积分 微分电路放大

积分 微分电路放大
积分 微分电路放大

积分电路

输出电压与输入电压的时间积分成正比的电路。

积分电路主要用于波形变换、放大电路失调电压的消除及反馈控制中的积分补偿等场合。

如果把R1和C换个位置,就成了微分电路(但输入的电压应该是交流信号才可通过电容)。

积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。

这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。输出信号与输入信号的积分成正比的电路,称为积分电路。

微分电路

输出电压与输入电压的变化率成正比的电路。

微分电路可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。

输出的尖脉冲波形的宽度与RC有关(即电路的时间常数),RC越小,尖脉冲波形越尖,反之则宽。此电路的RC必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,最简单的微分电路由电容器C和电阻器R组成.

微分电路的工作过程是:如RC的乘积,即时间常数很小,在t=0+即方波跳变时,电容器C 被迅速充电,其端电压,输出电压与输入电压的时间导数成比例关系。

积分电路和微分电路

积分电路 这里介绍积分电路的一些常识。下面给出了积分电路的基本形式和波形图。 当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性可有下面的公式表达: i = (V/R)e-(t/CR) ?i--充电电流(A); ?V--输入信号电压(V); ?C--电阻值(欧姆); ?e--自然对数常数(2.71828);

?t--信号电压作用时间(秒); ?CR--R、C常数(R*C) 由此我们可以找输出部分即电容上的电压为V-i*R,结合上面的计算,我们可以得出输出电压曲线计算公式为(其曲线见下图): Vc = V[1-e-(t/CR)]

微分电路 微分电路是电子线路中最常见的电路之一,弄清它的原理对我们看懂电路图、理解微分电路的作用很有帮助,这里我们将对微分电路做一个简单介绍。图1给出了一个标准的微分电路形式。为表达方便,这里我们使输入为频率为50Hz的方波,经过微分电路后,输出为变化很陡峭的曲线。图2是用示波器显示的输入和输出的波形。 当第一个方波电压加在微分电路的两端(输入端)时,电容C上的电压开始因充电而增加。而流过电容C的电流则随着充电电压的上升而下降。电流经过微分电路(R、C)的规律可用下面的公式来表达(可参考右图): i = (V/R)e-(t/CR)

?i-充电电流(A); ?v-输入信号电压(V); ?R-电路电阻值(欧姆); ?C-电路电容值(F); ?e-自然对数常数(2.71828); ?t-信号电压作用时间(秒); ?CR-R、C常数(R*C) 由此我们可以看出输出部分即电阻上的电压为i*R,结合上面的计算,我们可以得出输出电压曲线计算公式为(其曲线见下图): iR = V[e-(t/CR)]

(完整版)基本放大电路计算题,考点汇总

第6章-基本放大电路-填空题: 1.射极输出器的主要特点是电压放大倍数小于而接近于1,输入电阻高、输出电阻低。 2.三极管的偏置情况为发射结正向偏置,集电结正向偏置时,三极管处于饱和状态。 3.射极输出器可以用作多级放大器的输入级,是因为射极输出器的。(输入电阻高)4.射极输出器可以用作多级放大器的输出级,是因为射极输出器的。(输出电阻低)5.常用的静态工作点稳定的电路为分压式偏置放大电路。 6.为使电压放大电路中的三极管能正常工作,必须选择合适的。(静态工作点) 7.三极管放大电路静态分析就是要计算静态工作点,即计算、、三个值。(I B、I C、U CE)8.共集放大电路(射极输出器)的极是输入、输出回路公共端。(集电极) 9.共集放大电路(射极输出器)是因为信号从极输出而得名。(发射极) 10.射极输出器又称为电压跟随器,是因为其电压放大倍数。(电压放大倍数接近于1)11.画放大电路的直流通路时,电路中的电容应。(断开) 12.画放大电路的交流通路时,电路中的电容应。(短路) 13.若静态工作点选得过高,容易产生失真。(饱和) 14.若静态工作点选得过低,容易产生失真。(截止) 15.放大电路有交流信号时的状态称为。(动态) 16.当时,放大电路的工作状态称为静态。(输入信号为零) 17.当时,放大电路的工作状态称为动态。(输入信号不为零) 18.放大电路的静态分析方法有、。(估算法、图解法) 19.放大电路的动态分析方法有微变等效电路法、图解法。 20.放大电路输出信号的能量来自。(直流电源) 二、计算题: 1、共射放大电路中,U CC=12V,三极管的电流放大系数β=40,r be=1KΩ,R B=300KΩ,R C=4KΩ,R L=4K Ω。求(1)接入负载电阻R L前、后的电压放大倍数;(2)输入电阻r i输出电阻r o 解:(1)接入负载电阻R L前: A u= -βR C/r be= -40×4/1= -160 接入负载电阻R L后: A u= -β(R C// R L) /r be= -40×(4//4)/1= -80 (2)输入电阻r i= r be=1KΩ 输出电阻r o = R C=4KΩ 2、在共发射极基本交流放大电路中,已知U CC = 12V,R C = 4 kΩ,R L = 4 kΩ,R B = 300 kΩ,r be=1K Ω,β=37.5 试求: (1)放大电路的静态值 (2)试求电压放大倍数A u。

