实验报告 小麦种子储藏蛋白

实验报告 小麦种子储藏蛋白
实验报告 小麦种子储藏蛋白

实验二小麦种子储藏蛋白─HMW-GS的分离

(SDS-PAGE)

一、实验目的

利用SDS─聚丙烯酰胺凝胶电泳(SDS-PAGE)研究小麦种子储藏蛋白,高分子量麦谷蛋白亚基(HMW-GS)组成结构。此外SDS-PAGE也是测量蛋白质亚基分子质量常用的方法。通过本实验,掌握SDS-PAGE的基本原理、技术以及应用。

二、实验原理

用十二烷基硫酸钠(SDS)和还原剂(巯基乙醇或二硫苏糖醇)热处理蛋白质样品,蛋白质中的二硫键被还原,解离的亚基与SDS发生定量结合后使蛋白质亚基带上大量负电荷,从而掩盖了蛋白质各亚基原有的电荷差异。亚基的构象均呈长椭圆棒状,各各种蛋白质亚基-SDS复合物表现出相等的电荷密度,在电场中迁移速度仅与亚基分子质量有关。因此,SDS-PAGE可用来分离蛋白质亚基并测定其蛋白质亚基的分子质量。

三、材料与仪器

1、仪器

电泳仪、垂直板电泳槽、台式高速离心机、脱色摇床、加样枪、50ml烧杯2个、移液管。

2、试剂和材料

70%乙醇、50%正乙醇、样品提取缓冲液、样品提取液、30%丙烯酰胺+甲叉双丙烯酰胺、分离胶缓冲液、浓缩胶缓冲液、10%SDS、10%过硫酸铵、TEMED、电极缓冲液、染色液、漂洗液。

四、实验步骤

1、样品的提取

[1] 分别取4粒小麦种子研碎,加入70%乙醇1000ul,10min后,1200转离心8min,弃乙醇晾干。

[2] 加50%正丙醇(含2%β-巯基乙醇)250ul混匀后,50℃水浴1.5h,中途

振荡,1200转离心8min。

[3] 取上清液加满丙酮置于-20℃中3h。

[4] 1200转离心8min,倒掉丙酮晾干,加样品提取液250ul、待溶解完全后,煮沸3分钟,取上清液点样。

2、SDS-PAGE分析

[1] 组装电泳槽(略)。

[2] 凝胶制备

取两只50ml干净的烧杯,按下表1加样。在组装好的电泳槽中先制备分离胶,待分离胶聚合后,倒掉乙醇容易,再灌浓缩胶,灌好浓缩胶后迅速插入样品梳静止聚合。

表1 凝胶制备试剂配方

聚丙烯酰胺凝胶配方分离胶浓缩胶

30%Acr-Bis(ul) 2.5 0.62

pH8.8Tris-Hcl(ul) 2 ─

pH6.8Tris-Hcl(ul) ─ 1.3

H2O(ul) 2.95 3.0

1%AP(ml) 100 75

[3] 加样及电泳

待凝胶完全聚合后,拔掉电泳梳子。然后将电泳槽注满电极缓冲液。取适量上清液加样。为了比较蛋白质条带的效果,将4个小麦品种的样品,分别按照2.5ul和5ul两种不同剂量加入。此外,电泳装置上接负极,下接正极,恒流20mA,待溴酚蓝走出分离胶30min后停止电泳,取出玻璃板,剥胶染色。

[4] 染色

剥下的胶用蒸馏水洗涤后加入染色液,盖上盖子,放入微波炉中低温染色3min,每隔一分钟取出振荡。

[5] 脱色

将染色液倒回瓶内,加入漂洗液至背景无色为止,照相保存。

五、结果与分析

本次实验没有加入标准蛋白质,无法计算相对迁移率。实验结果见下图。

样4 样3 样2 样1

样4 样3 样2 样1

从上图可以看出,样品1储藏蛋白含有3个亚基,样品2、3、4的储藏蛋白有4个亚基。亚基分子质量在凝胶图片上的排列方向为从上至下依次递减。至于此储藏蛋白分子亚基分子质量和它的亚基种类等性质,需进一步研究方能解决。

凝胶下部底部有很多蓝色条带,此为其他小分子物质,表明储藏蛋白的提取不干净,含杂质太多;8条带不在同一水平线上,是因为凝胶加样不均匀,以及电泳装置本身问题;此外实验存在部分窜样现象,原因在于加样后没有及时电泳。另外,加样的多少对结果影响不明显,但加样不宜过多或过少。

分子荧光光谱法实验报告

分子荧光光谱法实验报告 一、实验目的 1.掌握荧光光度计的基本原理及使用。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.掌握分子荧光光度计分析物质的特征荧光光谱:激发光谱、发射光谱的测定方法。 4.了解影响荧光产生的几个主要因素。 5.学会运用分子荧光光谱法对物质进行定性和定量分析。 二、实验原理 原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。 具有不饱和基团的基态分子经光照射后,价电子跃迁产生荧光,是当电子从第一激发单重态S1的最低振动能级回到基态S0各振动能级所产生的光辐射。 (1)激发光谱 是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。 激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,使材料发出某一波长光的效

率。荧光为光致发光,合适的激发光波长需根据激发光谱确定——激发光谱是在固定荧光波长下,测量荧光体的荧光强度随激发波长变化的光谱。获得方法:先把第二单色器的波长固定,使测定的λem不变,改变第一单色器波长,让不同波长的光照在荧光物质上,测定它的荧光强度,以I为纵坐标,λex为横坐标所得图谱即荧光物质的激发光谱,从曲线上找出λex,,实际上选波长较长的高波长峰。 (2)发射光谱 是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长,纵坐标为发光相对强度。 发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。发射光谱的获得方法:先把第一单色器的波长固定,使激发的λex不变,改变第二单色器波长,让不同波长的光扫描,测定它的发光强度,以I为纵坐标,λem为横坐标得图谱即荧光物质的发射光谱;从曲线上找出最大的λem。 (3)荧光强度与荧光物质浓度的关系 用强度为I0的入射光,照射到液池内的荧光物质时,产生荧光,荧光强度If用仪器测得,在荧光浓度很稀(A 三、实验试剂和仪器试剂:罗丹明B乙醇溶液;1-萘酚乙醇溶液;3,3’-Diethyloxadicarbocyanine iodide:标准溶液,10μg/ml, 20μg/ml,30μg/ml,40μg/ml和未知浓度;蒸馏水;乙 醇。 仪器:Fluoromax-4荧光分光光度计;1cm比色皿;

