三余弦定理解题教程文件

巧用三余弦定理解题

A

O

P α

l

B

A O

1θ2

θθ

P

Q α

巧用“三余弦定理”解题

“三余弦定理”的内容:如图1,直线AO 是平面α 的斜线,AQ 是AO 在平面内的射影,直线AP 在平面α内.设

21,,θθθ=∠=∠=∠QAP OAQ OAP ,有以下结

论:21cos cos cos θθθ

?=.我们可以形象地把这个结论称为“三余弦定理”,

应用“三余弦定理”可以使我们的很多立体几何问题的解决变得简单. 图1

应用“三余弦定理”解题的步骤如下:

1. 明确三线:平面内的直线(以下简称“内线”),平面的斜线和斜线在平面内的射影.

2. 明确三角:斜线与“内线”所成为θ,斜线与射影所成的角为1θ,射影与“内线”所成的角为2θ.

3. 定理运算.

例1.如图2,已知AO 是平面α的一条斜线,OB ⊥α,B 是垂足,AP 是α内一直线,∠OAP=60o ,∠BAP=45o ,求斜线AO 与平面α所成的角.

分析:AP 是“内线”,AO 是斜线,AB 是射影,所以21,,θθθ=∠=∠=∠BAP OAB OAP ,直接利用“三余弦定理”求解.解题过程略.

略解:

点评:斜线与平面所成的角即斜线与射影所成的角,明确了“三线”与“三角”,直接代定理求解.

图2

变式1:已知∠OAB=45o ,∠BAP=45o ,求直线AO 与AP 所成的角; 分析:同例1.

变式2:已知∠OAB=45o ,∠BAP=45o , l //AP, 求直线AO 与l 所成的角; 分析:因为l //AP ,直线AO 与AP 所成的角同AO 与l 所成的角相等.我们在解题时,只需要明确“三线”,这时l 是“内线”,AO 是斜线,AB 是射影,然后斜线 AO 与“内线”l 所成为θ,斜线AO 与射影AB 所成的角为1θ,射影AB 与“内线”l 所成的角为2θ, 问题迎刃而解.

例2.如图3,在棱长为1正方体ABCD- A 1B 1C 1D 1中,E 、F 分别是B 1C 1和CC 1的中点,求异面直线A 1B 与EF 所成角的余弦值.

分析:直线BA 1是平面BCC 1B 1的斜线,BB 1是射影,EF 为“内线”,这样就明确是三线 , 再明确三角,然后定理计算即可.

解:由题意可知,直线BA 1是平面BCC1B1的斜线,

BB1是BA 1在平面内的射影,EF 为平面内的直线,

所以BA 1与EF 所成的角为θ,111θ=∠BC A ,EF 与BB 1所成的角为2θ 图3

C 1 A

B

C

D

A 1

B 1

D 1

F

E

三余弦公式的巧用

三余弦公式的巧用 1AO AO AO 12 αθααθθθθθ2 如图:斜线和平面所成的角为 斜线在平面上的射影A B ,A C 为平面内异于A B 的直线, A B 与A C 的夹角为,与A C 的夹角,则有:cos =cos cos 该公式本质上反映了线面角与线线角之间的数量关系,其本质特征是由两个平面互相垂直,两个平面内的三条直线所成角的定量关系。在处理异面直线所成角、线面角的问题时效果明显。下面通过近年高考试题予以说明。 例一: (2005全国卷I 第18题) 已知四棱锥P-ABCD 的底面为直角梯形,AB CD ∥, ⊥=∠PA DAB ,90 底面ABCD , 且PA=AD=DC= 2 1 AB=1,M 是PB 的中点。 (Ⅱ)求AC 与PB 所成的角; 常规解法:过点B 作BE//CA ,且BE=CA ,则∠PBE 是AC 与PB 所成的角. 连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由 PA ⊥面 ABCD 得∠PEB=90°在 Rt △PEB 中 BE= 2,PB=5, .510cos == ∠∴PB BE PBE .5 10 arccos 所成的角为与PB AC ∴ 析:已知条件中有PA ⊥底面ABCD 若使用三余弦公式则:PB 在平面ABCD 上的射影AB , 210 cos 22 PBA BAC AC PB ∠= ∠= = ∴与 .5 10 arccos 所成的角为与PB AC ∴ 评:只要找到三线的夹角即可,无需作图求解。 例二(2006福建卷)如图,四面体ABCD 中, A B M D E O C

戴维南定理实验报告

戴维南定理实验报告

戴维南定理 班级:14电信学号:1428403003 姓名:王舒成绩:一实验原理及思路 一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的. 等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。这一定理称为戴维南定理。 本实验采用如下所示的实验电路图a: 等效后的电路图如下b: 测它们等效前后的外特性,然后验证等效前后对电路的影响。 二实验内容及结果

⒈计算等效电压和电阻 计算等效电压:电桥平衡。∴=,33 1131R R R R Θ Uoc=3 11 R R R +=2.609V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ??++3311111221 3111121 R R R R R R =250.355 ⒉用Multisim 软件测量等效电压和等效电阻 测量等效电阻是将V1短路,开关断开如下图所示: -+ Ro=250.335O Ω 测量等效电压是将滑动变阻器短路如下图 V120 V R11.8kΩ R2220Ω R112.2kΩ R22270Ω R33330ΩR3270Ω 50% 2 4 J1Key = A XMM1 6 a 1 7 Uo=2.609V ⒊用Multisim 仿真验证戴维南定理 仿真数据