放大电路计算题3-2

放大电路计算题练习题3 一、计算分析题(每题1分) U=0.7V,1.图示硅三极管放大电路中,V CC=30V,R C=10k?,R E=2.4 k?,R B=1M?,β=80, BEQ r,各电容对交流的容抗近似为零,试:(1)求静态工作点参数I BQ、I CQ、U CEQ。 =200 Ω ' bb (2)若输入幅度为0.1V的正弦波,求输出电压u o1、u o2的幅值,并指出u o1、u o2与u i的相位关系;(3)求输入电阻R i和输出电阻R o1、R o2。 图号3226 2.差分放大电路如图所示,已知V CC =V EE =10V,R C =7.5kΩ,R L =10kΩ,R1 =8.2kΩ,R2 =1.1kΩ,R3 =820Ω,三极管的β=100,r bb’=200Ω,U BEQ=0.7V,试求:(1)V1、V2管的静态工作点参数I CQ、U CQ;(2)差模电压放大倍数A ud=u od/(u i1- u i2)、差模输入电阻R id和输出电阻R o。 3.差分放大电路如图所示,已知V CC=V EE =6V,R C=3kΩ,I0= 2mA,三极管的β=50,r bb′=200Ω,U BEQ=0.7V,试求:(1)各管静态工作点(I BQ、I CQ、U CEQ);(2)差模电压放大倍数A ud=u od/u id、差模输入电阻R id和输出电阻R o。

4. 差分放大电路如图所示,已知三极管的β=80,r bb’=200Ω,U BEQ =0.7V ,试求:(1)V1、V2管的静态工作点参数I CQ 、U CQ ;(2)差模电压放大倍数A ud 、差模输入电阻R id 和输出电阻R o 。 5. 差分放大电路如图所示,已知三极管的β=80,r bb ′=200Ω,U BEQ =0.7V ,试:(1)求I CQ1、U CQ1和I CQ2、U CQ2 ;(2)画出该电路的差模交流通路;(3)求差模电压放大倍数A ud =u od /u id 、差模输入电阻R id 和输出电阻R o 。 6. 放大电路如下图所示,试: (1)画出电路的直流通路,分析两级电路之间静态工作点是否相互影响。 (2)分析各级电路的组态和级间电路的耦合方式。 (3)若R E 开路会对电路造成什么影响?若R 1短路呢?

第5章运算放大电路答案

习题答案 5.1 在题图5.1所示的电路中,已知晶体管V 1、V 2的特性相同,V U on BE 7.0,20)(==β。求 1CQ I 、1CEQ U 、2CQ I 和2CEQ U 。 解:由图5.1可知: BQ CQ BQ )on (BE CC I I R R I U U 213 1 1+=--即 11CQ11.01.4 2.7k 20I -7V .0-V 10CQ CQ I I k +=Ω Ω ? 由上式可解得1CQ I mA 2≈ 2CQ I mA I CQ 21== 而 1CEQ U =0.98V 4.1V 0.2)(2-V 1031=?+=+-R )I I (U BQ CQ CC 2CEQ U =5V 2.5V 2-V 1042=?=-R I U CQ CC 5.2 电路如题图5.2所示,试求各支路电流值。设各晶体管701.U ,)on (BE =>>βV 。 U CC (10V) V 1 R 3 题图5.1

解:图5.2是具有基极补偿的多电流源电路。先求参考电流R I , ()815 17 0266..I R =+?---=(mA ) 则 8.15==R I I (mA ) 9.0105 3== R I I (mA ) 5.425 4==R I I (mA ) 5.3 差放电路如题图5.3所示。设各管特性一致,V U on BE 7.0)(=。试问当R 为何值时,可满足图中所要求的电流关系? 解: 53010 7 0643..I I C C =-==(mA ) 则 I 56V 题图 5.2 R U o 题图5.3

2702 1 476521.I I I I I I C C C C C C == ==== mA 即 2707 065.R .I C =-= (mA ) 所以 61927 07 06...R =-= (k Ω) 5.4 对称差动放大电路如题图5.1所示。已知晶体管1T 和2T 的50=β,并设 U BE (on )=0.7V,r bb ’=0,r ce =。 (1)求V 1和V 2的静态集电极电流I CQ 、U CQ 和晶体管的输入电阻r b’e 。 (2)求双端输出时的差模电压增益A ud ,差模输入电阻R id 和差模输出电阻R od 。 (3)若R L 接V 2集电极的一端改接地时,求差模电压增益A ud (单),共模电压增益A uc 和共模抑制比K CMR ,任一输入端输入的共模输入电阻R ic ,任一输出端呈现的共模输出电阻R oc 。 (4) 确定电路最大输入共模电压围。 解:(1)因为电路对称,所以 mA ...R R .U I I I B E EE EE Q C Q C 52050 21527 062270221=+?-=+?-== = + V 1 V 2 + U CC u i1 u i2R C 5.1k ΩR L U o 5.1kΩ R C 5.1k Ω R E 5.1k Ω -6V R B 2k Ω 题图5.1 R B 2k Ω + - R L /2 + 2U od /2 + U id /2 R C R B V 1 (b) + U ic R C R B V 1 (c) 2R EE + U

