超声导波检测技术的研究进展_周正干

超声导波检测技术的研究进展_周正干
超声导波检测技术的研究进展_周正干

综 述 NDT 无损检测

2006年第28卷第2期

超声导波检测技术的研究进展

周正干,冯海伟

(北京航空航天大学机械工程及自动化学院,北京 100083)

摘 要:综述近年来超声导波检测研究的最新进展。介绍导波在不同材料和结构中的频散特性及与之相关的理论成果。从导波的结构出发,分析了导波在介质中能量与位移的分布。论述了导波检测技术领域中数值分析方法和信号处理方面的一些新技术。

关键词:超声检测;导波;频散特性;有限元;边界元;信号处理

中图分类号:T G 115.28 文献标识码:A 文章编号:1000 6656(2006)02

0057 07Progress in Research of Ultrasonic Guided Wave Testing Technique

ZHOU Zheng gan,FENG Hai wei

(School of M echanical Engineering and Automation,Beijing University of Aeronautics and Astr onautics,Beijing 100083,China)

Abstract:T he recent advances in ult rasonic g uided w ave testing technique are summar ized.Firstly,the disper se char acter istics and the r elated t heo retical r esults of the g uided wav es in differ ent mater ials and distinct structur es ar e intro duced.T hen,based o n the structure o f the g uided waves,the distr ibution o f the energ y and displacement o f guided w aves is ana lyzed.L ast ly ,some new techniques o f numer ical analy sis and signal pro cessing fo r g uided wav e no ndest ructive testing are descr ibed.

Keywords:U ltr aso nic t esting ;G uided wav e;Disperse characterist ic;F inite element;Boundary element;Signal pr ocessing

相对于传统的超声波检测技术,超声导波具有传播距离远、速度快的特点,因此,在大型构件(如在役管道)和复合材料板壳的无损检测中有良好的应用前景。但目前,导波的一些机理和特性仍然不很清楚,导波的理论研究成为近年来无损检测界的热点。随着理论研究的深入,产生了很多有关导波的

新技术,促使其应用于更广泛的领域。

1 导波的分类

导波是由于声波在介质中的不连续交界面间产生多次往复反射,并进一步产生复杂的干涉和几何弥散而形成的。主要分为圆柱体中的导波以及板中的SH 波、SV 波、兰姆波(Lam b)和漏兰姆波[1]等。

根据Silk 和Bainto n 的理论[2]

,圆柱体中的导波分为 轴对称纵向模式L(0,m)(m =1,2,3,

收稿日期:2005 01 13

基金项目:国家自然科学基金资助项目(50475006)

)。 轴对称扭转模式T (0,m )(m =1,2,3, )。 非轴对称弯曲模式F(n,m )(n,m =1,2,3, )。各模式中整数m 是计数变量,反映该模式在管壁厚方向上的振动形态;整数n 反映该模式绕管壁螺旋式传播形态。其中,L(0,m )和T (0,m )模式是F(n,m )模式中n =0的特例。

虽然上述定义已被广泛接受,但是针对某些具体问题,研究人员也提出了不同的导波分类方法,以利于分析在具体问题中表现出来相似特征的导波模式。如Vo gt T 等[3]

在研究部分埋地圆柱体结构中的导波散射问题时提出了单一(v ,n)模式,其中v 1对应原弯曲模式;v =0对应原纵波和扭转模式。两种模式用计数变量n 区别。两种定义方式的模式,(0,1)对应L(0,1),(0,2)对应T(0,1),(0,3)对应L(0,2),(0,4)对应T (0,2)等。

2 频散特性与频散方程

频散是导波的主要特性之一,即导波的相速度

57

随着频率的不同而不同。频散特性是导波应用于复合材料无损检测的主要依据。对导波频散特性的研究是深入研究导波本质的重要方面。导波的频散方程反映了导波的频散特性。

2.1 波导材料

导波在介质中的传播特性与介质特性有很大关系。目前的研究已经不仅仅局限于导波在各向同性弹性介质中的传播特性,还涉及到各向异性和具有黏弹性的材料。

由广义虎克定律可知,固体媒质的弹性性质可以由36个弹性系数C ij(i,j=1~6)表示。具有对称性的介质,相应的弹性系数减少。对于各向同性固体,弹性系数的值只有拉密常数 和 不为零。对于各向同性的材料,其相速度面是球面,而对于各向异性的材料,其相速度面是非球面[4]。Low e M JS 等[5]在对航空碳纤维蒙皮板进行检测时发现,导波在各向异性材料中传播时,其频散方程为

F(s ,s , , )=0(1)式中 s 慢度矢量(群速度的倒数)

s 衰减矢量

相位的方向

角频率

对各向异性材料,导波频散方程的解需在四维空间内获得;对于各向同性材料,则只需要考虑s 和 。但是,无论是何种材料,如果波源为有限区域,导波的能量速度矢量通常指向材料的慢度面。

导波在弹性材料中传播时通常无需考虑衰减。而许多现代人造材料(聚合物和复合材料)都属于黏弹性材料,导波在其中的衰减是当前研究的一个热点。目前研究黏弹性材料的模型包括M axw ell和Kelv in V oight模型[4]。对于黏弹性材料而言,其弹性模量是复数,实部代表储能能力,虚部代表耗能能力。就黏弹性层中传播的导波来说,其波数也是复数[6],实部用来表征波的传播,虚部用来表征波的衰减。弹性层中传播的导波的波数值是实数。

2.2 多层结构

建立导波在多层结构中的频散方程的方法通常是,先求出导波在单层中的位移和应力表达式,然后设定层与层交界面上相应的位移和应力连续,即分别在相邻两层表面处得到的位移和应力值相等。目前,求解导波在多层结构中的频散方程主要采用传递矩阵法和全局矩阵法[4]。传递矩阵法的基本思想是消去中间层引入的所有未知量,问题的解用外边界条件形式表示,它在频厚积较大的情况下会造成数值解的不稳定。全局矩阵法可以解决任何频厚积范围的情况,其求解速度比传递矩阵法快,但涉及到求解高阶行列式的问题。

Low e M JS[7]利用传递矩阵法建立了兰姆波在多层平板中的频散方程。Jam es Barshinger等[8]使用全局矩阵法推导出导波在多层圆柱体中的频散方程。Ro se JL等[4]在飞机机翼结冰的检测中,研究了不同厚度冰层和铝层的多层模型,其研究工作表明,对于一个劣化模型,其频散曲线比完好连接模型的频散曲线向左偏移。在国内,同济大学他得安等[9]研究了复合管中纵波模式的频散特性。杜光升等[10]利用柱状分层结构中轴对称声导波的波动方程和界面弹簧模型,导出了具有弱界面双层复合结构中轴对称声导波的广义频散方程。中南大学杨天春等[11]利用传递矩阵法研究了三层各向同性层状弹性固体介质中瑞利波频散曲线及自由表面的位移强度,说明了各频散曲线之间是互不相交的,指出了存在低速软弱夹层时的频散曲线特征,论证了之字形频散曲线的形成机理。

2.3 边界问题

边界问题是指导波的传输介质是处于自由边界还是在其周围有液体,后一种情况会造成导波的衰减。Aristegui C等[12]研究了导波在管道内外表面都是空气、内部是空气外部是液体、内外部都是液体以及内部是液体外部是空气四种情况下的频散特性,他们将粘性液体等效成能传播体积纵波和切变波的固体,并将衰减分别考虑成由等效纵波和切变波造成的。Yang CH等[13]研究了压电板浸在导电液体中的漏兰姆波(LLW)情况。他们利用平板部分波理论,研究发现不同的导电液体具有不同的传导率,随着导电液体传导率的改变,LLW模式发生了平移。在国内,他得安等[14]研究了纵波模式在充液管道中的频散特性、位移以及能量分布。

需要指出的是,根据Rose JL的理论[4],对于任意一个N层结构(不论材料是弹性、黏弹性、各向异性还是各向同性),可以通过全局矩阵方法建立的频散方程为

A11A12 A1(4N)

A21A22 A2(4N)

A(4N)1A(4N)2 A(4N)(4N)