大一氧化还原实验报告_3

大一氧化还原实验报告 (文章一):氧化还原反应实验报告实验十二氧化还原反应(一)、实验目的1.理解电极电势与氧化还原反应的关系和介质、浓度对氧化还原反应的影响。2.加深理解氧化态或还原态物质浓度变化对电极电势的影响。3.进一步理解原电池、电解及电化学腐蚀等基本知识。[教学重点] 电极电势和氧化还原反应的关系。[教学难点] 原电池、电解及电化学腐蚀等知识。[实验用品] 仪器:低压电源、盐桥、伏特计药品:0.5 mol·L-1Pb(NO3) (2)、(0. (5)、1 mol·L-1)CuSO (4)、0.5 mol·L-1 ZnSO (4)、0.1 mol·L-1KI、0.1 mol·L-1FeCl (3)、0.1 mol.L-1KBr、0.1 mol·L-1FeSO (4)、( (1)、3 mol·L-1) H2SO (4)、6 mol·L-1HAc、(2 mol·L- (1)、浓)HNO (3)、(0.0 (1)、0.1 mol·L-1)KMnO (4)、6 mol·L-1NaOH、0.1 mol·L-1K2Cr2O (7)、饱和KCl、浓NH3·H2O、饱和氯水、I2水、Br2水、CCl

(4)、酚酞溶液、Na2S2O (3)、红石蕊试纸材料:导线、砂纸、电极(铁钉、铜片、锌片、碳棒) (二)、实验内容(一)电极电势和氧化还原反应1.2Fe3++ 2I-= 2Fe2++ I2 I2易溶于CCl4,CCl4层显紫红色2.Fe3++ Br-不起反应,CCl4层无色3.Cl2+ 2Br-= 2Cl-+ Br2 Br2溶于CCl4,CCl4层显橙黄色(二)浓度和酸度对电极电势影响1.浓度影响在两只50m L 烧杯中,分别注入30mL 0.5mol·L-1 ZnSO4和0.5mol·L-1 CuSO4,在ZnSO4中Zn片,CuSO4中Cu片,中间以盐桥相通,用导线将Zn 片Cu片分别与伏特表的负极和正极相接。测量两电极之间的电压。现象:伏特表指针偏到E=0.80处解释:(-):Zn2++2e-=Zn (+):Cu2++2e-=Cu CuSO4溶液中加浓NH 3.H2O到沉淀溶解为止,形成深蓝色溶液;Cu2+ + 4NH3 = [Cu(NH3)4]2+ [Cu2+]下降, E变小,E=0.45V ZnSO4溶液中加浓NH 3.H2O至沉淀溶解为止; Zn2+ + 4NH3 = [Zn(NH3)4]2+ [Zn2+]下降, E 变大,E=0.76V 最后达到平衡, E=0.8V接近初起值. 2x.酸度影响在两只50mL烧杯中,分别注入FeSO (4)、K2Cr2O7溶液。FeSO4溶液中Fe片,在K2Cr2O7 溶液中C 棒,将Fe片、C棒通过导线分别与伏特表的负极和正极相接,中间用盐桥连接,测量两极电压。文档冲亿季,好礼乐相随mini ipad移动硬盘拍立得百度书包现象:测得E=0.61V 解释:(-) Cr2O72-+ 6e- + 14H+ = 2Cr3++ 7H2O (+) Fe2++ 2e- = Fe 在K2Cr2O7中,慢慢加入

小麦田间生产实践考种报告

小麦田间生产实践考种报告 颜寿农学11-1 20116102 1 实验目的 通过对小麦各个生育期的调查,田间取样,室内考种,分析小麦田间生长状况,田间性状,掌握小麦产量预测的方法,计算小麦的生物产量及经济产量。 2 实验地点及材料 地点:惠和村农场 工具:直尺、天平、网袋、剪刀等 3 方法及步骤 3.1 小麦各生育时期记载 记录小麦播种、出苗、三叶、分蘖、拔节、孕穗、开花、灌浆和成熟期的各时期 3.2 苗情调查 在小麦2叶1心时框定1×0.15 m2,定点调查基本苗和最高苗 3.3 小麦生长期病虫害发生调查 3.4 小麦成熟期有效穗调查 调查一幅小麦有效穗数(5粒以上可算有效穗),测量调查区域面积,计算亩有效穗 3.5 穗粒数、千粒重及其他农艺性状调查 连续取样30株,取3次,3次重复:分别调查株高、穗长、节间长、叶片间距(计算叶姿)、结实小穗数、不实小穗数; 将穗子剪下,脱粒,计算穗粒数,晒干后称量,计算千粒重(两个500)粒;将剩余茎干、颖壳、穗轴合在一起,晒干后称重,计算生物产量,将籽粒产量除以生物产量,得到经济系数。 4 计算内容 4.1 播种-拔节历时、拔节-开花历时、开花-成熟历时、全生育期 4.2 单株分蘖力、单株成穗数 4.3 有效穗、小穗数(结实小穗数和不实小穗数)、穗粒数、千粒重、亩产量4.4 生物产量、经济产量、经济系数

4.5 农艺性状:株高、穗长、节间长(从上而下分节测量) 4.6 叶姿:旗叶着生高度、旗叶与倒二叶间距、倒二叶与倒三叶间距 4.7着粒密度=穗粒数/穗长 5 调查与考种结果 5.1 小麦各生育时期记载,见表一 表一小麦各生育时期记载 播种出苗三叶期分蘖拔节期孕穗期开花灌浆成熟10.31 11.9 12.17 1.9 1.20 2.7 3.10 4.5 5.8 5.2 基本苗数与最高苗数,见表二 表二基本苗数与最高苗数 编号 1 2 3 4 5 平均(cm)基本苗数(cm)58 55 57 53 52 55 最高苗数(cm)26.16 26.38 26.71 26.70 26.47 26.48 5.3 主要病虫害 田间主要发生病害有条锈病、白粉病、赤霉病 5.4 调查区域面积:4×1m2=4m2 调查区域总穗数:613 亩有效穗=总穗数/区域面积×666.7m2=613/6×666.7=68114.5167≈6.81万穗/亩5.5 从田间中取样的30株×3次重复小麦,在实验室测得其穗粒数、千粒重和农艺性状等,记录表格,算得其平均值,记录下表。 5.5 小麦测产及农艺性状调查 5.5.1 数据统计 重复一:

实验报告 小麦种子储藏蛋白

实验二小麦种子储藏蛋白─HMW-GS的分离 (SDS-PAGE) 一、实验目的 利用SDS─聚丙烯酰胺凝胶电泳(SDS-PAGE)研究小麦种子储藏蛋白,高分子量麦谷蛋白亚基(HMW-GS)组成结构。此外SDS-PAGE也是测量蛋白质亚基分子质量常用的方法。通过本实验,掌握SDS-PAGE的基本原理、技术以及应用。 二、实验原理 用十二烷基硫酸钠(SDS)和还原剂(巯基乙醇或二硫苏糖醇)热处理蛋白质样品,蛋白质中的二硫键被还原,解离的亚基与SDS发生定量结合后使蛋白质亚基带上大量负电荷,从而掩盖了蛋白质各亚基原有的电荷差异。亚基的构象均呈长椭圆棒状,各各种蛋白质亚基-SDS复合物表现出相等的电荷密度,在电场中迁移速度仅与亚基分子质量有关。因此,SDS-PAGE可用来分离蛋白质亚基并测定其蛋白质亚基的分子质量。 三、材料与仪器 1、仪器 电泳仪、垂直板电泳槽、台式高速离心机、脱色摇床、加样枪、50ml烧杯2个、移液管。 2、试剂和材料 70%乙醇、50%正乙醇、样品提取缓冲液、样品提取液、30%丙烯酰胺+甲叉双丙烯酰胺、分离胶缓冲液、浓缩胶缓冲液、10%SDS、10%过硫酸铵、TEMED、电极缓冲液、染色液、漂洗液。 四、实验步骤 1、样品的提取 [1] 分别取4粒小麦种子研碎,加入70%乙醇1000ul,10min后,1200转离心8min,弃乙醇晾干。 [2] 加50%正丙醇(含2%β-巯基乙醇)250ul混匀后,50℃水浴1.5h,中途

振荡,1200转离心8min。 [3] 取上清液加满丙酮置于-20℃中3h。 [4] 1200转离心8min,倒掉丙酮晾干,加样品提取液250ul、待溶解完全后,煮沸3分钟,取上清液点样。 2、SDS-PAGE分析 [1] 组装电泳槽(略)。 [2] 凝胶制备 取两只50ml干净的烧杯,按下表1加样。在组装好的电泳槽中先制备分离胶,待分离胶聚合后,倒掉乙醇容易,再灌浓缩胶,灌好浓缩胶后迅速插入样品梳静止聚合。 表1 凝胶制备试剂配方 聚丙烯酰胺凝胶配方分离胶浓缩胶 30%Acr-Bis(ul) 2.5 0.62 pH8.8Tris-Hcl(ul) 2 ─ pH6.8Tris-Hcl(ul) ─ 1.3 H2O(ul) 2.95 3.0 1%AP(ml) 100 75 [3] 加样及电泳 待凝胶完全聚合后,拔掉电泳梳子。然后将电泳槽注满电极缓冲液。取适量上清液加样。为了比较蛋白质条带的效果,将4个小麦品种的样品,分别按照2.5ul和5ul两种不同剂量加入。此外,电泳装置上接负极,下接正极,恒流20mA,待溴酚蓝走出分离胶30min后停止电泳,取出玻璃板,剥胶染色。 [4] 染色 剥下的胶用蒸馏水洗涤后加入染色液,盖上盖子,放入微波炉中低温染色3min,每隔一分钟取出振荡。 [5] 脱色 将染色液倒回瓶内,加入漂洗液至背景无色为止,照相保存。 五、结果与分析 本次实验没有加入标准蛋白质,无法计算相对迁移率。实验结果见下图。

食品中蛋白质的测定实验报告

1.目的 掌握凯氏定氮法测蛋白质的原理、操作、条件、注意事项。 2.原理 蛋白质是含氮有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解。分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后在以硫酸或盐酸标准溶液滴定,根据酸的消耗量计算含氮量再乘以换算系数,即为蛋白质含量。 3.试剂 3.1浓硫酸、硫酸铜、硫酸钾,所有试剂均用不含氮的蒸馏水配制 3.2混合指示液 1份(1g/L)甲基红乙醇溶液与5份1g/L溴甲酚氯乙醇溶液临用时混合。 也可用2份甲基红乙醇溶液与1份1g/L次甲基蓝乙醇溶液临用时混合。 3.3氢氧化钠溶液(400g/L) 3.4标准滴定溶液 硫酸标准溶液[c(1/2H2SO4)=0.0500mol/L]或盐酸标准溶液[c(HCl) 0.0500mol/L] 3.5硼酸溶液(20g/L) 4.仪器 定氮蒸馏装置 5.样品 全蛋(2.47g) 6.操作 6.1样品处理 准确称取2—5g半固体样品,小心移入干燥洁净的500mL凯氏烧瓶中,然后加入研细的硫酸铜0.5g,硫酸钾10g和浓硫酸20mL,轻轻摇匀后于瓶口放一小漏斗,将瓶以45°角斜放于加有石棉网的电炉上,小火加热,待内容物全部炭化后,泡沫完全消失后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色呈请透明后,再继续加热0.5h,取下放冷,慢慢加入20mL水。 放冷后,移入100mL容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白试验。 6.2连接装置 装好定氮装置,于水蒸气发生器内装水至2/3处,加甲基红指示剂数滴及少量硫酸,以保持水呈酸性,加入数滴玻璃珠以防暴沸,用调压器控制,

荧光分析法实验报告

荧光分光光度法 一、 实验目的 1、学习荧光分光光度法的基本原理; 2、学习荧光光谱仪的结构和操作方法; 3、学习激发光谱、发射光谱曲线的绘制方法。 二、 实验原理 荧光分光光度法(fluorescence spectroscopy, FS )通常又叫荧光分析法,具有灵敏度高、选择性强、所需样品量少等特点,已成为一种重要的痕量分析技术。荧光(fluorescence )是分子吸收了较短波长的光(通常是紫外光和可见光),在很短的时间内发射出比照射光波长较长的光。由此可见,荧光是一种光致发光。 任何荧光物质都有两个特征光谱,即激发光谱(excitation spectrum )和发射光谱(emission spectrum )或称荧光光谱(fluorescence spectrum )。激发光谱表示不同激发波长的辐射引起物质发射某一波长荧光的相对效率。绘制激发光谱时,将发射单色器固定在某一波长,通过激发单色器扫描,以不同波长的入射光激发荧光物质,记录荧光强度对激发波长的关系曲线,即为激发光谱,其形状与吸收光谱极为相似。荧光光谱表示在所发射的荧光中各种波长的相对强度。绘制荧光光谱时,使激发光的波长和强度保持不变,通过发射单色器扫描以检测各种波长下相应的荧光强度,记录荧光强度对发射波长的关系曲线,即为荧光光谱。激发光谱和荧光光谱可用于鉴别荧光物质,而且是选择测定波长的依据。 荧光强度(F )是表征荧光发射的相对强弱的物理量。对于某一荧光物质的稀溶液,在一定波长和一定强度的入射光照射下,当液层的厚度不变时,所发生的荧光强度和该溶液的浓度成正比,即 该式即荧光分光光度法定量分析的依据。使用时要注意该关系式只适用于稀溶液。 三、 仪器与试剂 F-4500荧光光谱仪;比色管(10mL );牛血清白蛋白(BSA ) 四、 实验内容 1、 开机准备:接通电源,启动电脑。打开光谱仪主机电源,预热15分钟。 2、 运行FL solution 软件,设定检测方法和测量参数: EX (激发波长):280nm EM (发射波长):340nm EX 扫描范围:210nm ~330nm EM 扫描范围:290nm ~450nm EX 缝宽:2.5nm ,EM 缝宽:2.5nm 扫描速度:240nm/min PMT 电压:700V 3、 激发光谱和发射光谱的绘制: 先固定激发波长为280nm ,在290~450nm 测定荧光强度,获得溶液的发射光谱,在343nm 附近为最大发射波长λem ;再固定发射波长为λem ,测定激发波长为200nm ~λem 时的荧光强度,获得溶液的激发光谱,在280nm 附近为最大激发波长λex 。 4、 退出FL solution 软件,关闭光谱仪主机电源,关闭计算机。 Kc F