晶体管放大电路分析及计算

晶体管放大电路分析及计算 一、共发射极放大电路 (一)电路的组成:电源VCC通过RB1、RB2、RC、RE使晶体三极管获得合适的偏置,为三极管的放大作用提供必要的条件,RB1、RB2称为基极偏置电阻,RE称为发射极电阻,RC称为集电极负载电阻,利用RC的降压作用,将三极管集电极电流的变化转换成集电极电压的变化,从而实现信号的电压放大。与RE并联的电容CE,称为发射极旁路电容,用以短路交流,使RE对放大电路的电压放大倍数不产生影响,故要求它对信号频率的容抗越小越好,因此,在低频放大电路中CE通常也采用电解电容器。 V cc(直流电源): 使发射结正偏,集电结反偏;向负载和各元件提供功率 C1、C2(耦合电容): 隔直流、通交流; R B1、R B2(基极偏置电阻):提供合适的基极电流 R C(集极负载电阻):将D IC? D UC,使电流放大? 电压放大 R E(发射极电阻):稳定静态工作点“Q ” C E(发射极旁路电容):短路交流,消除R E对电压放大倍数的影响 (二)直流分析:开放大电路中的所有电容,即得到直流通路,如下图所示,此电路又称为分压偏置式工作点稳定直电流通路。电路工作要求:I1 3(5~10)IBQ,UBQ3 (5 ~ 10)UBEQ 838电子 求静态工作点Q: 方法1.估算 工作点Q不稳定的主要原因:Vcc波动,三极管老化,温度变化稳定Q点的原理: 方法2.利用戴维宁定理求IBQ

(三)性能指标分析 将放大电路中的C1、C2、CE短路,电源Vcc短路,得到交流通路,然后将三极管用H参数小信号电路模型代入,便得到放大电路小信号电路模型如下图所示。 1.电压放大倍数 2.输入电阻计算

三极管放大电路设计,参数计算及静态工作点设置方法

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么内容? (1)分析电路中各元件的作用; (2)解放大电路的放大原理; (3)能分析计算电路的静态工作点; (4)理解静态工作点的设置目的和方法。 以上四项中,最后一项较为重要。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCC。

仿真实验一-RC微分积分电路

一、RC 一阶微积分电路仿真实验 一、电路课程设计目的 1、测定RC 一阶电路的积分、微分电路; 2、掌握有关微分电路和积分电路的概念。 二、仿真电路设计原理 1.RC 电路的矩形脉冲响应 若将矩形脉冲序列信号加在电 压初值为零的RC 串联电路上, 电路的瞬变过程就周期性地发 生了。显然,RC 电路的脉冲响 应就是连续的电容充放电过程。 如图所示。 若矩形脉冲的幅度为U ,脉宽为 tp 。电容上的电压可表示为: 电阻上的电压可表示为: 21010 0)(0)1()(t t t e U t u t t e U t u t t ≤≤?=≤≤-=-- ττ 即当 0到t1时,电容被充电;当t1到t2 时,电容器经电阻R 放电。 2110 )(0)(t t t e U t u t t e U t u t R t R ≤≤?-=≤≤?=-- ττ (也可以这样解释:电容两端电压不能突变,电流可以,所以反映在图中就是电阻两端的电压发生了突变。) 2.RC 微分电路 取RC 串联电路中的电阻两端为输出端,并选择适当的电路参数使时间常数τ<

上式说明,输出电压uo(t)近似地与输入电压ui(t)成微分关系,所以这种电路称微分电路。 3.RC 积分电路 如果将RC 电路的电容两端作为输出端,电路参数满足τ>>tp 的条件,则成为积分电路。由于这种电路电容器充放电进行得很慢,因此电阻R 上的电压ur(t)近似等于输入电压ui(t),其输出电压uo(t)为: ????≈?=?==dt t u RC dt R t u C dt t i C t u t u R R C C )(1)(1)(1)()(0 上式表明,输出电压uo(t)与输入电压ui(t)近似地成积分关系。 4.时间常数 RC 电路中,时间常数τ=R*C ; RL 电路中,时间常数τ=L/R 。 三、仿真实验电路搭建与测试 1、一阶RC 微分电路: 1u c u