=

(2)方程中左边的各元素由给定层的拉密常数、厚度、频

58

2006年第28卷第2期

率和波数等决定。如果某层是液体,可以删除相应的行和列。

2.4 频散方程的数值计算

频散方程的求解过程相当复杂,需要求解Bes sel方程。对于圆柱体,解的形式必须采用第三类Bessel函数(即H ankel函数)[15]。

Barshinger JN[16]对含有黏弹性层的多层圆柱体进行了研究。对弹性层求解时使用二分法;对黏弹性层而言,首先不考虑导波的衰减,选取弹性层的解为初始值,沿着相速度和衰减的两个方向使得频散方程得到最小值,从而获得频散方程的解。

南京理工大学尹晓春[17]在研究了多层厚壁圆筒的频率方程后,指出若干层互相接触的圆筒的整体频率方程可以用单个厚壁圆筒的频率方程来代替,并求出了一类Bessel函数的推导公式。中国矿业大学杨公训[18]研究了复宗量修正的Bessel函数,推导出任意阶数下的复宗量修正Bessel函数的递推公式。

由于频散方程数值计算的复杂性以及Bessel 函数不稳定性,研究人员也在寻找一些近似的方法使问题简化。Niklasson A Jonas等[19]在研究各向同性的平板上覆盖有各向异性材料的情况时,采用有效边界技术(BCs)建立了近似频散方程,它比全局矩阵法得到的方程要小得多,节约了计算量。BCs是把作用在覆盖层上的牵引力延伸到整个覆盖层的厚度处,建立近似频散方程时利用了覆盖层的边界、交界面的条件以及运动方程。

2.5 商业化软件

目前在导波技术领域有两个应用很广的商业可视化软件,即Low e等开发的Disperse和Ro se JL 等开发的ZANLY。这些软件可以仿真导波在平板或圆柱体等规则形体中传播时的频散和衰减曲线,同时可以模拟这些情况下的介质在不同方向的位移、应力、应变和能量的分布。

3 导波的位移、能量和波包

Rose JL[20]指出,选择用于无损检测的导波模式应考虑导波的频散特性以及波的结构 面内位移、面外位移以及随着结构厚度变化的应力变化。不同的波结构影响入射的能量和对缺陷的敏感程度。如圆管中传播的导波,其位移的轴向分量对探测圆周向开口裂纹的灵敏度很高;管道内外表面径向位移的大小决定了能量泄漏量,能量泄漏多的导波传播距离短。导波的能量和波包形状也是选择导波模式的两个重要因素,衡量的标准是导波的能量泄漏少、传播距离远以及随距离增加波包变化小。

3.1 导波的位移

研究导波在不同结构中的位移分布时,通常选取不同的坐标系。在平板中采用普通三维坐标,而对于圆柱体则采用柱面坐标(坐标方向是沿轴向、径向和圆周向)。国内外学者深入研究了导波位移场的分布情况[4,15],利用上述软件也可得到多种材料中导波位移分布的理论值。他得安等[9]对复合层管状结构中导波位移分布情况的研究表明,各种纵向导波模式的径向和轴向位移在管内壁上的值较大,在管壁中间和外壁上的值较小;当频厚积增大到某特定值后,管壁中间和管外壁上的径向和轴向位移都近似为零,该特定值随模式阶次的提高而增加。

3.2 导波的能量

导波能量的研究主要集中在能量的传播、分布和泄漏。对于弹性介质,一般认为导波的群速度就是能量的传播速度;对于黏弹性材料,Bernarda A 等[21]指出,导波能量的传播速度不能按照脉冲或者波包的速度(即简单的群速度)来计算。基于Poynting能量矢量合成的方法,他们推导出了在各向异性材料中导波能量传播速度的表达式,即

V e(y)=

P

E (3)式中 P Po ynting矢量

E 系统中的总能量(动能和势能)

在能量的分布方面,Quarry M J[22]提出了板内能量的计算公式,即

P i=Re-

1

2

B

V i T i^z d x(4)式中 P i 第i阶模式导波所带的能量

V i 第i阶模式的能量速度矢量

T i 第i阶模式的应变张量

x 导波的传播方向

B 多层板的总厚度

z^ 每一层的厚度

中南大学张碧清[23]等研究了多层弹性固体结构在三维方向上的能量分布,分析了三层结构中间层的切变波速度在不同范围时各层能量分布的变化。从理论和数值分析的角度研究了沿着多层结构传播的导波的平均能流和能量密度,论证了只有当传播的距离远远大于波长的时候,总能量的平均速度才等于导波的群速度,平均能流密度的速度与深

59

2006年第28卷第2期

度和最底层的相速度相等。Cho ng M young Lee 等[24]指出导波能量在平板之间的环氧层会有较大的损失,而且随着导波模式的不同,损失的程度也不一样。M ichel Castaings等[25]研究了内部衰减很大的弹性橡胶覆盖在弹性板上的情况,认为能量可以从板泄漏到弹性橡胶中去,指出衰减与交界面的压缩力有关。

研究导波的能量主要还是为了选择用于无损检测的导波模式。很多研究人员基于导波能量提出了一些选择导波模式的参数。Cho ng M young Lee 等[24]采用的是板内能量。他得安等[26]利用总能量密度参数研究了在管道中传播的纵波模式,说明总能量密度也可以用来选择最佳的导波模式。Ro th DJ等[27]研究陶瓷基复合材料中缺陷时,回波信号处理选用的主要参数是时域中的能量谱密度(PSD)。

3.3 传播距离对导波波包的影响

导波的频散程度决定了信号波包的峰值幅度随着传播距离的增加而减小的快慢,频散严重就会导致信噪比的降低。Wilcox P等[28]研究了导波的传播距离对导波波包的影响,结果表明,波包宽度随着传播距离线性增加,通过选择合适的入射信号可以使波包的宽度最小。他们也建立了一个相关参数 最小可分辨距离(MRD),以比较不同入射信号的分辨率。他得安等[29]研究了导波在单层管道中的传播距离和较低阶纵波模式波包幅度的关系,指出对于不同的检测距离和内径 壁厚比的管道,应采用不同的导波模式和激发脉冲频率。

4 导波在特殊形体中的传播

实际被检工件并不都是规则的平板、棒或圆柱体,因此,研究导波在一些特殊形体中的传播也具有很重要的现实意义。一般来说,对于由规则和不规则形体组成的复杂结构而言,导波在其规则部分中的传播特性和在单一规则结构中的传播特性是一样的,研究只需考虑复杂结构中的不规则部分。由于对导波在规则形体中的传播特性研究得较多,国内外学者都将更多精力投入到不规则形体中导波的传播特性研究中。

杜光升等[30]研究了腔内为流体的柱状多孔介质结构中的声导波,基于Biot多孔声学理论(认为存在快慢两种纵波)导出了在这种情况下的广义色散曲线,并数值计算了轴对称和非轴对称声导波的色散特性。田光春等[31]利用混合边界元模型计算了台阶型散射区域的反射系数和透射系数与各种入射模式、入射频率以及台阶高度变化的关系,研究了在单一模式入射时导波与散射体的相互关系。Demm a A等[32]用有限元法研究了弯曲管道的频散特性;Christophe Aristegui等[33]研究了管道弯曲处导波的反射和模式转换。

5 数值分析和信号处理技术

目前,超声导波技术研究最主要的部分集中在数值分析和信号处理技术上。用数值模拟的方法可以模拟不同的导波模式,并研究其特性,这对设计研究导波特性的试验具有指导意义,可以大大减少试验的盲目性和工作量;利用数值模拟技术还可以研究导波模式与不同种类缺陷的相互作用,即研究不同的导波模式在不同缺陷处的散射问题,主要包括导波在缺陷处的反射和折射系数以及在缺陷处的位移和能量的变化。由于导波在边界和缺陷处产生的回波信号非常复杂,导致产生多种模式的导波以及噪声,因此,采用合理的信号处理技术分离出有用的信号,提高信噪比就显得十分重要。

5.1 数值分析方法

目前国际上通常采用有限元法和边界元法解决导波散射问题。英国帝国理工学院机械工程系的超声无损检测研究小组主要使用有限元法,美国宾西法尼亚大学工程科学和力学系的科研工作者对边界元法作了比较深入的研究。有限元法首先对位移矢量形式的运动学方程用加权余量法表示,接着将研究区域离散得到每个单元的运动方程,最后将所有单元的运动学方程集合成全局运动方程;边界元法是将位移矢量形式的运动学方程用加权余量法得到边界积分方程,将边界划分成若干单元,用这些单元将边界积分方程离散,最终得到一个表征结点上位移和应力的矩阵方程。