氧化还原反应实验报告

氧化还原反应 实验目的: 通过实验掌握氧化还原反应的基本原理,熟悉几种常见的氧化还原反应。 实验原理: ? 物质的氧化还原能力的强弱与物质的本性有关, 氧化还原能力通常根据电对的电极电势的高低来判定。 ? 氧化还原反应进行的方向、次序、程度, 可以根据氧化剂和还原剂所对应的电对电极电势的相对大小来判定。 ?E = E 氧化剂电对电势 - E 还原剂电对电势 > 0 反应能自发进行 ?E = E 氧化剂电对电势 - E 还原剂电对电势 = 0 反应处于平衡状态 ?E = E 氧化剂电对电势 - E 还原剂电对电势 < 0 反应不能自发进行 ? 氧化还原反应总是优先在电极电势差值最大的两个电对所对应的氧化剂和还原剂之间进行。 ? 电极电势差值较小的两个电对所对应的氧化剂和还原剂之间能否进行氧化还原反应,应考虑浓度的影响。 实验过程:在Na 3AsO 4与 I - 的氧化还原反应方程式中, 有 H +, 与OH - 参加,因此介质的 pH 值将对反应有显著的影响。 AsO 43- 2 I -AsO 2-2OH - I 22H + 由于AsO 43- / AsO 2- 与 I 2 / I - 的氧化还原电对的值相近, 因此, 可以通过改变溶液的酸碱性改变氧化还原反应进行的方向。反应可在同一试管中进行, 先在酸性中观察Na 3AsO 4与 KI 的反应(为了便于观察碘单质的生成与, 常加入CCl 4萃取碘),观察碘单质的生成,然后再加入碱溶液使反应液呈碱性,观察碘单质的消失。试验中,酸的加入量应控制在使反应进行即可, 应避免加入过量的酸。 由于含砷的化合物有较高的毒性, 反应的废液应回收到指定的回收瓶中,统一处理。如果不慎试液滴在皮肤上,应立即冲洗。 实验结论:氧化态或还原态物质与其它的试剂发生化学反应,生成沉淀或形成络合物,从而大大改变了氧化态或还原态物质的浓度,此时,电对的电极电势有较大的变化,应通过奈斯特方程式计算或查表确定其电极电势,再判定氧化还原的反应进行的方向。 ? 对于有H +, 或OH -参加电极反应的电对,介质的pH 值将对反应有显著的影响。 ? 氧化还原反应进行的程度的大小和反应进行的快慢并不一定一致。氧化还原反应进行的程度是对该化学反应一个热力学上的量度, 而氧化还原反应进行的快慢是对该化学反应一个动力学上的量度。氧化还原反应进行的快慢要受到很多其他因素的影响。例如:固液反应时的接触面积。因此, 常加入催化剂加快反应速度。

实验11 小麦成熟期田间产量测定

实验11 小麦成熟期田间产量测定 一、实验目的 掌握小麦适宜的收获时间及田间测产的方法,学会利用所测数据,结合当地实际情况,分析当前生产中存在的问题,为进一步提高小麦产量提出意见。 二、场地及用具 实验农场不同类型麦田进行。 用具:钢卷尺、皮尺、细麻绳、纸牌、电子天平、托盘天平、电子天平等。 三、实验内容 1.小麦的田间测产 收获前的产量测定,是制定麦收计划,合理安排劳、畜力,制定预分方案的依据,也是总结小麦生产经验,分析各项措施效果的最佳鉴定。因此,在小麦生产单位和科研单位在麦收前都应根据实际情况,进行田间估产。 2.产量结构分析和单株生产力测定 小麦产量由于品种、栽培条件、产量水平和自然气候不同,产量三个因素的构成也有很大差异。因此,通过田间调查和室内考种,用以分析研究在不同条件下的合理产量结构;研究单株穗数多少与总小穗数、不孕小穗数、穗粒数和穗粒重之间的关系;研究在高产条件下,争取穗大粒多粒重,进一步促进高产再高产的途径。 四、实验方法步骤 (一)成熟度鉴定和估产都在田间同一块麦田中进行,先根据麦粒灌浆成熟过程识别判断其成熟度。然后进行估产。估产的方法有以下几种: 1.产量测定 在田间随机取样若干点,一般可每点割收一分,然后实打脱粒估计产量。 2.产量结构调查法(取样面积为1m2) A、数1m2内总穗数。折合成公顷穗数。 B、在样点内随机连续取20穗,数出其结实总粒数,求出平均单穗粒数。 C、将样段内部分麦穗脱粒,数1000粒。称重求得千粒重,若麦粒未熟,可根据该品种常年千粒重,代入下式求得调查产量(理论产量)。 理论产量(kg/hm2)=[公顷穗数×平均穗粒数×粒重(g)]/1000 将调查结果填入下表: 表11 产量因素测产法记载表 为田间调查方便,可用产量=亩穗数×穗粒重公式 (二)产量结构分析和单株生产力测定的方法步骤 1、选择样本 成熟时,按不同品种和产量水平在田间选择典型地块3~5处。每个典型地块选取有代表性的样点若干,每点面积1m2,将样点内植株全部带根挖起,洗净泥土,用绳捆好,挂上纸