电路微分与积分电路

微分电路与积分电路分析 积分与微分电路 (ZT) 转贴电子资料2010-11-23 10:51:25 阅读166 评论1字号:大中小订阅 积分与微分电路 积分电路与微分电路是噪讯对策上的基本,同时也是具备对照特性的模拟电路。事实上积分电路与微分电路还细分成数种电路,分别是执行真积分/微分的完全积分/微分电路,以及具有与积分/微分不同特性的不完全积分/微分电路。除此之外积分/微分电路又分成主动与被动电路,被动型电路无法实现完全积分/微分,因此被动型电路全部都是不完全电路。 积分/微分电路必需发挥频率特性,为了使电路具备频率特性使用具备频率特性的电子组件,例如电容器与电感器等等。 被动电路 不完全积分/微分电路 图1是被动型不完全积分电路,如图所示组合具备相同特性的电路与,就可以制作上述两种电 路。 图1与图2分别是使用电容器与电感器的电路,使用电容器的电路制作成本比较低,外形尺寸比较低小,容易取得接近理想性的组件,若无特殊理由建议读者使用电容器的构成的电路。此外本文所有内容原则上全部以电容器的构成的电路为范例作说明。

图1与图2的两电路只要更换串联与并联的组件,同时取代电容器与电感器,就可以制作特性相同的电路。 不完全积分电路与微分电路一词,表示应该有所谓的完全积分电路与微分电路存在,然而完全积分电路与微分电路却无法以被动型电路制作,必需以主动型电路制作。 不完全积分电路与微分电路具有历史性的含义,主要原因是过去无法获得增幅器的时代,无法以主动型电路制作真的积分/微分电路,不得已使用不完全积分/微分电路。 由于不完全积分/微分电路本身具备与真的积分/微分电路相异特性,因此至今还具有应用价值而不是单纯的代用品。 不完全积分/微分电路又称为积分/微分电路,它的特性与真积分/微分电路相异,单纯的积分/微分电路极易与真积分/微分电路产生混淆,因此本讲座将它区分成: *完全积分电路/微分电路 *不完全积分电路/微分电路 不完全积分电路的应用 不完全积分电路属于低通滤波器的一种,它与1次滤波器都是同一类型的电路,不完全积分电路经常被当成噪讯滤波器使用,广泛应用在模拟电路、数字电路等领域。此处假设: T: 时定数 R: 阻抗 C: 电容 : 切除(cut-off)频率 如此一来: 图3是不完全积分电路的频率特性,虽然不完全积分电路属于模拟电路,不过在数字电路中它可以产生一定的延迟,因此不完全积分电路经常被当作延迟电路使用。不完全积分电路比纯数字电路更简易、低价、省空间(图4),然缺点是它的时间精度很低只能作概略性应用。图4的缓冲器为施密特触发器(schmitt trigger)。

微分和积分电路的异同

电子知识 微分电路(13)积分电路(20) 输出电压与输入电压成微分关系的电路为微分电路,通常由电容和电阻组成;输出电压与输入电压成积分关系的电路为积分电路,通常由电阻和电容组成。微分电路、积分电路可以分别产生尖脉冲和三角波形的响应。积分运算和微分运算互为逆运算,在自控系统中,常用积分电路和微分电路作为调节环节;此外,他们还广泛应用于波形的产生和变换以及仪器仪表之中。以集成运放作为放大电路,利用电阻和电容作为反馈网络,可以实现这两种运算电路。 (一)积分电路和微分电路的特点 1:积分电路可以使输入方波转换成三角波或者斜波 微分电路可以使使输入方波转换成尖脉冲波 2:积分电路电阻串联在主电路中,电容在干路中 微分则相反 3:积分电路的时间常数t要大于或者等于10倍输入脉冲宽度 微分电路的时间常数t要小于或者等于1/10倍的输入脉冲宽度 (二)他们被广泛的用于自控系统中的调节环节中,此外还广泛应用于波形的产生和变换以及仪表之中。 (三)验证:你比如说产生三角波的方法,有这样两个简单的办法,第一就是在方波发生电路中,当滞回比较器的阈值电压数值比较小时,咱们就可以把电容两端的电压看成三角波,第二呢直接把方波电压作为积分运算电路的发生电路的输出电压uo1=+Uz,时积分电路的输出电压uo将线性下降;而当

uo1=-Uz时,uo将线性上升;从而产生三角波,这时你就会发现两种方法产生的三角波的效果还是第二种的好,因为第一种方法产生的三角波线性度太差,而且如果带负载后将会使电路的性能发生变化。你可以用我说的这两种方法分别试试就知道差别优势了。 积分电路和微分电路当然是对信号求积分与求微分的电路了,它最简单的构成是一个运算放大器,一个电阻R和一个电容C,运放的负极接地,正极接电容,输出端Uo再与正极接接一个电阻就是微分电路,设正极输入Ui,则Uo=-RC(dUi/dt)。 当电容位置和电阻互换一下就是积分电路,Uo=-1/RC*(Ui 对时间t的积分),这两种电路就是用来求积分与微分的。方波输入积分电路积分出来就是三角波,而输入微分电路出来就是尖脉冲。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准