Alleyne DN等[34]在研究Lamb波与各种深度、宽度以及不同方向刻痕的作用时采用了纯时域的有限元法。Low e M JS等[35]用有限元法对管道中的缺陷建立了几种模式的反射函数,以得到缺陷对导波的敏感程度和导波的强度,同时指出L(0,2)模式导波的反射系数近似是刻痕圆周尺度的线性函数,而反射系数与缺陷深度也近似呈线性关系。Rose JL等[36]在研究导波在板材中的反射和透射时,利用边界元法对板材表面缺陷的形状进行了分类。

60

2006年第28卷第2期

在研究导波无损检测时,有时单纯使用有限元法或边界元法并不非常完善。有限元法虽对介质的性质没有特别要求,可处理各向同性和非均匀的各向异性材料,但要求研究区域是有界的,而且处理起来较麻烦。相对于有限元法,边界元法具有维数减少、需要更少的计算时间和存储空间、容易管理面积更大的区域以及可以对更多的目标值进行计算的优点,但要求材料是均匀的。

运用上述两种基本方法和其它一些技术的结合,产生了多种混合方法,其中被广泛使用的是简正模态展开法。该方法最早由Auld提出,可用于波场的分析和合成,但其要求导波模式必须完备且必须正交(严格意义上讲是双正交,即在粒子的速度场和应力场内都应正交)。

Chang Z等[37]在研究导波在平板铆钉洞和裂纹处的散射时,使用了混合频域有限元法和简正模态展开法进行分析,并用快速傅里叶反变换得到时域的散射声场。Karim M R等[38]在研究Lamb波在平板中裂纹处散射时使用了混合有限元法和简正模态展开法。Cho Y等[39]用边界元和简正模态展开法的混合技术研究平板边界处的Lamb波模式转换以及Lamb波与表面开口缺陷的相互作用,在研究Lam b波在平板中任意形状三维缺陷处的散射也得到比较理想的结果[40,41]。

在国内,王路根等[42]综合利用边界元法和传递矩阵法研究了板中缺陷对弹性波的散射问题,结果表明,该方法比无限介质中的Green函数法能更容易地计算出Lam b波各模式的反射和透射系数。他得安等[43]也提出了用有限元和边界元相结合的方法研究不同区域的缺陷。

除目前这些数值计算方法外,导波研究人员还根据具体问题提出了针对性更强的技术。Tobias Lenteneg ger等[44]在检测圆柱体中缺陷时,采用了时间反转数值模拟(TRNS)方法和三维有限差分方法。Takahiro H ayashi等[45]利用半分析有限元方法研究了聚焦技术在导波传播中的应用。Mukdadi OM等[46]在研究超声导波在各向异性双层平板中的瞬时情况时,也采用了半分析有限元方法,该方法是把平板中的位移u(x,y,z,t)分解成N(y,z) u e(x,t),即

u(x,y,z,t)=N(y,z) u e(x,t)(5)式中u(x,y,z,t) 点(x,y,z)在t时刻的位移N(y,z) 标准的有限元形函数

u e(x,t) 包含结点位移的列向量

这样,控制方程就发生了相应的变化。

5.2 信号处理技术

目前导波信号处理最主要的方法是二维快速傅里叶变换(2D FFT)和短时傅里叶变换(STFT)。Caw ley P等[47]利用二维傅里叶变换把多种模式重叠的信号进行分离,并且指出使用普通的一维傅里叶变换无法对信号进行处理。H y co n Jae Shin 等[48]在对具有聚乙烯覆盖层的钢管进行超声导波检测时,使用短时傅里叶变换对回波信号进行时频特性分析。

此外,Christine Valle等[49]使用再分配声谱图技术对回波信号进行处理。声谱图是时域信号的能量密度谱,能很好地获取兰姆波模式,但是在时频域的解会受到限制,因此选用了再分配技术,也就是说把所有的能量都分配到质心上去。能量初始位置的时频(t, )单谱线可以用重分配值得到,给定时频信号的再分配声谱图就变成三维矩阵。该方法可有效检测单裂纹和多裂纹缺陷。

Paul D Wilcox[50]研究了导波信号快速处理方法。为了将返回导波信号中的频散部分因素处理掉,他采用了频散补偿算法,就是在实际的相速度v0ph(f)与算法中使用的相速度v ph之间分别沿着频率轴和相速度轴增加一个小的微扰。

Nico las Leymarie等[51]对多种三维复合材料进行了分析,指出使用小波变换和正确的滤波技术可以将不同模式的导波信号分离,但是对于时域和频域中都靠得很近的信号却无能为力,其研究出的时域微波技术可以在低频处快速测得复合材料的杨氏模量。

Zhao X等[52]在研究新型金属基复合材料(M M C)时,采用了一种信号处理新方法,即首先用谱分析进行预处理,接着用H ilbert变换提取超声信号的频率和波形,最后用基于信号的频率和形状计算出所需要的特征。

6 结语

综合回顾了近年来有关超声导波检测技术研究的最新进展。可喜的是,国内外的一些研究机构和生产单位已经研制出了一些基于导波理论的无损检测装置,并已应用于管道和构件的无损检测。有关超声导波检测技术研究的新进展必将推进导波技术在超声无损检测中的应用。

61

2006年第28卷第2期

参考文献:

[1] 刘镇清.超声无损检测中的导波技术[J].无损检测,

1999,21(8):367-369.

[2] Silk M G,Baint on K F.T he pro pag atio n in metal tub

ing of ultr asonic w ave modes equiv alent to L amb w aves

[J].U ltrasonics,1979,17(1):11-19.

[3] V og t T,Lo we M,Cawley P.T he scattering of ultra

sonic g uided w aves in par tly embedded cylindr ical structures[J].Acoustical Societ y of Amer ica,2003,

113(3):1259.

[4] Ro se JL.U ltrasonic w aves in so lid media[M].N ew

Y or k:Cambr idge U niver sity Press,1999.

[5] L ow e M JS,N eau G,D eschamps M.P ropert ies of

g uided w aves in composit e plates and implications fo r

N DE[J].Review of Q uantitative N ondestr uctive Eval

uat ion,2004,23:214-222.

[6] Ba rshing er JN,Rose JL.U ltr asonic g uided w ave

pro pag atio n in pipes with visco elastic co atings[J].

Q N DE,2001,21:239-246.

[7] L ow e M JS.M atrix techniques fo r mo deling ultrasonic

w aves in multilayer ed media[J].IEEE U FF C,1995,

42:525-542.

[8] Barshinger James,Rose JL.Guided wav e resonance

tuning for pipe inspection[J].Jo ur na l of Pr essure

V essel T echno lo gy,2002,124:303-304.

[9] 他得安,刘镇清,贺鹏飞.复合管状结构中超声导波的

位移分布[J].复合材料学报,2003,20(6):130-136.

[10] 杜光升,王耀俊,袁忆丰,等.具有弱界面的柱状复合

结构中轴对称声导波[J].物理学报,1998,47(1):27.

[11] 杨天春,何继善,吕绍林,等.三层层状介质中瑞利波

的频散曲线特征[J].物探与化探,2004,28(1):41.

[12] Ar istegui C,Lo we M JS,Caw ley P.G uided waves in

f luid filled pipes sur rounded by different fluids[J].

U ltr aso nics,2001,39:367-375.

[13] Yang CH,Shue CJ.Guided w aves pr opagating in a

piezoelect ric plate immersed in a co nduct ive fluid[J].

NDT&E Internatio nal,2001,34:199-206.

[14] 他得安,刘镇清,贺鹏飞.充粘性液管材中超声纵向导

波的无损检测参数选择[J].声学学报,2004,29(3):

104-110.

[15] L ow e M.M anual of D isper se Softw are[M].L ondon:

Imperial College P ress,2001.

[16] Barshinger JN.Guided w ave pr opagat ion in pipes

w it h v iscoelastic coat ings[D].U SA:T he Pennsy lva

nia State U niv er sity,2001.

[17] 尹晓春.多层厚壁圆筒频率方程的简化及一类贝塞尔

函数递推公式[J].应用数学和力学,1999,20(3):319

-324.