浅谈小麦常规储藏管理中应注意的问题

浅谈小麦常规储藏管理中应注意的问题 冯智民 蔡振奎 (富平县粮食局) 摘要本文通过分析小麦的籽粒结构特点,掌握小麦的储藏特性,做好小麦常规储藏管理工作。 关键词小麦常规储藏吸湿通风密闭 小麦是世界性的粮种,全世界大部分地区都以小麦为主食,种植范围十分广泛,年产量仅次于稻谷。新收获的小麦,通过储藏一段时间后,不论种用品质、工艺品质和食用品质,都会得到全面改善,由于小麦具有较好的耐储性,适宜长期储藏,在正常条件下储藏3-5年,仍能保持良好的品质,是一种重要的储备粮。根据小麦的储藏特性,结合我库实际,就小麦常规储藏浅谈我个人几点看法。 1 后熟期长 小麦具有明显的后熟作用和较长的后熟期。新收获的小麦,不能立即发芽,随着后熟作用的进行,发芽率逐渐提高。小麦的后熟期一般在2个月左右(以发芽率达80%为完成后熟)。后熟期的长短,因种植季节和品种不同而有差异。如春小麦的后熟期较长,冬小麦的后熟期较短。红皮小麦的后熟期较长,个别品种达3个月,白皮小麦的后熟期较短,个别品种仅7 ~ 10天。 后熟中的小麦,呼吸量大,代谢旺盛,会放出大量湿热,并常向粮堆上层转移。因此,一遇气温下降,粮温与气温(或仓温)存在较大温差时,即易出现粮堆上层出汗、结露、发热、生霉等不良变化。小麦的含水量、纯净度和储藏环境,对于安全渡过后熟期起着十分重要的作用。如果入库小麦水分在13.5%以下,杂质含量少,没有被害虫感染,后熟期间的麦温经过一段时间升高后,仍会自行恢复正常,无须采取特殊处理。如果水分高、含杂多,就会出现小麦后熟期间麦温持久不降和水分分层等不正常现象,严重时还会引起麦堆发热和霉变。 在储藏中,应加强检查,每三天检查一次粮温,在实际应用中,粮温不超过36℃为正常,超过36℃应采取开沟通风降温散湿处理。 2 吸湿性强 小麦皮薄,组织松软,没有包壳保护,含有大量亲水物质,故甚易吸湿。其吸湿能力与吸湿速度均较强,在储藏期间容易受外界温度影响而增加含水量。小麦吸湿后麦粒的体积胀大,粒面变粗,容重减轻,千粒重加大,散落性降低,淀粉、蛋白质水 冯智民,富平县城关粮食收储公司经理,助理工程师,陕西省富平县丰荣街39号,yxp765@https://www.360docs.net/doc/1111569898.html,。

蛋白质测定实验报告

蛋白质测定实验报告标准化管理部编码-[99968T-6889628-J68568-1689N]

蛋白质测定方法——化学报告

蛋白质的检测 酚试剂法灵敏度较高 20~250mg 费时蛋白质在碱性溶 液中其肽键与 Cu2+螯合,形成 蛋白质一铜复合 物,此复合物使 酚试剂的磷钼酸 还原,产生蓝色 化合物 酚类、柠檬 酸、硫酸铵、 tris缓冲液、 甘氨酸、糖 类、甘油等均 有干扰作用 由上表可大致了解五种检测蛋白质的方法,下面以实验的形式进行详细阐述: 1 材料与方法 仪器材料 (1)仪器:凯氏定氮仪、紫外分光光度计、可见光分光光度计、工作离心机、布氏漏斗、抽滤泵。 (2)试剂及原材料:牛奶、酸奶、豆浆、LpH=4. 7醋酸- 醋酸钠缓冲液、乙醇-乙醚等体积混合液、浓H2SO4 、40%氢氧化钠、30%过氧化氢、2%硼酸溶液、0. 050molPL标准盐酸溶液、硫酸钾- 硫酸铜接触剂、混合指示剂、标准蛋白溶液、双缩脲试剂、考马斯亮蓝G- 250试剂。 实验方法 (1)凯氏定氮法测定蛋白质含量 将待测样品与浓硫酸共热,含氮有机物即分解产生氨(消化) ,氨又与硫酸作用,变成硫酸铵。为了加速消化,可以加入CuSO4 作催化剂和加入K2SO4 以提高溶液的沸点,而加入30%过氧化氢有利于消化溶液的澄清。消化好的样品在凯氏定氮仪内经强碱碱化使之分解放出氨,借蒸汽将氨蒸至定量硼酸溶液中,然后用标准盐酸溶液进行滴定,记录,计算出样品含氮量。每个样品做三次重复测定,取平均值。 (2)紫外吸收法测定蛋白质含量 蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质,吸收峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。 紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如,

实验五氧化还原反应与电极电势(精)

实验五氧化还原反应与电极电势 一、实验目的 1、掌握电极电势对氧化还原反应的影响。 2、定性观察浓度、酸度对电极电势的影响。 3、定性观察浓度、酸度、温度、催化剂对氧化还原反应的方向、产物、速度的影响。 4、通过实验了解原电池的装置。 二、实验原理 氧化剂和还原剂的氧化、还原能力强弱,可根据她们的电极电势的相对大小来衡量。电极电势的值越大,则氧化态的氧化能力越强,其氧化态物质是较强氧化剂。电极电势的值越小,则还原态的还原能力越强,其还原态物质是较强还原剂。只有较强的氧化剂才能和较强还原剂反应。即φ氧化剂-φ还原剂﹥0时,氧化还原反应可以正方向进行。故根据电极电势可以判断氧化还原反应的方向。 利用氧化还原反应而产生电流的装置,称原电池。原电池的电动势等于正、负两极的电极电势之差:E = φ正-φ负。根据能斯特方程: 其中[氧化型]/[还原型]表示氧化态一边各物质浓度幂次方的乘积与还原态一边各物质浓度幂次方乘积之比。所以氧化型或还原型的浓度、酸度改变时,则电极电势φ值必定发生改变,从而引起电动势E将发生改变。准确测定电动势是用对消法在电位计上进行的。本实验只是为了定性进行比较,所以采用伏特计。浓度及酸度对电极电势的影响,可能导致氧化还原反应方向的改变,也可以影响氧化还原反应的产物。 三、仪器和药品 仪器:试管,烧杯,伏特计,表面皿,U形管 药品:2 mol·L-1 HCl,浓HNO3, 1mol·L-1 HNO3,3mol·L-1HAc,1mol·L-1 H2SO4,3mol·L-1 H2SO4,0.1mol·L-1 H2C2O4,浓NH3·H2O(2mol·L-1),6mol·L- 1NaOH,40%NaOH。 1mol·L-1 ZnSO4,1mol·L-1 CuSO4,0.1mol·L-1KI,0.1mol·L-