等效电压Uoc=2.609V 等效电阻Ro=250.355Ω 电压/V 2.6 09 2.4 08 2.3 87 2.3 62 2.3 31 2.2 9 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 84 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 4 电压/V 2.6 09 2.4 08 2.3 87 2.3 63 2.3 3 2.2 91 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 85 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 5

正、余弦定理解题易错点剖析

正、余弦定理解题易错点剖析 正、余弦定理及其应用问题综合性强、解题有一定的技巧,学生在解题时,经常因为审题不仔细,忽视一些条件而导致错误.本文分类剖析了解题中常出现的错误,旨在为同学们提个醒,以达防微杜渐的目的. 一、隐含条件被忽视致错 例1 在ABC △中,若3C B =,求 c b 的取值范围. 错解:由正弦定理可知 sin3sin cos2cos sin 2sin sin c B B B B B b B B +==22cos 22cos 4cos 1B B B =+=-. 由20cos 1B ≤≤,得214cos 13B --≤≤,故13c b -≤≤. 剖析:上述解法中,忽视了B 的取值范围及a b c ,,均为正的条件而致错. 正解: 24cos 1c B b =-.(过程同错解) 又∵180A B C ++=°,2C B =, ∴045B <<°,2cos 12 B <<, ∴214cos 13B <-<∴,故13c b < <. 在解决解三角形问题时,经常因忽视三角形中的隐含条件而出现解题错误.同学们在解题时一定要“擦亮慧眼”,否则极容易产生错解. 觅错:某同学遇到这样一道问题:在ABC △中,已知222 15a b C ===,,°,则A =_________. 分析:已知两边及其夹角,先用余弦定理,算出c ,再用正弦定理算出1sin 2 A = ,便大笔一挥,写上了“30°或150°”,轻轻松松搞定,不料老师却给他判了零分.下面是这位同学的详细解题过程,同学们帮他找找错因吧! 错解:由余弦定理,得2222cos15843c a b ab =+-=-°. 又sin 1sin 2 a C A c = =,而0180A <<°°, ∴ 30A =°或150A =°. 所以空格上填“30°或150°”. 二、制约条件被忽视致错 例2 在ABC △ 中,62c =+,30C =°,求a b +的最大值. 错解:∵30C =°,∴150A B +=°,150B A =-°. 由正弦定理,得62sin sin(150)sin 30a b A A +==-°° , 2(6 2)s i n a A =+∴,

戴维南定理实验报告

戴维南定理 学号:1128403019 姓名:魏海龙班级:传感网技术 一、实验目的: 1、深刻理解和掌握戴维南定理。 2、掌握测量等效电路参数的方法。 3、初步掌握用multisim软件绘制电路原理图。 4、初步掌握multisim软件中的multimeter、voltmeter、ammeter 等仪表的使用以及DC operating point、paramrter sweep等 SPICE仿真分析方法。 5、掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使 用。 6、初步掌握Origin绘图软件的应用。 二、实验器材: 计算机一台、通用电路板一块、万用表两只、直流稳压电源一台、电阻若干。 三、实验原理:一个含独立源、线性电阻和受控源的一端口网络,对 外电路来说,可以用一个电压源和电阻的串联组合来等效置 换,其等效电压源的电压等于该一端口网络的开路电压,其等 效电阻等于该一端口网络中所有独立源都置为零后的数日电 阻。 四、实验内容: 1、电路图:

2、元器件列表: 2、实验步骤: (1)理论分析: 计 算等效电压: 电桥平衡。∴=,331131R R R R Uoc=3 11 R R R +=2.6087V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R =250.355

(2)测量如下表中所列各电阻的实际值,并填入表格: 然后根据理论分析结果和表中世纪测量阻值计算出等效电源电压和等效电阻,如下所示: Uc=2.6087V R=250.355Ω (3)multisim仿真: a、按照下图所示在multisim软件中创建电路 b、用万用表测量端口的开路电压和短路电流,并计算等 效电阻,结果如下:Us= 2.609V I= 10.42mA R=250.38Ω

模拟电子技术第七章习题解答

第七章基本放大电路 7.1 试判断题7.1图中各电路能不能放大交流信号,并说明原因。 解:a、b、c三个电路中晶体管发射结正偏,集电结反偏,故均正常工作,但b图中集电极交流接地,故无交流输出。d图中晶体管集电结正偏,故晶体管不能正常工作,另外,交流输入信号交流接地。因此a、c两电路能放大交流信号,b、d两电路不能放大交流信号。 7.2 单管共射放大电路如题7.2图所示,已知三极管的电流放大系数50 = β。 (1)估算电路的静态工作点; (2)计算三极管的输入电阻 be r; (3)画出微变等效电路,计算电压放大倍数; (4)计算电路的输入电阻和输出电阻; (5)如果输入信号由内阻为1kΩ的信号源提供,计算源电压放大倍数; (6)去掉负载电阻,再计算电路的电压放大倍数、 CC + o -题7.2图 C C C (a) 题7.1图

输入电阻和输出电阻。 解:(1)A A R U U I B BE CC B μ4010410 3007.0125 3 =?≈?-=-= - mA A I I B C 210210405036=?=??==--β V I R U U C C CC CE 61021031233=???-=-=- (2)Ω=+=+=9502 265030026300C be I r β (3)放大电路的微变等效电路如图所示 电压放大倍数 7995 .03 ||350||-=-=-=be L C u r R R A β (4)输入电阻:Ω≈?==950950||10300||3be B i r R r 输出电阻 Ω==k R r C 30 (6) 15895 .0| 350 -=-=-=be C u r R A β 输入电阻:Ω≈?==950950||10300||3be B i r R r 输出电阻 Ω==k R r C 30 7.3 单管共射放大电路如题7.3图所示。已知100=β (1)估算电路的静态工作点; (2)计算电路的电压放大倍数、输入电阻和输出电阻 (3)估算最大不失真输出电压的幅值; (4)当i u 足够大时,输出电压首先出现何种失真,如何调节R B 消除失真? 解:电路的直流通路如图所示, CC BQ E BEQ BQ B U I R U I R =+++)1(β A mA R R U U I E B BEQ C C BQ μβ435 .010130015 )1(=?+≈ ++-≈ 由此定出静态工作点Q 为 + u o - CC +u o - 题7.3 图 CC R