[18] 杨公训,李翔珍.复宗量修正贝塞尔函数的数值计算

[J].阜新矿业学院学报,1995,14(4):85-88.

[19] N iklasson A Jo nas,Datta Subhendu K,Dunn M art in

L.O n appr ox imating g uided w aves in plates w ith thin

anisotr opic co atings by means of effect ive bo undary

conditions[J].J A coust So c A m,2000,108(3):924-

933.

[20] Ro se JL.R ecent advances in guided wav es[A].IEEE

U ltraso nic Sy mpo sium[C].Ber lin:1995:725-735.

[21] Ber nar da A,L ow e M JS.Guided wav es energ y velo ci

ty in abso rbing and non abso rbing plates[J].J

A co ust So c A m,2001,110(1):186-196.

[22] Q uar ry M J.Guided wav e inspection o f multi lay ered

structur es[J].Review of Quantitat ive No ndestructiv e

Evaluation,2004,23:246-253.

[23] Zhang Bix ing.Study of energ y distr ibut ion o f guided

wav es in multilayer ed media[J].J A coust So c A m,

1998,103(1):125-134.

[24] Lee Chong M y oung,Ro se JL,Cho Yo unho,et al.

Guided w ave feasibilit y in layer ed dev ices[J].Rev iew

of Q uant itativ e No ndest ruct ive Evaluation,2004,23:

254-261.

[25] Casta ing s M ichel,Ho sten Bernard.T he measure

ment o f a0and s0L amb w ave attenuat ion to deter mine

the no rmal and shear stiffness of a compressiv ely

lo aded interface[J].J Aco ust Soc A m,2003,113(6):

3161-3170.

[26] 他得安,刘镇清,贺鹏飞.以能量密度为参量的管中导

波无损检测参数选择[J].应用力学学报,2003,20

(2):72-77.

[27] Rot h DJ,Cosg riff L M,M ar tin R E,et al.M icr o

st ruct ur al and defect cha racterizatio n in ceramic com

po sites using an ult rasonic g uided w ave scan sy st em

[J].Rev iew o f Quantitative N ondestructiv e Ev alua

tion,2000,23:906-913.

[28] Wilcox P,L ow e M,Caw ley P.T he effect of disper

sion on long range inspectio n using ultrasonic guided

wav es[J].NDT&E Internatio nal,2001.34:1-9 [29] 他得安,易 勇,刘镇清.传播距离对管中导波传播特

性的影响[J].无损检测,2003,25(11):553-557. [30] 杜光升,王耀俊,乔文孝.腔内为流体的柱状多孔媒质

结构中声导波[J].物理学报,1998,12:47-48 [31] 田光春,刘镇清,景永刚.台阶型厚度变化板中导波的

研究[J].无损检测,2003,25(7):333-336.

[32] Demma A,Caw ley P,L ow e M JS.G uided w aves in

curved pipes[J].Review o f P ro gr ess in Q uantitativ e

N ondestr uctive Evaluation,2002,21:157-164.

62

2006年第28卷第2期

[33] A risteg ui Christ ophe,Caw ley P,Lo we M.Reflect

tion and mo de conversion o f g uided wav es at bends in

pipes[J].Rev iew of Pr og ress in Q uantitativ e N onde

st ruct ive Evaluat ion,2000,12:209-216.

[34] Alley ne DN,Caw ley P.T he interactio n of Lamb

w ave w ith defects[J].I EEE T ransaction on U ltra

sonics,F err oelectr ics and F requency Co nt rol,1992,

39:381-397.

[35] L o we M JS,A lleyne DN,Caw ley P.D efect detection

in pipes using g uided w aves[J].U ltraso nics,1998,

36:147-154.

[36] Rose JL,W enhao Z,Cho Y.Boundar y element mod

eling fo r g uided w ave reflect ion and t ransmission fac

to r analyses in defect classificatio n[A].1998I EEE

U ltr asonics Sy mpo sium[C].Sendai,Japan:1998.885

-888.

[37] Chang Z,M al A.Scattering of lamb w aves fr om a

riv et ho le w ith edg e cracks[J].M echanics of M ateri

als,1999,31:197-204.

[38] K ar im M R,A wal M A,K undu T.Elastic w ave scat

ter ing by cracks and inclusions in plates:in plane case

[J].International Journal of Solids and Structures,

1999,(29):2355-2367.

[39] Cho Y,R ose JL.A bo undary element so lutio n for a

mo de co nv ersion st udy on the edg e r eflectio n[J].T he

Jo ur nal o f the A co ustical Society of A merica,1999,

(26):2097-2109.

[40] Zhao Xiao liang,R ose JL.Boundar y element mo deling

for defect character izat ion potential in a w ave g uide

[J].International Journal of Solids and Structures,

2003,40:2645-2658.

[41] Zhao X,R ose JL.T hr ee dimensional boundar y ele

ment mo deling for g uided w aves scatter ing fro m a de

fect[J].Rev iew o f Q uant itativ e N ondest ruct ive Eval

uatio n,2004,23:134-141.

[42] W ang L ug en,Shen Jianzhong.Scatter ing of elastic

w aves by a crack in an isot ropic plate[J].U ltr aso n

ics,1997,35(6):451-457.[43] 他得安,黄瑞菊,刘镇清.数值分析方法在超声无损检

测中的应用[J].声学技术,2001,23(11):485-488. [44] L entenegg er T obias,Dual Jurg.Detection of defects

in cylindr ical structures using a time r everse method

and a finite difference approach[J].U ltrasonics,

2002,40:721-725.

[45] H ayashi T akahir o,K aw ashima Ko ichiro,Sun

Zong qi,et al.A nalysis of flex ur al mode fo cusing by a

semianalyt ical finite element method[J].J Acoust So c

A m,2003,113(3):1241-1247.

[46] M ukdadi OM,Datta SK.T ransient ultrasonic g uided

wav es in bi la yered anisot ropic plates w ith r ectang ular

cro ss section[J].Rev iew of Pr og ress in Q uantitativ e

N ondestr uctiv e Ev aluatio n,2004,(23):238-245. [47] Alley ne DN,Caw ley P.A2 dimensional transform

metho d for t he quantitat ive measurement of L amb

mo des[A].U ltr aso nics Symposium[C].Ho no lulu,

H aw aii,U SA:1990:1143-1146.

[48] Shin H ycon Jae,So ng Sung Jin.T ime lo calizatio n

frequency analysis of ultr asonic g uided w aves for non

destructiv e testing[J].Review of Pr og ress in Q uant i

tative N o ndest ruct ive Evaluat ion,2000,(18):709. [49] Chr istine V alle,Jerr ol W,L it tles Jr.Flaw lo ca liza

t ion using the reassigned spectro gr am on laser g ener

at ed and detected Lamb modes[J].U ltrasonics,

2002,39:535-542.

[50] W ilco x Paul D.A r apid sig nal pro cessing technique to

r emove the effect of disper sion from g uided wav e sig

nals[J].IEEE T ransactions on U ltr aso nics,F err oe

lectr ics and Fr equency Co ntr ol,2003,50(4):419. [51] L eymar ie N icolas,Baste Stephane.Guided w aves and

ultr asonic char act erizatio n o f three dimensio nal com

po sites[J].R ev iew of Pr og ress in Q uant itativ e N on

destr uctiv e Ev aluatio n,2000,(28):1175-1181. [52] Zhao X,K wan C,Xu R,et al.N ondestr uctive in

spectio n of metal matr ix composites using guided

wav es[J].R ev iew of P rog ress in Q uantitat ive No nde

st ruct ive Evaluat ion,2004,23:914-921.