实验九积分与微分电路

实验九积分与微分电路 学院:信息科学与技术学院专业:电子信息工程 :刘晓旭 学号:2011117147

一.实验目的 1.掌握集成运算放大器的特点、性能及使用方法。 2.掌握比例求和电路、微积分电路的测试和分析方法。 3.掌握各电路的工作原理和理论计算方法。 二.实验仪器 1.数字万用表2.直流稳压电源3.双踪示波器4.信号发生器5.交流毫伏表。三.预习要求 1.分析图7-8 实验电路,若输入正弦波,u o 与u i 的相位差是多少?当输入信号为100Hz、有 效值为2V时,u o =? 2.图7-8 电路中,若输入方波,u o 与u i 的相位差?当输入信号为160Hz幅值为1V时,输出 u o =? 3.拟定实验步骤,做好记录表格。 四.实验原理 集成运放可以构成积分及微分运算电路,如下图所示: 微积分电路的运算关系为: 五.实验内容: 1.积分电路 按照上图连接积分电路,检查无误后接通+12,-12V直流电源。 (1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值。

(2)取U i=1V,测量运放的负向饱和电压值。 (3)将电路中的积分电容改为改为0.1uF,u i分别输入1KHz幅值为2v的方波和正弦信号,观察u i和u o的大小及相位关系,并记录波形,计算电路的有效积分时间。 (4)改变电路的输入信号的频率,观察u i和u o的相位,幅值关系。 2.微分电路 实验电路如上图所示。 (1)输入正弦波信号,f=500Hz,有效值为1v,用示波器观察u i和u o的波形并测量输出电压值。 (2)改变正弦波频率(20Hz-40Hz),观察u i和u o的相位,幅值变化情况并记录。 (3)输入方波,f=200Hz,U=5V,用示波器观察u0波形,并重复上述实验。 (4)输入三角波,f=200Hz,U=2V,用示波器观察u0波形,并重复上述实验 3.积分-微分电路 实验电路如图所示 (1)输入f=200Hz,u=6V的方波信号,用示波器观察u i和u o的波形并记录。 (2)将f改为500Hz,重复上述实验。 解答: 1.(1)取U i=-1v,用示波器观察波形u0,并测量运放输出电压的正向饱和电压值 电路仿真图如下图所示:

基本放大电路计算 30

计算题(每小题10分) 1、(10分)共射放大电路中,U CC =12V ,三极管的电流放大系数β=40,r be =1K Ω,R B =300K Ω,R C =4K Ω,R L =4K Ω。求(1)接入负载电阻R L 前、后的电压放大倍数;(2)输入电阻r i 输出电阻r o 解:(1)接入负载电阻R L 前: A u = -βR C /r be = -40×4/1= -160 (3分) 接入负载电阻R L 后: A u = -β(R C // R L ) /r be = -40×(4//4)/1= -80 (3分) (2)输入电阻r i = r be =1K Ω (2分) 输出电阻r o = R C =4K Ω(2分) 2、(10分)在共发射极基本交流放大电路中,已知 U CC = 12V ,R C = 4 k Ω,R L = 4 k Ω,R B = 300 k Ω,β=37.5 试求: (1).放大电路的静态值(6分); (2)试求电压放大倍数 Au ,(4分)。 解:(1) (2分) (2分) (2分) (2) A 04.0A 1030012 3 B C C B m R U I =?=≈ m A 5.1m A 04.05.37B C =?=≈I I βV 6V )5.1412(C C CC CE =?-=-=I R U U Ω Ωk 867.0)mA (5.1) mV (26)15.37()(200be =++≈r Ωk 2//L C L =='R R R

(2分) (2分) 3、(10分 ).在图示电路中,已知晶体管的β=80,r b e =1k Ω,U i =20mV ;静态时 U B E Q =0.7V ,U C E Q =4V ,I B Q =20μA 。 求(1)电压放大倍数 (3分 ) (2)输入电阻 (2分 ) (3)输出电阻 (2分 ) (4)U S (3分 ) 解:(1)2001 5.280)//(-=?-=-=be L C u r R R A β& (3分 ) (2) Ω=≈=k 1//i be be B r r R R (2分 ) (3)Ω=≈k 5o C R R (2分 ) (4)mV R R R U U i S i i 60)12(1 20)(s =+?=+= (3分 ) 4.(10分)在图示电路中, 已知V C C =12V ,晶体管的β=100,' b R = 100k Ω。求 (1)当i U &=0V 时,测得U B E Q =0.7V ,若要基极电流I B Q =20μA , 则'b R 和R W 之和R b 等于多 5.86867 .025.37be L -=?-='-=r R A u β