巧用三余弦定理解题教程文件

巧用三余弦定理解题

A O P α l B A O 1θ2 θθ P Q α 巧用“三余弦定理”解题 “三余弦定理”的内容:如图1,直线AO 是平面α 的斜线,AQ 是AO 在平面内的射影,直线AP 在平面α内.设 21,,θθθ=∠=∠=∠QAP OAQ OAP ,有以下结 论:21cos cos cos θθθ ?=.我们可以形象地把这个结论称为“三余弦定理”, 应用“三余弦定理”可以使我们的很多立体几何问题的解决变得简单. 图1 应用“三余弦定理”解题的步骤如下: 1. 明确三线:平面内的直线(以下简称“内线”),平面的斜线和斜线在平面内的射影. 2. 明确三角:斜线与“内线”所成为θ,斜线与射影所成的角为1θ,射影与“内线”所成的角为2θ. 3. 定理运算. 例1.如图2,已知AO 是平面α的一条斜线,OB ⊥α,B 是垂足,AP 是α内一直线,∠OAP=60o ,∠BAP=45o ,求斜线AO 与平面α所成的角. 分析:AP 是“内线”,AO 是斜线,AB 是射影,所以21,,θθθ=∠=∠=∠BAP OAB OAP ,直接利用“三余弦定理”求解.解题过程略.

略解: 点评:斜线与平面所成的角即斜线与射影所成的角,明确了“三线”与“三角”,直接代定理求解. 图2 变式1:已知∠OAB=45o ,∠BAP=45o ,求直线AO 与AP 所成的角; 分析:同例1. 变式2:已知∠OAB=45o ,∠BAP=45o , l //AP, 求直线AO 与l 所成的角; 分析:因为l //AP ,直线AO 与AP 所成的角同AO 与l 所成的角相等.我们在解题时,只需要明确“三线”,这时l 是“内线”,AO 是斜线,AB 是射影,然后斜线 AO 与“内线”l 所成为θ,斜线AO 与射影AB 所成的角为1θ,射影AB 与“内线”l 所成的角为2θ, 问题迎刃而解. 例2.如图3,在棱长为1正方体ABCD- A 1B 1C 1D 1中,E 、F 分别是B 1C 1和CC 1的中点,求异面直线A 1B 与EF 所成角的余弦值. 分析:直线BA 1是平面BCC 1B 1的斜线,BB 1是射影,EF 为“内线”,这样就明确是三线 , 再明确三角,然后定理计算即可. 解:由题意可知,直线BA 1是平面BCC1B1的斜线, BB1是BA 1在平面内的射影,EF 为平面内的直线, 所以BA 1与EF 所成的角为θ,111θ=∠BC A ,EF 与BB 1所成的角为2θ 图3 C 1 A B C D A 1 B 1 D 1 F E

戴维南定理实验报告

实验四戴维南定理 一、实验目的 1、验证戴维南定理 2、测定线性有源一端口网络的外特性和戴维南等效电路的外特性。 二、实验原理 戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,总可以用一个理想电压源和电阻的串联形式来代替,理想电压源的电玉等于原一端口的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req,见图4-1。 图4- 1 图4- 2 1、开路电压的测量方法 方法一:直接测量法。当有源二端网络的等效内阻Req与电压表的内阻Rv相比可以忽略不计时,可以直接用电压表测量开路电压。 方法二:补偿法。其测量电路如图4-2所示,E为高精度的标准电压源,R为标准分压电阻箱,G为高灵敏度的检流计。调节电阻箱的分压比,c、d两端的电压随之改变,当Ucd=Uab 时,流过检流计G的电流为零,因此

Uab=Ucd =[R2/(R1+ R2)]E=KE 式中K= R2/(R1+ R2)为电阻箱的分压比。根据标准电压E 和分压比Κ就可求得开路电压Uab,因为电路平衡时I G= 0,不消耗电能,所以此法测量精度较高。 2、等效电阻Req的测量方法 对于已知的线性有源一端口网络,其入端等效电Req可以从原网络计算得出,也可以通过实验测出,下面介绍几种测量方法: 方法一:将有源二端网络中的独立源都去掉,在ab端外加一已知电压U, 测量一端口的总电流I总则等效电阻 Req= U/I总 实际的电压源和电流源具有一定的内阻,它并不能与电源本身分开,因此在去掉电源的同时,也把电源的内阻去掉了,无法将电源内阻保留下来,这将影响测量精度,因而这种方法只适用于电压源内阻较小和电流源内阻较大的情况。 方法二:测量ab端的开路电压Uoc及短路电流Isc则等效电阻 Req= Uoc/Isc 这种方法适用于ab端等效电阻Req较大,而短路电流不超过额定值的情形,否则有损坏电源的危险。 图4 – 3 图4-4 方法三:两次电压测量法 测量电路如图4-3所示,第一次测量ab端的开路Uoc,第二次在ab端接一已知电阻RL (负载电阻),测量此时a、b端的负载电压U,则a、b端的等效电阻Req为:

余弦定理知识点总结与复习

余弦定理 教师:lihao (1)语言叙述 三角形中任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍 . (2)公式表达 2a = 2b = 2c = c2= 思路点拨:由题目可获取以下主要信息:①已知三边比例; ②求三角形的三内角. 解答本题可应用余弦定理求出三个角 [题后感悟] 此题为“已知三边,求三角形的三个角”类型问题,基本解法是先利用余弦定理的推论求一个角的余弦,再判定此角的取值,求得第一个角,再用正弦定理求出另一个角,最后用三角形内角和定理,求出第三个角(一般地,先求最小角,再求最大角) 已知△ABC 中,a ∶b ∶c =2∶6∶(3+1),求△ABC 各角的度数. [解题过程] ∵a ∶b ∶c =2∶6∶(3+1), ∴令a =2k ,b =6k ,c =(3+1)k . 由余弦定理,有 cos A =b 2+c 2-a 22bc =6+(3+1)2-426×(3+1)=22, ∴A =45°. cos B =a 2+c 2-b 22ac =4+(3+1)2-62×2×(3+1) =12, ∴B =60°.∴C =180°-A -B =180°-45°-60°=75°.

1.在△ABC 中,已知a =26,b =6+23,c =43,求角A ,B ,C . 解析: 在△ABC 中,由余弦定理得, cos C =a 2+b 2-c 22ab =(26)2-(6+23)2-(43)2 2×26×(6+23) =24(3+1)242(3+1) =22. ∴C =45°,sin C =22. 由正弦定理得:sin A =a sin C c =26×2243 =12. ∵a

戴维南定理实验报告

戴维南定理实验报告 一、实验目的 1.深刻理解和掌握戴维南定理。 2.掌握测量等效电路参数的方法。 3.初步掌握用Multisim软件绘制电路原理图的方法。 4.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用方法。二、实验原理 将一个含独立源、线性电阻和受控电源的一端口网络,用一个电压源和电阻的串联组合来等效置换,其等效电压源的电压等于该一端口网络的开路电压,其等效电阻等于该一端口网络中所有独立源都置为零后的输入电阻。 三、实验设备与器件 1.计算机一台 2.通用电路板一块 3.万用表 4.直流稳压电源 5.电阻若干 四、实验过程 1.测量电阻的实际值,将测量的结果填入表格中,计算等效电源电压和等效电阻。 (1)创建电路:从元器件库中选择电压源、电阻创建如图所示电路,同时接入万用表。 (2)用万用表测量端口的开路电压和短路电流,并计算等效电阻。 开路电压测量原理图:

短路电流测量原理图: 等效电阻计算: Uoc=2.609V Isc=10.42mA 所以:Ro=Uoc/Isc=2.609V/10.42mA=250.355(欧姆) (3)用万用表的欧姆档测量等效电阻,与(2)所得结果比较,将测量结果填入 表中。

等效电路图: (5)用参数扫描法对负载电阻进行参数扫描,得到原电路和等效电路的外特性, 5.测量原电路和戴维南等效电路的外特性,测量结果填入表中。

1.为何开路电压理论值和实际测量值一样,而短路电流却不一样? 答、因为理论得到的等效电阻与实际用来替代的电阻阻值并不完全相同,可能会有器件本身阻值的偏差,也会由于供给电压后对电阻阻值的影响,再有实际测量工具的误差,安培表外接和内接影响等等,最终导致短路电流与理论值不同。2.本实验原理图是按照安培表外接法绘制的,考虑安培表外接和内接对本实验有何差别? 答、(1)安培表外接时:测到的开路电压较为准确,但短路电流偏小,使得所得到的等效电阻偏大; (2)安培表内接时:测到的开路电压偏大,短路电流无偏差,也使得等效电阻偏大。

戴维宁定理七种例题

戴维宁定理例题 例1 运用戴维宁定理求下图所示电路中的电压U0 图1 剖析:断开待求电压地址的支路(即3Ω电阻地址支路),将剩下一端口网络化为戴维宁等效电路,需恳求开路电压U oc和等效电阻R eq。 (1)求开路电压U oc,电路如下图所示 由电路联接联络得到,U oc=6I+3I,求解得到,I=9/9=1A,所以U oc=9V (2)求等效电阻R eq。上图电路中含受控源,需求用第二(外加电源法(加电压求电流或加电流求电压))或第三种(开路电压,短路电流法)办法求解,此刻独立源应置零。 法一:加压求流,电路如下图所示, 依据电路联接联络,得到U=6I+3I=9I(KVL),I=I0′6/(6+3)=(2/3)I0(并联分流),所以U=9′(2/3)I0=6I0,R eq=U/I0=6Ω 法二:开路电压、短路电流。开路电压前面已求出,U oc=9V,下面需恳求短路电流I sc。在求解短路电流的进程中,独立源要保存。电路如下图所示。

依据电路联接联络,得到6I1+3I=9(KVL),6I+3I=0(KVL),故I=0,得到I sc=I1=9/6=1.5A(KCL),所以R eq=U oc/I sc=6Ω 终究,等效电路如下图所示 依据电路联接,得到 留心: 核算含受控源电路的等效电阻是用外加电源法仍是开路、短路法,要详细疑问详细剖析,以核算简练为好。戴维南定理典型例子 戴维南定理指出,等效二端网络的电动势E等于二端网络开路时的电压,它的串联内阻抗等于网络内部各独立源和电容电压、电感电流都为零时,从这二端看向网络的阻抗Zi。设二端网络N中含有独立电源和线性时不变二端元件(电阻器、电感器、电容器),这些元件之间可以有耦合,即可以有受控源及互感耦合;网络N的两端ɑ、b接有负载阻抗Z(s),但负载与网络N内部诸元件之间没有耦合,U(s)=I(s)/Z(s)。当网络N中所有独立电源都不工作(例如将独立电压源用短路代替,独立电流源用开路代替),所有电容电压和电感电流的初始值都为零的时候,可把这二端网络记作N0。这样,负载阻抗Z(s)中的电流I(s)一般就可以按下式1计算(图2)式中E(s)是图1二端网络N的开路电压,亦即Z(s)是无穷大时的电压U(s);Zi(s)是二端网络N0呈现的阻抗;s是由单边拉普拉斯变换引进的复变量。