中国机械工程学会无损检测分会

迁 址 通 告

中国机械工程学会无损检测分会秘书处于2006年3月1日迁址于上海市邯郸路99号722室(上海材料研究所内)。邮编:200437;电话:021 ********,021 ********转483分机;传真:021 ********;E mail:chsndt@https://www.360docs.net/doc/119518016.html,; chsndt2008@163.co m。

63

2006年第28卷第2期

超声导波检测技术原理

超声导波检测技术 超声导波(Ultrasonic Guided Wave)检测技术利用低频扭曲波(Torsinal Wave)或纵波(Longitudinal Wave)可对管路、管道进行长距离检测,包括对于地下埋管不开挖状态下的长距离检测。 超声导波(也称为制导波)的产生机理与薄板中的兰姆波激励机理相类似,也是由于在空间有限的介质内多次往复反射并进一步产生复杂的叠加干涉以及几何弥散形成的。但是对于管道检测,在一般管壁厚度下要产生适当的波型,则需要使用比通常超声波探伤低得多的频率,导波通常使用的频率f<100KHz,因此导波对单个缺陷的检出灵敏度与通常使用频率在MHz级别的超声检测相比是比较低的,但是导波检测的优点是能传播20~30米长距离而衰减很小,因此可在一个位置固定脉冲回波阵列就可做大范围的检测,特别适合于检测在役管道的内外壁腐蚀以及焊缝的危险性缺陷。低频导波长距离超声检测法用于管道在役状态的快速检测,内外壁腐蚀可一次探测到,也能检出管子断面的平面状缺陷。 超声导波应用的主要波型包括-扭曲波(Torsinal Wave,也简称为扭波)和纵波(Longitudinal Wave)。 扭曲波的特点是能够一边沿管子周向振动,一边沿管子轴 向传播,声能受管道内部液体影响较小(在导波检测时, 液体在管道中流动是允许的),回波信号能包含管轴方向 的缺陷信息,通常能得到清晰的回波信号,信号识别较容 易,在应用中需要换能器数量少,重量轻、费用省、因管 内液体介质而产生的扩散效应较小,波型转换较少,检测 距离较长,对轴向缺陷灵敏度高。 纵波特点是一边沿管子轴向振动,一边沿管子轴向传播, 回波幅度与缺陷性状关系不大,回波信号不如扭波清晰, 因为受管内流体流动的影响,也受探头接触面的表面状态 影响较大(油漆、凹凸等)受被测管内液体介质流动的影 响很大。 超声导波检测装置主要由固定在管子上的探伤套环(探头矩阵)、检测装置本体(低频超声探伤仪)和用于控制和数据采样的计算机三部分组成。 探头套环由一组并列的等间隔的环能器阵列组成,组成阵列的换能器数量取决于管径大小和使用波型,换能器阵列绕管子周向布置。 探伤套环的结构按管道尺寸采用不同节环-可以是一分为二,用螺丝固定以便于装拆(多用于直径较小的管道),或者充气式环(柔性探头套环),靠空气压力紧套在管子上(多用于直径较大的管道)。接触探头套环的管子表面需要进行清理但无须耦合剂,亦即除安放探头环的位置外,无需在清除和复原大面积包覆层或涂层上花费功夫,这也是超声导波检测的优点之一。超声导波探头套环上的探

超声导波检测技术的研究进展_周正干

综 述 NDT 无损检测 2006年第28卷第2期 超声导波检测技术的研究进展 周正干,冯海伟 (北京航空航天大学机械工程及自动化学院,北京 100083) 摘 要:综述近年来超声导波检测研究的最新进展。介绍导波在不同材料和结构中的频散特性及与之相关的理论成果。从导波的结构出发,分析了导波在介质中能量与位移的分布。论述了导波检测技术领域中数值分析方法和信号处理方面的一些新技术。 关键词:超声检测;导波;频散特性;有限元;边界元;信号处理 中图分类号:T G 115.28 文献标识码:A 文章编号:1000 6656(2006)02 0057 07Progress in Research of Ultrasonic Guided Wave Testing Technique ZHOU Zheng gan,FENG Hai wei (School of M echanical Engineering and Automation,Beijing University of Aeronautics and Astr onautics,Beijing 100083,China) Abstract:T he recent advances in ult rasonic g uided w ave testing technique are summar ized.Firstly,the disper se char acter istics and the r elated t heo retical r esults of the g uided wav es in differ ent mater ials and distinct structur es ar e intro duced.T hen,based o n the structure o f the g uided waves,the distr ibution o f the energ y and displacement o f guided w aves is ana lyzed.L ast ly ,some new techniques o f numer ical analy sis and signal pro cessing fo r g uided wav e no ndest ructive testing are descr ibed. Keywords:U ltr aso nic t esting ;G uided wav e;Disperse characterist ic;F inite element;Boundary element;Signal pr ocessing 相对于传统的超声波检测技术,超声导波具有传播距离远、速度快的特点,因此,在大型构件(如在役管道)和复合材料板壳的无损检测中有良好的应用前景。但目前,导波的一些机理和特性仍然不很清楚,导波的理论研究成为近年来无损检测界的热点。随着理论研究的深入,产生了很多有关导波的 新技术,促使其应用于更广泛的领域。 1 导波的分类 导波是由于声波在介质中的不连续交界面间产生多次往复反射,并进一步产生复杂的干涉和几何弥散而形成的。主要分为圆柱体中的导波以及板中的SH 波、SV 波、兰姆波(Lam b)和漏兰姆波[1]等。 根据Silk 和Bainto n 的理论[2] ,圆柱体中的导波分为 轴对称纵向模式L(0,m)(m =1,2,3, 收稿日期:2005 01 13 基金项目:国家自然科学基金资助项目(50475006) )。 轴对称扭转模式T (0,m )(m =1,2,3, )。 非轴对称弯曲模式F(n,m )(n,m =1,2,3, )。各模式中整数m 是计数变量,反映该模式在管壁厚方向上的振动形态;整数n 反映该模式绕管壁螺旋式传播形态。其中,L(0,m )和T (0,m )模式是F(n,m )模式中n =0的特例。 虽然上述定义已被广泛接受,但是针对某些具体问题,研究人员也提出了不同的导波分类方法,以利于分析在具体问题中表现出来相似特征的导波模式。如Vo gt T 等[3] 在研究部分埋地圆柱体结构中的导波散射问题时提出了单一(v ,n)模式,其中v 1对应原弯曲模式;v =0对应原纵波和扭转模式。两种模式用计数变量n 区别。两种定义方式的模式,(0,1)对应L(0,1),(0,2)对应T(0,1),(0,3)对应L(0,2),(0,4)对应T (0,2)等。 2 频散特性与频散方程 频散是导波的主要特性之一,即导波的相速度 57

超声导波检测技术的发展与应用

2008大庆石化情报课题 超声导波检测技术的发展与应用 王学增侯贵富刘华王辉 李媛媛李健奇 大庆石化工程检测技术公司 2008年12月8日

超声导波检测技术的发展与应用 相对于传统的超声波检测技术,超声导波具有传播距离远、速度快的特点,因此在大型构件(如在役管道)和复合材料板壳的无损检测中有良好的应用前景。 一、超声导波技术的原理 1.1超声导波的产生 机械振动在弹性介质中的传播称为弹性波(声波)。将弹性介质定义为波导,在波导中传播的超声波称为超声导波。超声波的本质是机械振动,在扰动源的激发下产生,并通过介质传播,因而它既携带扰动源的信息,同时又包含介质本身的特征。 导波是由于声波在介质中的不连续交界面间产生多次往复反射,并进一步产生复杂的干涉和几何弥散而形成的。 导致超声波弥散的原因有物理弥散和几何弥散。物理弥散是由于介质的特性而引起的,而几何弥散是由于介质的几何效应引起。超声导波技术则是利用传播介质几何上某些特征尺寸而导致的几何工件往往有很多声学性质不连续的交界面存在。当介质中有一个以上的交界面存在时,超声波就会在这些界面间产生多次往复反射,并进一步产生复杂的干涉作用,由于受到这些界面几何尺寸的影响,超声波的传播速度将依赖于波的频率,从而导致波的几何弥散。由于超声波在交界面上的复杂行为,如果工件的交界面复杂无规则,则导波信号很难识别,所以导波技术一般用于特殊的规则的工件(板、管、棒等)检测。无缝管中的超声导波技术则是利用管子的几何效应,在管子中