积分电路和微分电路

什么是积分电路 输出信号与输入信号的积分成正比的电路,称为积分电路。 基本积分电路: 积分电路如下图所示,积分电路可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。电路原理很简单,都是基于电容的冲放电原理,这里就不详细说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于或等于10倍于输入波形的宽度。 原理:从图得,Uo=Uc=(1/C)/icdt,因Ui=UR+Uo当t=to 时,Uc=Oo随后C 充电,由于ROTk,充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故 Uo=(1/c) / icdt=(1/RC) / Uidt 这就是输出Uo正比于输入Ui的积分(/ Uidt ) RC电路的积分条件:RO Tk 积分电路的作用: 积分电路能将方波转换成三角波,积分电路具有延迟作用,积分电路还有移相作用。积分电路的应用很广,它是模拟电子计算机的基本组成单元,在控制和测量系统中也常常用到积分电路。此外,积分电路还可用于延时和定时。在各种波形(矩形波、锯齿波等)发生电路中,积分电路也是重要的组成部分。 微分电路 可把矩形波转换为尖脉冲波,此电路的输出波形只反映输入波形的突变部分,即只有输入波形发生突变的瞬间才有输出。而对恒定部分则没有输出。输出的尖脉冲波形的宽度与R*C有关(即电路的时间常数),R*C越小,尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换

的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10 就可以了。 积分电路 这里介绍积分电路的一些常识。下面给出了积分电路的基本形式和波形图 R=10K o輸出 匚=0-3 F=5OHZ o ---- 当输入信号电压加在输入端时,电容(C)上的电压逐渐上升。而其充电电流则随着电压的上升而减小。电流通过电阻(R)、电容(C)的特性可有下面的公式表达:

积分电路与微分电路

积分电路与微分电路 积分电路和微分电路实验的目的和要求 1: (1)进一步掌握微分电路和积分电路的相关知识(2)学会使用运算放大器形成积分微分电路 (3)设计了一个RC差分电路,将方波转换成锐脉冲波(4)设计了一个RC积分电路,将方波转换成三角波(5)进一步学习和熟悉Multisim软件的使用(6)得出分析结论,写出模拟经验 工作原理: 积分电路: 积分是一种常见的数学运算,同时积分电路是一种常见的波形转换电路,它是一种将矩形脉冲(或方波)转换成三角波的电路最简单的集成电路(一阶RC电路)在 实验中,增加了一个运算放大器。原理图如下: 使用虚拟接地和虚拟断路的概念:n?0,i1?i2?I,电流为i1的电容器c?充电V1/电阻假设电容器c的初始电压为vc(o)?0,输出电压为 1 V0=?钢筋混凝土?vdt 1的上述公式表明,输出电压V0是输入电压Vi随时间的积分,负号表示它们相位相反。

当输入信号Vi为阶跃电压(方波)时,电容将在其作用下以近似恒定的电流模式充电,输出电压V0与时间t近似线性,因此 viviv??t。?到 RC?其中τ=R C是 中的时间常数由此可以推断,运算放大器的输出电压的最大V om受到DC调节电源的限制,这导致运算放大器进入饱和状态,V o保持不变,并且积分停止 差分电路: 替换积分电路中的电阻和电容元件,并选择较小的时间常数RC,以获得如图4所示的差分电路该电路还具有虚拟接地和虚拟断路 图4差分电路与运算放大器 设置t=0,电容的初始电压Vc(0)=0,当信号卡电压Vi连接时,dvii??c有1个dtdv??RC odt 的公式显示,输出电压V o与输入电压Vi相对于时间的微分成比例,负号表示它们的相位相反。当输入信号是方波时,电路可以将方波转换成尖峰脉冲波。 实验内容 我们先画出差分和积分电路图,然后进行实验,观察输出波形 差分电路图:

放大电路计算题

放大电路计算题 练习题3 一、计算分析题(每题1分) 1. 图示硅三极管放大电路中,V CC =30V ,R C =10k?,R E = 2.4 k?,R B =1M?,β=80, BEQ U =0.7V Ω=200'bb r ,各电容对交流的容抗近似为零,试:(1)求静态工作点参数I BQ ,, I CQ 、U CEQ 。(2)若输入幅度为0.1V 的正弦波,求输出电压u o1、u o2的幅值,并指出u o1、u o2与u i 的相位关系;(3)求输入电阻R i 和输出电阻R o1、R o2。 图号3226 解:(1) A k k V V R R U V I E B BE CC BQ μβ5.244.28110007.030)1(=Ω ?+Ω-=++-= mA A I I BQ CQ 96.15.2480=?==μβ V k k mA V R R I V U E C CQ CC CEQ 7.5)4.210(96.130)(=Ω+Ω?-=+-≈ (2) Ω≈?+Ω=++=k mA mV I U r r E T bb be 3.196.12681200) 1(Q 'β 当从u o1输出时,放大电路为共射组态,故输出电压u o1与输入电压u i 反相,且 1.44.2813.11080)1(11-=Ω ?+ΩΩ ?-=++-== k k k R r R u u A E be C i o u ββ V V A U U u im om 41.01.41.011=?=?= [][]Ω≈Ω?+ΩΩ=++=k k k M R r R R E be B i 6414.2813.1//1)1(//β Ω=≈k R R C o 101 当从u o2输出时,放大电路为共集组态,故输出电压u o2与输入电压u i 同相,且 99.04.2813.14.281)1()1(122≈Ω ?+ΩΩ ?=+++== k k k R r R u u A E be E o u ββ 或 12≈u A V V A U U u im om 099.099.01.022=?=?=