巧用三余弦定理解题

A O P α l B A O 1 θ2 θθ P Q α 巧用“三余弦定理”解题 “三余弦定理”的内容:如图1,直线AO 是平面α 的斜线,AQ 是AO 在平面内的射影,直线AP 在平面α内.设21,,θθθ=∠=∠=∠QAP OAQ OAP ,有以下结论: 21cos cos cos θθθ?=.我们可以形象地把这个结 论称为“三余弦定理”,应用“三余弦定理”可以使我们 的很多立体几何问题的解决变得简单. 图1 应用“三余弦定理”解题的步骤如下: 1. 明确三线:平面内的直线(以下简称“内线”),平面的斜线和斜线在平面内的射影. 2. 明确三角:斜线与“内线”所成为θ,斜线与射影所成的角为1θ,射影与“内线”所成的角为2θ. 3. 定理运算. 例 1.如图2,已知AO 是平面α的一条斜线,OB ⊥α,B 是垂足,AP 是α内一直线,∠OAP=60o ,∠BAP=45o ,求斜线AO 与平面α所成的角. 分析:AP 是“内线”,AO 是斜线,AB 是射影,所以21,,θθθ=∠=∠=∠BAP OAB OAP ,直接利用“三 余弦定理”求解.解题过程略. 略解: 点评:斜线与平面所成的角即斜线与射影所成的角,明确了“三线”与“三角”,直接代定理求解. 图2 变式1:已知∠OAB=45o ,∠BAP=45o ,求直线AO 与AP 所成的角; 分析:同例1. 变式2:已知∠OAB=45o ,∠BAP=45o , l //AP , 求直线AO 与l 所成的角; 分析:因为l //AP ,直线AO 与AP 所成的角同AO 与l 所成的角相等.我们在解题时,只需要明确“三线”,这时l 是“内线”,AO 是斜线,AB 是射影,然后斜线 AO 与“内线”l 所成 为θ,斜线AO 与射影AB 所成的角为1θ,射影AB 与“内线”l 所成的角为2θ, 问题迎刃而解. 例2.如图3,在棱长为1正方体ABCD- A 1B 1C 1D 1中,E 、F 分别是B 1C 1和CC 1的中点,求异面直线A 1B 与EF 所成角的余弦值. C 1 A B C D A 1 B 1 D 1 F E

戴维南定理实验报告

戴维南定理 班级:14电信学号:1428403003 姓名:王舒成绩:一实验原理及思路 一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的. 等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。这一定理称为戴维南定理。 本实验采用如下所示的实验电路图a: 等效后的电路图如下b: 测它们等效前后的外特性,然后验证等效前后对电路的影响。 二实验内容及结果 ⒈计算等效电压和电阻

计算等效电压:电桥平衡。∴=,33 11 31R R R R Uoc=311R R R +=2.609V 。 计算等效电阻:R= ??? ??? ? ?+++ ??? ??? ? ?++3311111221 3111121 R R R R R R =250.355 ⒉用Multisim 软件测量等效电压和等效电阻 测量等效电阻是将V1短路,开关断开如下图所示: -+ Ro=250.335O Ω 测量等效电压是将滑动变阻器短路如下图 V120 V R11.8kΩ R2220Ω R112.2kΩ R22270Ω R33330ΩR3270Ω RL 4.7kΩ Key=A 50% 2 4 J1Key = A XMM1 XMM2 6 a 1 7 Uo=2.609V ⒊用Multisim 仿真验证戴维南定理 仿真数据 等效电压Uoc=2.609V 等效电阻Ro=250.355Ω

原电路数据 电压/V 2.6 09 2.4 08 2.3 87 2.3 62 2.3 31 2.2 9 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 84 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 4 等效电路数据 电压/V 2.6 09 2.4 08 2.3 87 2.3 63 2.3 3 2.2 91 2.2 36 2.1 58 2.0 41 1.8 41 1.4 22 电流/mA 0 0.8 03 0.8 85 0.9 85 1.1 1 1.2 72 1.4 9 1.7 99 2.2 68 3.0 68 4.7 5