激发导波。导波可沿轴向传播数米至数十米,因此利用管壁中沿管子轴向传播的导波可对管子进行长距离快速无损检测。 1.2 导波的频散特性和谐振模式 1.2.1导波的频散特性 当把被测物件视为无限均匀弹性介质时,各种类型的反射波、透射波以及界面等以恒定的速度传播,传播速度只与传播介质本身材质有关。而当超声波倾斜入射到各向同性的管子边界上,波源处的机械振动在管子中传播时,由于管子自由表面的反射,波运动变为轴向运动和径向运动的合成,使得超声波被拘束在管状的边界内而形成导波。 频散是导波的特征之一,即超声波的相速度随频率不同而有所变化。频散特性是导波应用于复合材料无损检测的主要依据。由于导波脉冲由多个不同频率的谐波成分叠加而成,介质质点振动是各个波作用下振动的合成,质点振动最大振幅的传播速度(群速度)不同于各单个波的传播速度(相速度),导波能量以群速度向前传播,相速度则随频率的不同而有所改变。 导波在介质中的传播特性与介质特性有很大的关系。目前的研究已不仅仅局限于导波在各向同性弹性介质中的传播特性,还涉及到各项异性和具有黏弹性的材料。 导波相速度不仅取决于探头频率,还与管材的特性(包括材质的声学性质和规格尺寸)有关,即使是同类材料的管子,如果其壁厚和直径不同,其频散曲线也不同。这给导波技术的实际检测应用带来了

超声波检测技术及应用

超声波检测技术及应用 刘赣 (青岛滨海学院,山东省青岛市经济开发区266000) 摘要:无损检测(nondestructive test)简称NDT。无损检测就是不破坏和不损伤受检物体,对它的性能、质量、有无内部缺陷进行检测的一种技术。本文主要讲的是超声波检测(UT)的工作原理以及在现在工业中的应用和发展。 关键词:超声波检测;纵波;工业应用;无损检测 1.超声波检测介绍 1.1超声波的发展史 声学作为物理学的一个分支, 是研究声波的发生、传播、接收和效应的一门科学。在1940 年以前只有单晶压电材料, 使得超声波未能得到广泛应用。20 世纪70 年代, 人们又研制出了PLZT 透明压电陶瓷, 压电材料的发展大大地促进了超声波领域的发展。声波的全部频率为10- 4Hz~1014Hz, 通常把频率为2×104Hz~2×109Hz 的声波称为超声波。超声波作为声波的一部分, 遵循声波传播的基本定律, 1.2超声波的性质 1)超声波在液体介质中传播时,达到一定程度的声功率就可在液体中的物体界面上产生强烈的冲击(基于“空化现象”)。从而引出了“功率超声应用技术“例如“超声波清洗”、“超声波钻孔”、“超声波去毛刺”(统称“超声波加工”)等。2)超声波具有良好的指向性 3)超声波只能在弹性介质中传播,不能再真空中传播。一般检测中通常把空气介质作为真空处理,所以认为超声波也不能通过空气进行传播。 4)超声波可以在异质界面透射、反射、折射和波型转化。 5)超声波具有可穿透物质和在物质中衰减的特性。 6)利用强功率超声波的振动作用,还可用于例如塑料等材料的“超声波焊接”。 1.2超声波的产生与接收 超声波的产生和接收是利用超声波探头中压电晶体片的压电效应来说实现的。由超声波探伤仪产生的电振荡,以高频电压形式加载于探头中压电晶体片的两面电极上时,由于逆压电效应的结果,压电晶体片会在厚度方向上产生持续的伸缩变形,形成了机械振动。弱压电晶体片与焊件表面有良好的耦合时,机械振动就以超声波形式传播进入被检工件,这就是超声波的产生。反之,当压电晶体片收到超声波作用而发生伸缩变形时,正压电效应的结果会使压电晶体片两面产生不同极性的电荷,形成超声频率的高频电压,以回波电信号的形势经探伤仪显示,这就是超声波的接收。 1.3超声波无损检测的原理 超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种

超声波技术在医疗上的应用

超声波技术及其应用报告超声波技术在医疗上的应用 硕士研究生: 学号: 学科: 报告日期:

超声波技术及其应用报告 摘要 频率高于可听声频范围(20KHZ以上)的机械波,称为超声波(ultrasonic),简称超声。它方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。本文主要介绍超声波技术在医疗上的应用。主要由超声波在医疗检测上的应用和超声波在治疗上的应用两部分组成。主要内容包括B超,彩超,超声全息影像技术,超声波手术刀,超声波碎石技术。文章论述了这些超声波技术的基本原理,相比于传统技术的优缺点,存在的局限和发展前景,以及超声波技术要突破的一些技术瓶颈和将来的发展方向。由于篇幅及理论基础有限,本文避免了难以理解的公式推导和证明,只是定性地,原理性地介绍了超声波在医疗上应用的这些技术。 关键词:超声检测;手术刀;超声全息影像技术;超声碎石;超声理疗 - -I

超声波技术及其应用报告 - - II 目录 摘 要 ....................................................................................................................... I 1.1 技术应用的领域 (3) 1.2 技术应用特点及原理 (3) 1.3 国内外情况分析 (6) 1.3.1 国外情况 (7) 1.3.2 国内情况 (7) 1.4 系统组成 (7) 结论 (10) 参考文献 (11)

管道超声导波检测技术

管道超声导波检测技术 发表时间:2018-08-14T11:41:10.603Z 来源:《防护工程》2018年第7期作者:张加恬[导读] 超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为国内外前沿的管道检测技术 浙江赛福特特种设备检测有限公司浙江杭州 310000 摘要:超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为国内外前沿的管道检测技术。超声导波技术作为新型的无损检测技术,因为其具有检测距离长、速度快、成本低并且可以检测到一般常规检测器无法检测的地方,例如有套管或者埋地管道等特殊管道。本文通过介绍管道超声导波检测技术的一些基础理论知识,提出这一检测技术的应用关键,对此,为以后人们能广泛应用管道超 声导波技术提出合理化的建议。 关键词:超声导波技术;管道;检测技术 在化工及其相关类工厂中大量压力管道被集中在管廊上,沿着装置或在厂区外布置。管廊上压力管道的距离长,离地距离高,而常规检测技术是单点检测,对于数量庞大的管道,其检测成本高,效率低。超声导波检测技术具有检测距离长,效率高且可以同时检测管道内外壁的优点。超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为重要的管道检测技术。 1 超声导波技术 1.1基本原理 导波原理好像平板中的板波,它发出的超声波频率比板波更低,它横穿整个管壁,并可以继续沿管壁传播上百米。当在传播过程中碰到缺陷、结构变化的地方,脉冲波会发生反射并沿管壁传播到传感器而被接收。这一特殊的工作原理决定了管道超声波可以应用于工业企业中大范围、远距离的检测中去,实现全覆盖管道壁。 1.2导波检测技术的应用范围、优缺点 应用于:管道、管状设备等。检测管道类型:无缝管、纵焊管等。优点:(1)一般常规超声波检测只能检测到管壁一个点的腐蚀情况,而管道导波检测技术可以利用一个检测点,从两个方向检测到几米甚至上百米管道腐蚀情况。(2)可以检测到常规检测技术无法检测到的地方,如埋地管道等特殊管道。(3)检测速度快、效率高、全方位覆盖,无漏检。(4)可敏感地感应到横截面检测面的金属损失,检测深度也达到管道横截面的4%。缺点:(1)超声导波不能对缺陷准确定性,定量也是不准确的,对可疑地方只能再根据其他检测方法进行进一步检测。(2)超声导波检测技术很难将单个点状缺陷和轴向条状缺陷检测出来。(3)焊接处的管道因为结构发生变化影响整个检测的长度和准确度。 2 弯管检测研究现状 导波在弯头部位容易发生频散和模态转换,并且导波能量将主要集中在弯头的背弯部位。因此导波检测弯头时,容易发现处于弯头背弯部位的缺陷,而可能漏检内弯的缺陷。在弯头生产时,弯头背弯处壁厚将小于内弯壁厚,且背弯处受到管道中介质冲刷的影响,更容易产生缺陷。因此采用超声导波检测弯头部位缺陷是可行的,但其难点在于信号分析。国内外对于弯管的研究还较少。 2.1国内研究概况 目前大多数从事导波检测的科研人员主要针对的是直管道的缺陷检测展开的研究,然而管道系统里的直管道绝大部分是 90°弯曲管道连接起来的,研究导波在弯曲管道中的传播在近年来变成一个热门的话题。学者已经对导波在弯曲处的传播特性进行了研究,并对弯管中缺陷的进行了检测,模态具有检测弯曲管道外侧区域的能力。也有学者通过改变90度弯头的曲率半径进行试验,模态在不同的曲率半径下,穿过90度弯头的能力(即透射系数)。 2.2导波检测仪器对比 超声导波的激励方式主要有压电晶片和磁致伸缩,相比于压电晶片式导波仪器,磁致伸缩激励方式易于实现非耦合状态下检测,且易于激励扭转模态导波。其中磁致伸缩导波检测是通过磁致伸缩效应和逆磁致伸缩效应激发和接收超声导波信号。铁磁体在外磁场作用下会引起磁畴的变化,而磁畴的变化也引起晶格的变形,从而产生振动激发应力波。反之,在磁场的作用下,铁磁体中晶格的变化会改变磁畴,从而影响外磁场的变化。磁磁致伸缩仪器的功放研制是关键点和难点。压电晶片激励超声导波的研究难点和热点在于晶片的研制。采用压电方式激励导波时难以激励纯正的扭转模态,但是很容易激励纵向模态导波,而磁致伸缩激励方式正好相反。在价格方面,压电晶片导波检测仪器比磁致伸缩导波仪器更昂贵。 3 超声导波检测方法 经过这么多年的发展,超声导波检测技术在压力管道中进行检测的技术得到了国内外很多研究机构的关注与研究。因为在实际生产作业中非常需要利用先进的检测技术对压力管道检测管道情况,所以超声导波技术逐渐浮出水面,成为管道检测的一大技术。 3.1单一模式导波检测 一般来说,激励源产生的波是处于其所在频域范围内所有的模式,是很复杂的,几乎是没办法直接利用这种信号直接进行分析的。但是如果利用一些特定的激励形式把复杂的信号转化成具有单一模式的信号,这样将大大减少工作强度。当前在国外研究领域,超声导波检测经常使用的单一模式导波是 L的模式。采用L模式的导波的优点在于:(1)在某个固定的频率带宽内,这种模式下的信号基本都是非频散的,意思就是导波的群速度和相速度都不会随着频率的变化而发生巨大变化,所以这样当导波进行传播时是相对稳定的,几乎不发生变形;(2)这种模式下的导波的传播速度是最快的,这样会使其他杂乱的、不需要利用的信号处在后面;(3)这种方法对内表面和外表面的灵敏度都很高,因此这种模式的导波不但可以检测内外表面的损伤,还可以沿径向方向进行检测。 3.2模态声发射技术 声发射技术是近五十年才发展起来的,但是因为其有很大的优势所以发展很迅速。这种技术是利用其在发生作用的时候可以快速释放能量对管带物体进行检测的,它的优势在于能够形成动态检测,而且覆盖面广。 3.3多模式导波检测