小麦生产总结

小麦生产总结 篇一:小麦生产技术总结 小麦生产技术总结 今年我市的小麦生产,在冬春遭受多年不遇的严重干旱、中期病虫害偏重发生、收获期又阴雨较多的不利形势下,通过全市广大干群的共同努力,上下一心,克难攻坚,打赢了抗旱保苗、阻击病虫害、“龙口夺粮”三大战役,取得了较好的收成,虽说与去年相比增产幅度不大,但在大灾之年能获得如此产量已属不易,成效中凝聚了全市广大干群和农业科技人员的心血和汗水,在世界经济危机的背景下邓州市今年夏粮丰收意义更大,为维护社会稳定和确保国家粮食安全做出了积极贡献,达到了农业丰收、农业增效、农民增收的目的。现总结如下: 一、小麦生产形势分析 根据农技中心测产调查,今年全市实收小麦面积208万亩,与去年持平略增,平均亩产383.8公斤,总产达79830.4万公斤,实现连续6年夏粮大丰收,与上年相比,平均单产增 2.9公斤,增幅0.76%,总产增加60 3.2万公斤,增幅0.77%。从成产三因素看,今年小麦亩穗数34万,穗粒数为31.1粒,千粒重为42.7克(雨前4 4.4克,雨后42.7克),与去年的33.8万、30.5粒和43.47克相比,呈“两增一减”态势,即群体增0.2万头,穗粒数增加0.6粒,

千粒重减少0.77克。 二、我市今年小麦生产在大旱之年能够取得如此好的收成,得益于以下几个方面: 1、国家多项惠农政策的实施,充分调动了农民种粮积极性。近年来随着国家种粮直补、良种补贴、配方施肥、标准粮田建设、农综开发、土地治理、农资综合补贴、农机补贴、保护价收购等一系列支农、惠农政策和项目的实施,农民种粮积极性进一步提高,小麦种植面积稳中有升,生产投入和田间管理也得到进一步加强,在去年冬春连旱一百多天的灾害天气情况下,有效地促进了良种良法配套和生产环境的改善,为今年小麦生产奠定了良好基础。 2、各级领导高度重视,督导得力,职能部门配合行动有力,为小麦生产提供了组织保障。去年秋收麦播期间为确保适期播种,夯实麦播基础,市委、市政府先后召开了秋收秋种电视电话会议、小麦播种工作会议等。抓好各项麦播措施的落实,高质量地完成了小麦播种工作。麦播后,特别是去年11月底、12月初旱情逐渐显现以来,邓州市委、市政府高度重视,为打造邓州粮食主产核心区,多次召开各乡镇和涉农部门抗旱浇麦工作会议,为做到未雨绸缪,市四大家领导带队,对各乡镇抗旱浇麦工作进行检查督导,并出台各项优惠政策支持抗旱浇麦工作,如对农户浇麦进行财政补贴,购置浇水机械进行补贴,提前发放综合直补,保证低价抗旱用油、用电,引丹灌区开闸放水,广播电台大力宣传抗旱先进典型等,并协调农业、供销、水利、农机、气象、电业、石油等部门,相互配合,形成合力,充分发挥职能,积极

小麦贮存方法

小麦是一种适口性好,营养价值丰富的饲料原料,由于与玉米价格差距较大,可以极大降低养猪养殖,因而越来越多地用于猪用饲料中.尤其是每年到了小麦收获的季节,无论是饲料厂还是养殖厂大多会关心新小麦的储存与安全使用问题,普爱公司根据新小麦的储存特点,提醒广大养殖户朋友们使用新小麦须注意的事项,以便给您提供必要的帮助。 首先我们共同了解一下新小麦的五个储存特点: 第一、吸湿性强:小麦无外壳保护,种皮较薄,组织结构疏松,吸湿能力较强。 第二、后熟期长:小麦后熟期较长,品种不同,后熟期长短也不同。大多数品种后熟期从两周至两个月不等。含水量适宜的小麦,完成后熟作用之后,品质有所改善,储藏稳定性还有所提高。 第三、较耐高温:小麦具有较强的耐热性。水分17%时的小麦,在温度不超过46℃时进行干燥;或水分在13%以下时,曝晒温度不超过54℃,酶活性不会降低,发芽力仍然得到保持。 第四、具有耐储性:小麦最大的优点是具有较好的耐储性。完成后熟的小麦,呼吸作用微弱,比其它谷类粮食都低。正常的小麦,水分在标准以内(12.5%),在常温下一般可储存3~5年或低温(15℃)储藏5~8年。 第五、易受虫害:小麦是抗虫性差、染虫率较高的粮种。除少数豆类专食性虫种外,小麦几乎能被所有的储粮害虫侵染,其中以玉米象、麦蛾等危害最严重。小麦成熟、收获、入库正是夏季,正值害虫繁育、发生最适阶段,入库后气温高,若遇阴雨,就造成害虫非常适宜的繁育条件。 其次根据新小麦以上五大储存特点,普爱公司总结了新小麦贮存使用中需注意的事项,概括为以下三点:第一、根据小麦吸湿性强的特点建议养殖户在收购小麦时严格控制水分,最好控制在12.5%以下,如果预计一周内可以用完,必要时水分可放宽至13%以下;在使用储藏过程中应注意除湿、防潮;小麦在后熟储藏期间,呼吸代谢作用很旺盛,会释放较多的水分和大量的能量,可能会出现“出汗”和“乱温”现象。因此,后熟期间小麦的储藏稳定性较差,所以储藏期间应勤检查、严管理,及时发现和处理问题,建议每三天检查一次粮温,一般为粮温不超过36℃为正常。 第二、妥善解决因小麦后熟期所带来的副面影响。大家知道,新小麦刚收获之后,面临一个较长的“后熟期”的过程,有的需要经过1~3个月的时间。后熟期的长短因品种不同而不同,通常是红皮小麦比白皮小麦长。一般是春性小麦有30~40d,半冬性小麦有60~70d,冬性和强冬性小麦在80d以上。其次,小麦的后熟期与成熟度有关,充分成熟后收获的小麦后熟期短一些;提早收获的小麦则长一些。那么小麦后熟期过后品质会有什么样的变化呢?后熟作用对小麦中的碳水化合物、含氮化合物、脂类、酶类均有很大的正面影响,具体分析如下: (一)小麦中碳水化合物的变化:小麦中的碳水化合物主要由单糖、低聚糖和多糖组成,在储存初期的后熟过程中,主要由低聚糖合成高聚糖,随着后熟作用的完成,小麦中可溶性糖的含量逐渐减少,而直链淀粉、支链淀粉和戊聚糖的含量逐渐地增大; (二)小麦中含氮化合物的变化:对于新收获的小麦,经后熟作用,可以利用自身呼吸作用释放的能量,并通过ATP的能量传递,在蛋白酶系统的催化作用下,将氨基酸合成多肽链,进而形成蛋白质。新收获的小麦中主要含有醇溶蛋白,经过后熟作用后,小麦中醇溶蛋白和麦谷蛋白的含量都有所增加。疏基含量比后熟作用后小麦的疏基含量高的多,但二硫键量则比储藏后低得多。 (三)小麦中脂类的变化:脂类在小麦中的总含量平均为3%,对于新收获的小麦,脂肪酸值一般在10.-20 mg KOH/(100 g)。在后熟过程中,小麦籽粒呼吸旺盛,稳定性较差。在完成后熟作用后,呼吸强度降低,代谢水平下降,储藏稳定性增加,脂肪酸增长速度缓慢。但在不良的储藏条件下会上升迅速,甚至引起劣变。 (四)小麦中重要酶类的变化:酶的活性在一定程度上能够反应储粮的安全性,是粮食品质劣变的另一个重要的指标。新收获小麦中,过氧化氢酶的活动度普遍较高,与储存1年后小麦过氧化氢酶的活动度相差较大,并随着储藏时间的延长,粮食中过氧化氢酶的活动度会逐渐减少。此外,新收获的小麦降落值较小,a淀粉酶的活性高,随着储藏时间以后而逐渐趋于正常。 通过对后熟过程的营养变化分析总结如下:使用未完成后熟期的小麦虽然不会给猪带来表观的伤害,但是其营养成分是一定不及完成后熟期的小麦,同时有市场反应使用新小麦有轻微影响猪的适口性与采食量问题,所以为了安全其见,建议养殖户朋友们最好使用完成后熟期的小麦喂猪(以发芽率达到80%为完成后熟期)。如因特殊原因必须使用新小麦,也最好与陈小麦搭配使用,新小麦的使用量不要超过30%。 第三、根据小麦抗虫性差特点,再加上新小麦成熟、收获、入库正是夏季,正值害虫繁育、发生阶段,提醒广大养殖户朋友们在使用新小麦时一定要做好贮存过程中的防虫工作。防虫措施一般采取全仓密闭、磷化铝熏蒸、粮堆埋入与粮面布点均匀施药的方法,