实验四 戴维南定理的验证实验

实验四 戴维宁定理的验证实验 一、实验目的 1、通过实验验证戴维宁定理。 2、加深对等效电路概念的理解。 二、实验原理 戴维宁定理:在任何一个线性有源电路中,如果只研究其中一个支路电压、电流时,可将电路的其余部分看作是一个有源二端网络如图4-1(a) 所示。任何有源二端网络对外的作 (a ) (b ) 图4 -1 有源二端网络等效电路 用可用一个为U es 的理想电压源和内阻R 0串联的电源来等效代替见图4-1(b)。等效电源的理想电压源U es 就是有源二端网络的开路电压U OC ,即将负载断开后a 、b 两端之间的电压。等效电源的内阻R 0等于有源二端网络中所有电源均除去(将各个理想电压源短路,即其电压为零;将各个理想电流源开路,其电流为零)后所得到的无源网络的内阻。这个定理称为戴维宁定理。 三、实验内容及步骤 如图4-2所示,端子a ,b 左侧部分为一个有源二端网络,R L 是外部负载。依据戴维宁定理,测得a ,b 两端的开路电压U OC 和等效内阻R 0以后将数据代入图4-1(b )内,如果两个电路在负载R L 上产生的电流I 相等,即可验证戴维宁定理。本次实验中,负载R L 以可变电阻代替,可以通过测量多组数据验证定理的正确性。 图4-2 戴维宁定理验证电路图 实验步骤如下: (1) 打开EWB 软件,选中主菜单Circuit/Schematic Options/Grid 选项中的Show grid ,使得 绘图区域中出现均匀的网格线,并将绘图尺寸调节到最佳。 (2) 在Sources 元器件库中调出1个Ground (接地点)和1个Battery (直流电压源)器件, 从Basic 元器件库中调出5个Resistor (电阻)、1个Potentiometer (可变电阻)、5个Switch (开关)器件,从Indicators 元器件库中调出1个V oltmeter (电压表)、1个Ammeter (电流表)器件,最后从Instruments 元器件库中调出1个Multimeter (多用表)器件,按图4-3所示排列好。 (3) 将各元器件的标号、参数值亦改变成与图4-3所示一致。 R L R L R U +- 5 4 R L I

戴维南定理的解析与练习21408

戴维宁定理 一、知识点: 1、二端(一端口) 网络的概念: 二端网络:具有向外引出一对端子的电路或网络。 无源二端网络:二端网络中没有独立电源。 有源二端网络:二端网络中含有独立电源。 2、戴维宁(戴维南)定理 任何一个线性有源二端网络都可以用一个电压为U OC的理想电压源和一个电阻R0串联的等效电路来代替。如图所示: 等效电路的电压U OC是有源二端网络的开路电压,即将负载R L断开后a 、b两端之间的电压。 等效电路的电阻R0是有源二端网络中所有独立电源均置零(理想电压源用短路代替,理想电流源用开路代替)后, 所得到的无源二端网络a 、b两端之间的等效电阻。

二、 例题:应用戴维南定理解题: 戴维南定理的解题步骤: 1.把电路划分为待求支路和有源二端网络两部分,如图1中的虚线。 2.断开待求支路,形成有源二端网络(要画图),求有源二端网络的开路电压UOC 。 3.将有源二端网络内的电源置零,保留其内阻(要画图),求网络的入端等效电阻Rab 。 4.画出有源二端网络的等效电压源,其电压源电压US=UOC (此时要注意电源的极性),内阻R0=Rab 。 5.将待求支路接到等效电压源上,利用欧姆定律求电流。 例1:电路如图,已知U 1=40V ,U 2=20V ,R 1=R 2=4W ,R 3=13 W ,试用戴维宁定理求电流I 3。 解:(1) 断开待求支路求开路电压 U OC U OC = U 2 + I R 2 = 20 +2.5 ′ 4 = 30V 或: U OC = U 1 – I R 1 = 40 –2.5 ′ 4 = 30V U OC 也可用叠加原理等其它方法求。 (2) 求等效电阻R 0 将所有独立电源置零(理想电压源 用短路代替,理想电流源用开路代替) (3) 画出等效电路求电流I 3 例2:试求电流 I 1 A 5.24420402121 =+-=+-=R R U U I Ω=+?=22 1210R R R R R A 213 23030OC 3=+=+=R R U I

电路与模拟电子技术(第二版)第7章习题解答

5151 第七章 基本放大电路 试判断题图中各电路能不能放大交流信号,并说明原因。 解: a 、b 、c 三个电路中晶体管发射结正偏,集电结反偏,故均正常工作,但b 图中集电极交流接地,故无交流输出。d 图中晶体管集电结正偏,故晶体管不能正常工作,另外,交流输入信号交流接地。因此a 、c 两电路能放大交流信号,b 、d 两电路不能放大交流信号。 单管共射放大电路如题图所示,已知三极管的电流放大倍数50=β。 (1)估算电路的静态工作点; (2)计算三极管的输入电阻be r ; (3)画出微变等效电路,计算电压放大倍数; (4)计算电路的输入电阻和输出电阻。 解:(1)A A R U U I B BE CC B μ4010410 3007 .01253 =?≈?-=-= - CC +o - 题7.2图 C C C (a) 题7.1图

5252 mA A I I B C 210210405036=?=??==--β V I R U U C C CC CE 61021031233=???-=-=- (2)Ω=+=+=9502 265030026300C C be I r β (3)放大电路的微变等效电路如图所示 电压放大倍数 7995 .03 ||350||-=-=-=be L C u r R R A β (4)输入电阻:Ω≈?==950950||10300||3be B i r R r 输出电阻 Ω==k R r C 30 单管共射放大电路如题图所示。已知100=β (1)估算电路的静态工作点; (2)计算电路的电压放大倍数、输入电阻和输出电阻 (3)估算最大不失真输出电压的幅值; (4)当i u 足够大时,输出电压首先出现何种失真,如何调节R B 消除失真 解:电路的直流通路如图所示, CC BQ E BEQ BQ B U I R U I R =+++)1(β A mA R R U U I E B BEQ C C BQ μβ435 .010130015 )1(=?+≈ ++-≈ 由 此定出静态工作点Q 为 mA I I BQ CQ 3.4==β, V R R I U U E C C CC CEQ 3.4)5.02(3.415)(≈+?-=+-= (2)Ω=? +=9053 .426 100300be r 由于R E 被交流傍路,因此 16690 .05 .1100||-=?-=-=be L C u r R R A β + u o - CC +u o - 题7.3 图 CC R