超声导波技术-3优势和局限性

2.2超声导波检测技术 2.2.1超声导波检测技术的工作原理 超声波检测技术利用探头发射超声导波(低频扭曲波或纵波),通过管道内外壁反射波的时间差来判定壁厚和腐烛情况[30],可用于各种管道进的缺陷检测,包括对于地下埋管不开挖状态下管道的长距离检测等。导波检测技术是一种新兴的无损检测技术,现正随着它发展势头的迅猛,应用越来越广泛。 超声导波检测的工作原理:探头受到激励信号发射超声导波,导波信号包裹管道的整个圆周和整个壁厚,并沿着管道向远处传播;在传播过程中遇到缺陷时,会在缺陷处返回一定比例的反射波,利用探头传感器接收到的内外壁反射波的时间差来识别和判断缺陷,并对其定位。对于有缺陷的的管道,缺陷处的壁厚必定有所变化,利用内壁或外壁产生反射信号,被传感器接收的返回信号-反射波就会产生时间差,根据缺陷产生的附加波型进行处理可以识别的回波信号,因此可以检测出管道内外壁由腐蚀或侵蚀引起的缺陷。 2.2.2超声导波检测技术的优势 导波检测具有直接和定量化的特点,数据损失也可由相关的仪器和软件获得,因此有较高的灵敏度[30],相对其他检测方法优势明显。 导波检测技术的主要优势: 1) 操作使用较方便,检测点只要选取得当,长距离检测的距离就大大增加; 2) 检测迅速,在管道360度安装好探头后打开导波检测仪,几分钟即可对管道的正负方向完成检测; 3) 检测能力强,对管道结构特征和缺陷特征分辨能力强[31]; 4) 能够检测某些人员无法到达的区域,如海平面以下管道、埋地管道等[31]; 5) 灵敏度高,截面损失率超过2%的缺陷都可以被检测出来[31]; 6)—次安装后,进行预处理的检测点可以保留便于以后的定期复查,如果是重要管段,可安放导波检测仪器全天候监测; 7)不容受到外界因素影响,如温度、压力和内部流动介质等[31]。 2.2.3超声导波检测技术的局限性 超声导波检测虽然相对于传统常规的检测方法有很明显的优势,但一项技术

超声技术在医疗方面的应用

超声技术在医疗方面的应用 超声技术在医疗方面的独特疗效已得到医学界的普遍认可,并越来越被临床重视和采用。国内外医学专家利用超声技术在治疗肢体软组织损伤、肢体慢性疼痛康复、肢体运动康复方面积取得了非常好的疗效,并把超声治疗拓展到中医科、骨科、外科、内科、儿科、肿瘤科、男科、妇产科等,在临床得以广泛应用,取得了满意的治疗效果。 机械 超声振动可引起组织细胞内物质运动,由于超声的细微按摩,使细胞浆流动、细胞震荡、旋转、摩擦、从而产生细胞按摩的作用,也称为“内按摩”这是超声波治疗所独有的特性,可以改变细胞膜的通透性,刺激细胞半透膜的弥散过程,促进新陈代谢、加速血液和淋巴循环、改善细胞缺血缺氧状态,改善组织营养、改变蛋白合成率、提高再生机能等。 温热 人体组织对超声能量有比较大的吸收能力,因此当超声波在人体组织中传播过程中,其能量不断地被组织吸收而变成热量,其结果是组织的自身温度升高。即内生热。超声温热效应可增加血液循环,加速代谢,改善局部组织营养,增强酶活力。一般情况下,超声波的热作用以骨和结缔组织为显著,脂肪与血液为最少。 理化 超声的机械效应和温热效应均可促发若干物理化学变化。 a.弥散作用:超声波可以提高生物膜的通透性,对钾,钙离子的通透性发生较强的改变。从而增强生物膜弥散过程,促进物质交换,改善组织营养。 b.触变作用:超声作用下,可使凝胶转化为溶胶状态。对肌肉,肌腱的软化作用,以及对一些与组织缺水有关的病理改变。如类风湿性关节炎病变和关节、肌腱、韧带的退行性病变的治疗。 c.空化作用:空化形成,或保持稳定的单向振动,或继发膨胀以致崩溃,细胞功能改变,细胞内钙水平增高。成纤维细胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,胶原张力增加。 d.聚合作用与解聚作用:水分子聚合是将多个相同或相似的分子合成一个较大的分子过程。大分子解聚,是将大分子的化学物变成小分子的过程。可使关节内增加水解酶和原酶活性增加。 e.消炎,修复细胞和分子:超声作用下,可使组织PH值向碱性方面发展。缓解炎症所伴有的局部酸中毒。超声可影响血流量,产生致炎症作用,抑制并起到抗炎作用。使白细胞移动,促进血管生成。从而达到对受损细胞组织进行清理、激活、修复的过程。 临床应用编辑 软组织损伤及慢性疼痛 广泛用于软组织损伤及慢性疼痛的治疗。超声波的穿透力强,可轻易深入到体内10-15cm。提高治疗部位细胞膜的通透性、改善血液循环、促使细胞修复过程的发生和发展;同时,人体神经和体液系统对超声能的作用具有较强的敏感性,其形成的神经反射和体液反应,具有综合调节人体的机制,特别是对陈旧性损伤有特效,超声在传播时,超声能量的方向集中,具有独特的高能量特性。主要适应症:急、慢性软组织损伤、软组织慢性疼痛、颈椎病、腰椎间盘突出症、慢性腰肌劳损、风湿类关节炎、类风湿性关节炎、慢性血肿、慢性膝盖筋腱疼痛等 肢体康复