南京大学-X射线荧光光谱分析实验报告

X 荧光分析 一.实验目的 1.了解能量色散X 荧光分析的原理、仪器构成和基本测量、分析方法。 2.验证莫塞莱定律,并从实验推出屏蔽常数。 3.研究对多道分析器的定标,以及利用X 荧光分析测量位未知样品成分及相对含量的方法。 二.实验原理 以一定能量的光子、电子、原子、α粒子或其它离子轰击样品,将物质原子中的内壳层电子击出,产生电子空位,原子处于激发态。外壳层电子向内壳层跃迁,填补内壳层电子空位,同时释放出跃迁能量,原子回到基态。跃迁能量以特征X 射线形式释放,或能量转移给另一个轨道电子,使该电子发射出来,即俄歇电子发射。测出特征X 射线能谱,即可确定所测样品中元素种类和含量。 特征曲线X 射线根据跃迁后电子所处能级可以分为,,K L M 系等;根据电子跃迁前所在能级又可分为βαγβαL L K K K ,,,,等不同谱线。特征X 谱线的的能量为两壳层电子结合能之差。因此,所有元素的,K L 系特征X 射线能量在几千电子伏到几十千电子伏之间。X 荧光分析中激发X 射线的方式一般有三种: (1)用质子、α粒子等离子激发

(2)用电子激发; (3)用X射线或低能γ射线激发。我们实验室采用X射线激发(XIX技术),用放射性同位素作为激发源的X光管。 XIX技术中,入射光子除与样品中原子发生光电作用产生内壳层空位外,还可以发生相干散射和非相干散射(康普顿散射),这些散射光子进入探测器,形成XIX分析中的散射本底。另外,样品中激发出的光电子又会产生轫致辐射,但这产生的本底比散射光子本底小得多,且能量也较低,一般在3keV以下。所以XIX能谱特征是:特征X射线峰叠加在散射光子峰之间的平坦的连续本底谱上。如图1能谱示意图所示。 图一:能谱示意图 测量特征X射线常用() Si Li探测器,它的能量分辨率高,适用于多元素同时分析,也可选用() Ge Li或高纯Ge探测器,但均价格昂贵。 在X荧光分析中,对于轻元素(一般指45 Z<的元素)通常测其KX射线,对于重元素(45 Z>的元素),因其KX射线能量较高且比LX射线强度弱,

海南大学学生实验报告(氧化还原反应)

海南大学学生实验报告 实验课程:无机化学实验B 学院:材料与化工学院 班级:材料科学与工程理科实验班姓名:袁丹 学号:20160419310026 日期:2016.12.05 实验名称:氧化还原平衡与电化学 一、实验目的 1、理解电极电势与氧化还原反应的关系。 2、掌握介质酸碱性、浓度对电极电势及氧化还原反应的影响。 3、了解还原性和氧化性的相对性。 4、了解原电池的组成及工作原理,学习原电池电动势的测量方法。 二、实验原理 氧化还原反应的实质是反应物之间发生了电子转移或偏移。氧化剂在反应中得到电子被还原,元素的氧化值减小;还原剂在反应中失去电子被氧化,元素的与氧化值增大。物质氧化还原能力的大小可以根据对应的电极电势的大小来判断。电极电势越大,电对中氧化型的氧化能力越强;电极电势越小,电对中还原型的还原能力越强。 根据电极电势的大小可以判断氧化还原反应的方向。当氧化剂电对的电极电势大于还原剂电对的电极电势时,即 时,反应自发向正向进行。

由电极的能斯特方程式可以看出浓度对氧化还原反应的电极电势的影响,298.15K时 溶液的pH也会影响某些电对的电极电势或氧化还原反应的方向。介质的酸碱性也会影响某些氧化还原反应的产物,如MnO4—在酸性、中性、碱性介质中的还原产物分别为Mn2+、MnO2和MnO4—。 一种元素(如O)由多种氧化态时,氧化态居中的物质(如H2O2)一般既可作为还原剂,又可作为氧化剂。 三、仪器与试剂 仪器:试管、烧杯。 试剂:CuSO4(0.1mol·L-1),KI(0.1mol·L-1),CCl4,KMnO4(0.01mol·L-1),H2SO4(2mol·L-1),NaOH(6mol/L),Na2SO3(0.2mol/L),KIO3(0.1mol/L),NaOH(2mol/L),FeCl3(0.1mol/L),KBr(o.1mol/L),SnCl2(0.2mol/L),KSCN(0.1mol/L),H2O2(3%),ZnSO4(1mol/L),CuSO4(1mol/L)。 四、实验步骤 1、浓度对氧化还原反应的影响 取1支试管,加入10滴0.1mol/L CuSO4溶液,10滴0.1mol/L KI 溶液,观察现象。再加入10滴CCl4,充分振摇,观察CCl4层颜色,记录现象并写出反应方程式。 ①反应试剂图片