戴维宁定理实验

1.实验目的: 1.1.验证有源二端电路戴维南定理。 1.2.通过实验,熟悉伏安法.半压法.零示法等典型的电路测量法。 2.戴维南定理: 戴维南定理:任何线性有源二端电路都可以用一个电压源Us与电阻R0 串联的等效电路代换。其中电压源US大小就是有源二端电路的开路电压UOC;电阻RO大小是有源二端电路除去电源的等效电阻RO 。 3.戴维南定理的验证:有源二端网络等效参数的测量方法: 3.1开路电压,短路电流法:用电压表测出二端电路端口开路电压UOC,用电流表测出端口短路电流ISC. 则等效电阻:RO=UOC/ISC,如图

3.2 伏安法测RO:用电压表测出二端电路端口伏安特性曲线的斜率?U/?I 就是电路的等效电阻。 即:R O =?U/?I=UOC/ISC. 3.3 半压法测R O , 调节二端电路所接负载电阻值RL ’,使 UL=UOC/2时。断开电路,测出RL ’,则有:Ro= RL ’。 4. 实验内容与实验步骤 4.1.用开路电压与半压法测量二端电路等效参数与元件参数。 表-1 二端电路等效参数及元件参数 Uoc=Us*R3/(R1+R3)、RO=(R1∥R3)+R2 络 U L =U O C /2 R L ’ = R O

4.2.测量有源二端电路的伏安特性:改变RL阻值,测量二端电路端口电压与电流记录在表-2中,根据测量数据作有源二端电路的伏安特性曲线。 表-2 有源二端电路伏安特性测量表 4.3.测量戴维南等效电路的伏安特性: 构成的用U=Uoc的电压源, R=RO的等效电阻戴维南等效电路如图-5. 改变外电阻RL的大小,测量戴维南等效电路的端口电压与电流,记录在表-3中, 根据测量数据作出戴维南等效电路的伏安特性曲线。 注意:Uoc是有源二端网络的开路电压,不是有源二端网络内的实际电源电压Us!! 比较有源二端电路的伏安特性曲线与戴维南等效电路的伏安特性曲线。验证戴维南定理。

戴维宁定理七种例题

戴维宁定理七种例题 【学习目标】 1.了解戴维宁定理及其在电气工程技术中进行外部端口等效与替换的方法。 2.理解输入电阻与输出电阻的概念。 【观察与思考】 有一台录音机,我们可以采用稳压电源电路供电,也可以用几节电池来供电,其使用效果是一样的。那么对于外电路(负载)来说,复杂的稳压电源电路是否可以等效成一个简单的电池电源呢? 戴维宁定理 1.二端网络 二端网络又可分为有源二端网络和无源二端网络

电路也称为电网络或网络。任何一个具有两个端口与外电路相连的网络,不管其内部结构如何,都称为二端网络。 当一个网络是由若干电阻组成的无源二端网络时,我们可以将它等效成一个电阻,即二端网络的等效电阻,在电子技术中通常叫输入电阻。一个有源二端网络两端口之间开路时的电压称为该网络的开路电压。 2.戴维宁定理 任何一个线性有源二端网络,对外电路而言,可以用一个理想电压源和内电阻相串联的电压源来代替。理想电压源的电动势E0等于有源二端网络两端点间的开路电压UAB,内电阻R0等于有源二端网络中所有电源不作用,仅保留内阻时,网络两端的等效电阻RAB,如下图所示,这就是戴维宁定理。 小提示:戴维宁定理中的“所有电源不作用”,是指把所有电压源作短路处理,所有电流源作开路处理,且均保留其内阻。 【例1】如图(a)所示,已知R1=R2=R3=10,E1=E2=20V,求该有源二端网络的戴维宁等效电路。

小知识:在电子技术中,如果有源二端网络作为电源使用,供电给负载,那么其等效电阻R0又叫该有源二端网络的输出电阻。 【例2】如图(a)所示,已知R1=R2=R3=10,E1=E2=20V,求该有源二端网络的戴维宁等效电路。 本节写的有关二端网络,戴维宁定理,其实电路也称为电网络或网络。搞懂了电工还是挺有趣的,收集资料不易,麻烦各位点个关注!

实验三_戴维宁定理验证实验

实验三戴维宁定理的验证 一、实验目的 1、验证戴维宁定理。 2、学习测量有源二端网络的开路电压和等效阻的方法。 3、通过实验加深对戴维宁定理应用的理解,加深对电源等效概念的理解。 二、实验容 1、按照戴维宁定理的理论分析步骤,用实验的方法验证。 三、实验元器件、仪器与设备 1、智能化电工与电子技术实验台; 2、数字式万用表; 四、实验原理 1、戴维宁定理 任何一个线性有源二端网络,对与其相连的负载或电路来说,总可以用一个理想电压源和电阻相串联的有源支路代替,其理想电压源的电压E等于该有源二端网络端口a、b的开路电压Uab,其阻等于原网络中所有独立电源去除后的a、b端口的等效电阻Rab。其原理示意图如图3-1所示: 图3-1戴维宁定理电源等效示意 戴维宁定理用于计算复杂电路中的某个电阻上或支路上的电压或电流,它的理论分析步骤:1)划出有源二端网络:通常需要分析的电阻或支路(负载支路)之外的电路就是有源二端网络, 其连接的两个端点就是上图所示的a、b 2)计算有源二端网络的等效电动势E a、b两点的开路端电压Uab,Uab=E。 3)计算有源二端网络的等效电源阻Rab:将断开负载支路的有源二端网络中所有的理想电压源和电流源去除,其方法:将理想电压源短路,将理想电流源开路,使它们无法输出有效的电路激励E和Is。此后,采用电阻串、并联的分析方法计算剩下电路(无源网络)中的等效电阻Rab,Rab=Ro。 4)计算负载支路的电流或电压:此时复杂的有源二端网络就等效为图3-1右图所示的等效电源,将负载支路重新接到a、b端点上,按图3-2即可非常简单地求出所需的电流或电压值。 图3-2戴维宁等效电路 2、定理 由于任何一个电源都可以等效为电压源形式也可以根据需要等效为电流形式,如用一个理想电压源和电阻相串联的有源支路代替线性有源二端网络,就是戴维宁定理;如用一个理想电流源和电阻相并联,就是定理。其理想电流源的电流Is等于该有源二端网络端口a、b的短路电流Iab,其阻等于原网络中所有独立电源去除后的a、b端口的等效电阻Rab。其原理示意图如图3-3所示:

余弦定理教学案例分析

高中数学教学中的“情境.问题.反思.应用”----“余弦定理”教学案例分析 作者:王兵发布日期:2007-11-1 [摘要]:辩证唯物主义认识论、现代数学观和建构主义教学观与学习观指导下的“情境.问题.反思.应用”教学实验,旨在培养学生的数学问题意识,养成从数学的角度发现和提出问题、形成独立思考的习惯,提高学生解决数学问题的能力,增强学生的创新意识和实践能力。创设数学情境是前提,提出问题是重点,解决问题是核心,应用数学知识是目的,因此所设情境要符合学生的“最近发展区”。“余弦定理”具有一定广泛的应用价值,教学中我们从实际需要出发创设情境。 [关键词]:余弦定理;解三角形;数学情境 一、教学设计 1、教学背景 在近几年教学实践中我们发现这样的怪现象:绝大多数学生认为数学很重要,但很难;学得很苦、太抽象、太枯燥,要不是升学,我们才不会去理会,况且将来用数学的机会很少;许多学生完全依赖于教师的讲解,不会自学,不敢提问题,也不知如何提问题。这说明了学生一是不会学数学,二是对数学有恐惧感,没有信心,这样的心态怎能对数学有所创新呢?即使有所创新那与学生们所花代价也不成比例,其间扼杀了他们太多的快乐和个性特长。建构主义提倡情境式教学,认为多数学习应与具体情境有关,只有在解决与现实世界相关联的问题中,所建构的知识才将更丰富、更有效和易于迁移。我们在2003级进行了“创设数学情境与提出数学问题”教学实验,通过一段时间的教学实验,多数同学已能适应这种学习方式,平时能主动思考,敢于提出自己关心的问题和想法,从过去被动的接受知识逐步过渡到主动探究、索取知识,增强了学习数学的兴趣。 2、教材分析 “余弦定理”是全日制普通高级中学教科书(试验修订本?必修)数学第一册(下)的第五章第九节的主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中“勾股定理”内容的直接延拓,它是三角函数一般知识和平面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具,因此具有广泛的应用价值。本节课是“正弦定理、余弦定理”教学的第二节课,其主要任务是引入并证明余弦定理,在课型上属于“定理教学课”。布鲁纳指出,学生不是被动的、消极的知识的接受者,而是主动的、积极的知识的探究者。教师的作用是创设学生能够独立探究的情境,引导学生去思考,参与知识获得的过程。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。 3、设计思路 建构主义强调,学生并不是空着脑袋走进教室的。在日常生活中,在以往的学习中,他们已经形成了丰富的经验,小到身边的衣食住行,大到宇宙、星体的运行,从自然现象到社会生

实验三、四叠加原理的验证 戴维宁定理的验证

实验三叠加原理的验证 一、实验目的 验证线性电路叠加原理的正确性,加深对线性电路的叠加性和齐次性的认识和理解。 二、原理说明 叠加原理指出:在有多个独立源共同作用下的线性电路中,通过每一个元件的电流或其两端的电压,可以看成是由每一个独立源单独作用时在该元件上所产生的电流或电压的代数和。 线性电路的齐次性是指当激励信号(某独立源的值)增加或减小K 倍时,电路的响应(即在电路中各电阻元件上所建立的电流和电压值)也将增加或减小K倍。 四、实验内容 实验线路如图6-1所示,用HE-12挂箱的“基尔夫定律/叠加原理”线路。 图6-1 基尔霍夫/叠加原理验证

1. 将两路稳压源的输出分别调节为12V和6V,接入U1和U2处。 2. 令U1电源单独作用(将开关K1投向U1侧,开关K2投向短路侧)。用直流数字电压表和毫安表(接电流插头)测量各支路电流及各电阻元件两端的电压,数据记入表6-1。 3. 令U2电源单独作用(将开关K1投向短路侧,开关K2投向U2侧),重复实验步骤2的测量和记录,数据记入表6-1。 4. 令U1和U2共同作用(开关K1和K2分别投向U1和U2侧),重复上述的测量和记录,数据记入表6-1。 5. 将U2的数值调至+12V,重复上述第3项的测量并记录,数据记入表6-1。 6. 将R5(330Ω)换成二极管1N4007(即将开关K3投向二极管IN4007侧),重复1~5的测量过程,数据记入表6-2。 7. 任意按下某个故障设置按键,重复实验内容4的测量和记录,再根据测量结果判断出故障的性质。 故障2 五、实验注意事项 1. 用电流插头测量各支路电流时,或者用电压表测量电压降时,应注意仪表的极性,并应正确判断测得值的+、-号。 2. 注意仪表量程的及时更换。 六、预习思考题

相关文档
最新文档