微分与积分电路分析

一、微分电路 输出信号与输入信号的微分成正比的电路,称为微分电路。 原理:从图一得:Uo=Ric=RC(duc/dt),因Ui=Uc+Uo,当,t=to时,Uc=0,所以Uo=Uio随后C充电,因RC≤Tk,充电很快,可以认为Uc≈Ui,则有: Uo=RC(duc/dt)=RC(dui/dt)---------------------式一 这就是输出Uo正比于输入Ui的微分(dui/dt) RC电路的微分条件:RC≤Tk 图一、微分电路 二、积分电路 输出信号与输入信号的积分成正比的电路,称为积分电路。 原理:从图2得,Uo=Uc=(1/C)∫icdt,因Ui=UR+Uo,当t=to时,Uc=Oo.随后C充电,由于RC≥Tk, 充电很慢,所以认为Ui=UR=Ric,即ic=Ui/R,故 Uo=(1/c)∫icdt=(1/RC)∫icdt 这就是输出Uo正比于输入Ui的积分(∫icdt) RC电路的积分条件:RC≥Tk 图2、积分电路 微分电路电路结构如图W-1,微分电路可 把矩形波转换为尖脉冲波,此电路的输出波 形只反映输入波形的突变部分,即只有输入 波形发生突变的瞬间才有输出。而对恒定部 分则没有输出。输出的尖脉冲波形的宽度与 R*C有关(即电路的时间常数),R*C越小, 尖脉冲波形越尖,反之则宽。此电路的R*C必须远远少于输入波形的宽度,否则就失去了波形变换的作用,变为一般的RC耦合电路了,一般R*C少于或等于输入波形宽度的1/10就可以了。 积分电路 电路结构如图J-1,积分电路可将矩形 脉冲波转换为锯齿波或三角波,还可将锯 齿波转换为抛物波。电路原理很简单,都 是基于电容的冲放电原理,这里就不详细 说了,这里要提的是电路的时间常数R*C,构成积分电路的条件是电路的时间常数必须要大于

积分电路和微分电路 实验报告书

积分电路和微分电路实验报告书学号:姓名:学习中心:

(1)按如图连接电路 (2)设置信号发生器的输出频率为1HZ,幅值为5V的方波,如图 (3)激活仿真电路 双击示波器图标弹出示波器面板,观察并分析示波器波形

(4)按表1给出的电路参数依次设置R和C的取值,分别激活仿真运行,双击示波器图标,弹出示波器面板,给出输入/输出信号的波形图,并说明R和C的取值对输出信号的影响表1 实验电路参数 序号输入为方波信号电路参数 频率/HZ幅值/V R/KO C/uF 1 1 5 100 1 2 1 5 100 2 3 1 5 100 4.7 2.微分电路实验 (1)按图连接电路 (2)设置R和C (3)激活电路仿真运行, (4)双击示波器的面板,给出输入/输出信号的波形图 (5)说明R和C的取值对输出信号的影响

表2 实验电路参数 序号输入为方波信号电路参数 频率/HZ幅值/V R/KO C/uF 1 1 5 100 1 2 1 5 100 2 3 1 5 100 4.7

三、实验过程原始数据(数据、图表、计算等) 1.积分电路实验 R=100KO,C=1uF R=100 KO C=2UF R=100KO C=4.7uF 2.微分电路实验 R=100KO,C=1uF

R=100 KO C=2UF R=100KO C=4.7uF 四、实验结果及分析 积分电路实验 由积分电路的特点:时间常数t远大于输入信号的周期T,在此条件下Uc(t)<