小麦测产方法

小麦测产方法 小麦测产分理论测产和实收测产,方法分别如下: 一、理论测产 (一)取样方法。100亩随机选取10个地块,1000亩随机选取30个地块,1万亩随机选取50个,每个地块随机取3个样点,每个样点量25行计算平均行距,计算公式为,25行宽度÷24,每个样点选取2米双行调查换算亩成穗数,在每个样段随机选取20穗调查穗粒数。 (二)产量计算。理论产量(公斤/亩)=亩穗数(万)×穗粒数(粒)×千粒重(区试,单位克)÷100×85%。 二、实收测产 (一)取样方法。在理论测产的基础上,100亩随机选取2个地块,1000亩随机选取5个地块,1万亩随机选取10个地块,用联合收割机随机实收1亩以上连片小麦(S,亩),收获后,称重并合计总产量(Y1,公斤)。在总产量中随机分取5公斤,及时除去麦糠杂质后称重(Y2,公斤)和测定含水量(M%)。实收面积内不去除田间灌溉沟面积,但去除坟地、灌溉主渠道面积;收割前由专家组对联合收割机进行清仓检查;田间落粒不计算重量。 (二) 测定含水率。用国家认定并经校正后的种子水分测定仪测定籽粒含水量,每样品重复测定10次,求平均值。样品留存,备查或等自然风干后再校正。

(三)计算公式。 每亩鲜麦重Y(公斤/亩)=Y1×(1-Y2 ÷5) ÷S×666.7;实测产量(公斤/亩)=Y×[1-M(%)]÷[1-13%]。

附件2 2014年省院合作项目县小麦测产验收表县乡(镇)村(组) 品种名称 示范方 面积(亩) 技术负责人 采取的 技术 措施 亩穗数调查(一米双行穗数) 合计样本1 样本2 样本3 样本4 样本5 穗粒数调查(每个样本随机取10穗查穗粒数) 序号样本1 样本2 样本3 样本4 样本5 1 2 3 4 5 6 7 8 9 10 合计 平均 千粒重(克) 亩产(公斤) 按0.85拆产 测产时间 测产专家 签名

光谱分析 实验报告

实验报告 课程名称: 材料科学基础实验 指导老师: 乔旭升 成绩: 实验名称: 光谱分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 三、主要仪器设备(必填) 五、实验数据记录和处理 七、讨论、心得 二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的 通过本实验了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR )和荧光光谱仪的基本原理、主要用途和实际操作过程。掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。学习分析影响测试结果的主要因素。 二、实验原理 电磁波可与多种物质相互作用。如果这种作用导致能量从电磁波转移至物质,就称为吸收。当光波与某一受体作用时,光子和接受体之间就存在碰撞。光子的能量可被传递给接受体而被吸收,由此产生吸收光谱。通常紫外和可见光的能量接近于某两个电子能级地能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁,又称为电子光谱。 当一束平行单色光照射到非散射的均匀介质时,光的一部分将被介质所反射,一部分被介质吸收,一部分透过介质。如果入射光强度为I0.反射光强度为Ir ,吸收光强度为Ia ,透过光强度为It ,则有I0=Ir+Ia+It 投射光强度与入射光强度之比称为透光率 T=It/I0 当一束具有连续波长的红外光照射某化合物时,其分子要吸收一部分光能转变为分子的震动能量或转动能量。此时若将其透过的光用单色器进行色散,就可得到一带暗条的谱带。以红外光的波长或波数为横坐标,以吸收率或者透过率百分数为纵坐标,把该谱带记录下来,就可得到该化合物的红外吸收光谱图。不同的化合物均有标准特征谱,将实验所得的光谱与标准谱对照,就可进行分子结构的基础研究和化合组成的分析。可由吸收峰的位置和形状来推知被测物的结构,按照特征峰的强度来测定混合物中各组分的含量。 当分子吸收来自光辐射的能量后,其本身就由处于稳定的基态跃迁至不稳定的激发态: M+h ν→。激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁波(荧光或磷光)的方式回到基态: →M+荧光(或磷光)。任何能产生荧光(或磷光)的物质都具有两个特征光谱:激发光谱和发射光谱。 激发光谱:荧光(或磷光)为光致发光,因此必须选择合适的激发光波长,这可通过激发

无机化学实验报告

无机化学实验报告集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

实训一化学实验基本操作 [实验目的] 1、掌握常用量器的洗涤、使用及加热、溶解等操作。 2、掌握台秤、煤气灯、酒精喷灯的使用。 3、学会液体剂、固体试剂的取用。 [实验用品] 仪器:仪器、烧杯、量筒、酒精灯、玻璃棒、胶头滴管、表面皿、蒸发皿、 试管刷、 试管夹、药匙、石棉网、托盘天平、酒精喷灯、煤气灯。 药品:硫酸铜晶体。 其他:火柴、去污粉、洗衣粉 [实验步骤] (一)玻璃仪器的洗涤和干燥 1、洗涤方法一般先用自来水冲洗,再用试管刷刷洗。若洗不干净,可用毛刷蘸少量去污粉或洗衣粉刷洗,若仍洗不干净可用重络酸加洗液浸泡处理(浸泡后将洗液小心倒回原瓶中供重复使用),然后依次用自来水和蒸馏水淋洗。 2、干燥方法洗净后不急用的玻璃仪器倒置在实验柜内或仪器架上晾干。急用仪器,可放在电烘箱内烘干,放进去之前应尽量把水倒尽。烧杯和蒸发皿可放在石棉网上用小火烘干。操作时,试管口向下,来回移动,烤到不见水珠时,使管口向上,以便赶尽水气。也可用电吹风把仪器吹干。带有刻度的计量仪器不能用加热的方法进行干燥,以免影响仪器的精密度。 (二)试剂的取用 1、液体试剂的取用 (1)取少量液体时,可用滴管吸取。 (2)粗略量取一定体积的液体时可用量筒(或量杯)。读取量筒液体体积数据时,量筒必须放在平稳,且使视线与量筒内液体的凹液面最低保持水平。 (3)准确量取一定体积的液体时,应使用移液管。使用前,依次用洗液、自来水、蒸馏水洗涤至内壁不挂水珠为止,再用少量被量取的液体洗涤2-3次。 2、固体试剂的取用 (1)取粉末状或小颗粒的药品,要用洁净的药匙。往试管里粉末状药品时,为了避免药粉沾到试管口和试管壁上,可将装有试剂的药匙或纸槽平放入试管底部,然后竖直,取出药匙或纸槽。

相关文档
最新文档