放大电路计算题

放大电路计算题 练习题 3 一、计算分析题(每题1分) 1. 图示硅三极管放大电路中,V CC =30V ,R C =10k ,R E = 2.4 k ,R B =1M ,β=80, BEQ U =0.7V Ω=200'bb r ,各电容对交流的容抗近似为零,试:(1)求静态工作点参数I BQ ,, I CQ 、U CEQ 。(2)若输入幅度为0.1V 的正弦波,求输出电压u o1、u o2的幅值,并指出u o1、u o2与u i 的相位关系; (3)求输入电阻R i 和输出电阻R o1、R o2。 解:(1) (2) Ω≈?+Ω=++=k mA mV I U r r E T bb be 3.196.12681200)1(Q 'β 当从u o1输出时,放大电路为共射组态,故输出电压u o1与输入电压u i 反相,且 当从u o2输出时,放大电路为共集组态,故输出电压u o2与输入电压u i 同相,且 99.04.2813.14.281)1()1(122≈Ω ?+ΩΩ?=+++==k k k R r R u u A E be E o u ββ 或 12≈u A 输入电阻不变,为164k 计算的最后结果数字:I CQ =1.96mA , I BQ =24.5A ,U CEQ =5.7V ; U om1= 0.41V ,U om2= 0.099V ,R i = 164k , R o1=10k , R o2=16 2. 差分放大电路如图所示,已知V CC = V EE =10V ,R C =7.5k Ω,R L =10k ,R 1 =8.2k ,R 2 =1.1k ,R 3 =820,三极管的β=100,r bb’=200Ω,U BEQ =0.7V ,试求:(1)V1、V2管的静态工作点参数I CQ 、 U CQ ;(2)差模电压放大倍数A ud =u od /(u i1- u i2)、差模输入电阻R id 和输出电阻R o 。 解:(1) mA mA I R R I REF C 34.11 .12.87.0108201100323≈+-?≈≈ I CQ1= I CQ2=0.67mA U CQ1= U CQ2=V CC -I CQ1R C = 4.98V (2) Ω≈Ω?+Ω=k r be 12.467 .026101200 R id =8.24 k Ω R o =15 k Ω 计算的最后结果数字: I CQ1= I CQ2=0.67mA , U CQ1= U CQ2=4.98V ; A ud = -72.8,R id =8.24k ,R o =15k 3. 差分放大电路如图所示,已知V CC =V EE =6V ,R C =3k Ω,I 0= 2mA ,三极管的β=50,r bb ′=200Ω, U BEQ =0.7V ,试求:(1)各管静态工作点(I BQ 、I CQ 、U CEQ );(2)差模电压放大倍数A ud =u od /u id 、 差模输入电阻R id 和输出电阻R o 。 解:(1) mA I I CQ CQ 1 21≈= A I I I CQ BQ BQ μβ201 21=≈= (2) Ω≈?++Ω=k mA mV r be 53.1126)051(200 计算的最后结果数字:I CQ 1= I CQ 2=1mA ,I BQ 1= I BQ 2=20μA , U CEQ1 = U CEQ2 =3.7V ; A ud = -49,R id =3.06k , R o =3k

放大电路计算题

放大电路计算题 Prepared on 24 November 2020

放大电路计算题 练习题3 一、计算分析题(每题1分) 1. 图示硅三极管放大电路中,V CC =30V ,R C =10k ,R E = k ,R B =1M ,β=80, BEQ U =Ω=200'bb r ,各电容对交流的容抗近似为零,试:(1)求静态工作点参数I BQ ,, I CQ 、U CEQ 。(2)若输入幅度为的正弦波,求输出电压u o1、u o2的幅值,并指出u o1、u o2与 u i 的相位关系;(3)求输入电阻R i 和输出电阻R o1、R o2。 解:(1) (2) Ω≈?+Ω=++=k mA mV I U r r E T bb be 3.196.12681200)1(Q 'β 当从u o1输出时,放大电路为共射组态,故输出电压u o1与输入电压u i 反相,且 当从u o2输出时,放大电路为共集组态,故输出电压u o2与输入电压u i 同相,且 99.04.2813.14.281)1()1(122≈Ω ?+ΩΩ?=+++==k k k R r R u u A E be E o u ββ 或 12≈u A 输入电阻不变,为164k 计算的最后结果数字:I CQ =, I BQ =A ,U CEQ = ; U om1= ,U om2= ,R i = 164k , R o1=10k , R o2=16 2. 差分放大电路如图所示,已知V CC = V EE =10V ,R C =Ω,R L =10k ,R 1 =,R 2 =,R 3 =820, 三极管的β=100,r bb’=200Ω,U BEQ =,试求:(1)V1、V2管的静态工作点参数I CQ 、 U CQ ;(2)差模电压放大倍数A ud =u od /(u i1- u i2)、差模输入电阻R id 和输出电阻R o 。 解:(1) mA mA I R R I REF C 34.11 .12.87.0108201100323≈+-?≈≈ I CQ1= I CQ2= U CQ1= U CQ2=V CC -I CQ1R C = (2) Ω≈Ω?+Ω=k r be 12.467 .026101200 R id = k Ω R o =15 k Ω 计算的最后结果数字: I CQ1= I CQ2= , U CQ1= U CQ2= ; A ud = ,R id =,R o =15k 3. 差分放大电路如图所示,已知V CC =V EE =6V ,R C =3k Ω,I 0= 2mA ,三极管的β=50,r bb ′ =200Ω,U BEQ =,试求:(1)各管静态工作点(I BQ 、I CQ 、U CEQ );(2)差模电压放大倍 数A ud =u od /u id 、差模输入电阻R id 和输出电阻R o 。 解:(1) mA I I CQ CQ 1 21≈= A I I I CQ BQ BQ μβ201 21=≈= (2) Ω≈?++Ω=k mA mV r be 53.1126)051(200 计算的最后结果数字:I CQ 1= I CQ 2=1mA ,I BQ 1= I BQ 2=20μA , U CEQ1 = U CEQ2 = ; A ud = -49,R id =, R o =3k

相关文档
最新文档