先进的超声导波无损检测技外文文献翻译、中英文翻译、外文翻译

先进的超声导波无损检测技术 炼油石化工业和其它工业所用的管道在长时间服役后,腐蚀是一个经常被人们关心的问题,尤其是管外(即使是加装了防腐层后管外壁)的腐蚀问题,一旦失效,将给生产和人身带来严重的损害。因此,管道安全运行,首先要适时检测其管壁强度,被腐蚀或有裂纹﹑渗漏等要有预警。 管外防腐层的剥除费用高,不但费时、费工,而且当遇有公路交叉时,管道只有进行大规模挖掘才能进行腐蚀检测。这就引出了具有世界先进水平的较理想的“超声导波技术”,现已由国内开发研究成功。对管壁的这种超声导波检测为上述问题提供了一个非常好的解决方法。在一处安装后,可以沿管道传播若干米,反射的回波便可显示管道的腐蚀或其它特征。 超声导波检测技术利用低频扭曲波或纵波可对管路、管道进行长距离检测,包括对于地下埋管不开挖状态下的长距离检测。超声导波(也称为制导波)的产生机理与薄板中的兰姆波激励机理相类似,也是由于在空间有限的介质内多次往复反射并进一步产生复杂的叠加干涉以及几何弥散形成的。但是对于管道检测,在一般管壁厚度下要产生适当的波型,则需要使用比通常超声波探伤低得多的频率,导波通常使用的频率f<100KHz,因此导波对单个缺陷的检出灵敏度与通常使用频率在MHz级别的超声检测相比是比较低的,但是导波检测的优点是能传播20~30米长距离而衰减很小,因此可在一个位置固定脉冲回波阵列就可做大范围的检测,特别适合于检测在役管道的内外壁腐蚀以及焊缝的危险性缺陷。低频导波长距离超声检测法用于管道在役状态的快速检测,内外壁腐蚀可一次探测到,也能检出管子断面的平面状缺陷。 超声导波应用的主要波型包括-扭曲波(也简称为扭波)和纵波。扭曲波的特点是能够一边沿管子周向振动,一边沿管子轴向传播,声能受管道内部液体影响较小(在导波检测时,液体在管道中流动是允许的),回波信号能包含管轴方向的缺陷信息,通常能得到清晰的回波信号,信号识别较容易,在应用中需要换能器数量少,重量轻、费用省、因管内液体介质而产生的扩散效应较小,波型转换较少,检测距离较长,对轴向缺陷灵敏度高。

超声导波简介

超声导波技术 超声导波(Ultrasonic Guided Wave)检测技术(又称长距离超声遥探法)主要用于在线管道检测,包括低碳钢、奥氏体不锈钢、二重不锈钢等材料的无缝管、纵焊管、螺旋焊管。可应用于油气管网(如天燃气管道、炼油厂火焰加热器中的垂直管路、带岩棉保温介质和漆层的架空液化气管道)及石油化工厂中的管网(如无保温层的输送CO与H合成类的淤浆管道、石油化工厂的交叉管路),码头管线、管区的连接管网,海上石油管网/导管,水下管道、电厂管网,结构管系,穿路/过堤管道、复杂或抬高管网,保温层下管道(例如带有保温层的氨水管道)、带有套管的管道,以及带有保护层的管道。超声导波检测技术能检出管道内外部腐蚀或冲蚀、环向裂纹、焊缝错边、焊接缺陷、疲劳裂纹等缺陷。最新的利用磁致伸缩换能器的超声导波检测已能应用于非铁磁性材料和非金属材料,除了管道检测还能用于棒材、钢索、电缆以及板盘件的检测。 超声导波检测的优点是能传播长距离而衰减很小,在一个位置固定脉冲回波列阵就可一次性对管壁进行长距离大范围的100%快速检测(100%覆盖管道壁厚),检测过程简单,不需要耦合剂,工作温度可达到零下40摄氏度到938摄氏度的高温范围,只需要剥离一小块防腐层以放置探头环即可进行检测,特别是对于地下埋管不开挖状态下的长距离检测更具有独特的优势。 下图示出管道腐蚀的常规检测与长距离超声导波检测的方法原理示意图。常规差评声波检测是在经过表面清理的管道外面逐点扫查或抽检进行超声测厚,而超声导波检测是以探头环位置发射低频导波沿管线向远处传播,甚至在保温层下面传播,一次就能在一定范围内100%覆盖长距离的管壁进行测量,反射回波经探头被仪器接收,并以此评价管道的腐蚀状况,架设在一个探头位置的探头列阵可向两侧长距离的发射导波和接收回波信号,从而可对探头套环两侧的长距离管壁作100%的检测,从而达到更长的检测距离,目前已经能用应用于直径1.5~80英寸的管道现场检测,理想状态下可以沿管壁单方向传播最长达200米。 图1 常规超声波检测与长距离超声导波检测 超声导波检测时,若管道内存在特大面积腐蚀或严重腐蚀会造成信号衰减而影响一测检测的有效距离,如果存在多重缺陷时还会产生叠加效应;超声导波检测技术采用的是低频超声波,无法发现总横截面损失量没有超过检测灵敏度的细小裂纹、纵向缺陷、小而孤立的腐蚀坑或腐蚀穿孔;超声导波检测需要通过实验选择最佳频率,需要采用模拟管壁减薄的对比试验管;检测中通常使用法兰、焊缝回波作基准,受焊缝余高不均匀而影响评价的准确程度;超声导波的有效检测距离除了与导波的频率、模式有关外,还与例如埋地管的沥青防腐绝缘层、埋地深度、周围土壤的压紧程度及土壤特性,或管道保温层及管道本身的腐蚀情况与程度等相关;超声导波一次检测距离段不宜有过多弯头(一般不宜超过2~3个弯头,且适合曲率半径大于管道直径3倍的弯头);对于有多种形貌特征的管段,例如在简短的区段内有多个T字头,就不可能进行可靠的检验;超声波的最小可检缺陷、检测范围随管子状态而异;超声导波监测数据的解释需要有训练有素、

超声导波在铁轨故障检测方面的应

超声导波在铁轨故障检测方面的应用 ?摘要: 作者提供了他们在实际运行和测试用铁路上进行的实验结果。给出的实验结果频率稳定在40 到80kHz 这个超声导波的范围内。作者也给出了包括铁轨和一系列波长漂移的离散方程式解的理论结果。不接触气介式电磁声传感器(EMATS被作为铁路发出的声音能量的接收器。提出了应用气介式传感器来测绘铁轨辐射图像的实验结果。讨论了应用EMATs切割铁轨用以模拟铁轨故障横截面的技术。本文结尾总结了作者从他们的工作 中所得出的结论。 1、简介: 本论文旨于激发对超声导波可能在完善检测铁轨故障方面提供有效帮助的可能性的讨论。本文不在任何角度上提供或评测铁轨检测的方法,而是出于认识到世界铁路网的正常运行是基于铁轨结构的完整性。铁轨结构的完整性综合了使用年限、压力疲劳程度、制造缺陷、腐蚀等一系列因素。这些因素一直伴随着我们,也随着时间的累积变得更为显著。在某个时间点上,之前提到的平时不被注意的因素中,有些将会使部分铁轨路段成为不可预测的危险的‘定时炸弹' 。 虽然铁轨检测是常规性的进行,但不代表他们能满足铁路运营者所需的可信性和经济性。理论上我们将现如今应用的方法成为‘超声波体波'方法。这种方法的缺陷与他们有限的覆盖率、超声波稀薄化的特点等一系列因素相关。对于被覆盖遮挡的表面故障,现如今的方法将完全不起作用。而超声导波不同之处在于,它可以在铁轨中传播极远距离,可达2130 米,同时可穿透铁轨的整个体积。 在本文中,我们将讨论基于在实际运行和测试用铁路上进行的导波实验的发现。所用 设施包括了交通科技中心(TTQ、Pueblo公司、Bay Area Rapid Tran sit (BART公司测试轨道,Hayward 公司和Nittany and Bald Eagle Railroad (N and BE RR)(一段实际运行的短线铁路)。 我们希望我们的讨论可以激发更多对超声导波可能在完善检测铁轨故障方面提供有效帮助的可能性的讨论。

电磁超声波快速检测技术及应用

电磁超声波快速检测技术及应用 【摘要】本文主要对电磁超声波检测技术特点、电磁超声技术原理、电磁超声技术原理、电磁超声波探伤装置和可使用的波型进行了论述。 【关键词】电磁超声波;检测技术;特点;原理 1、前言 常规的压电式超声波无损检测技术已经广泛应用于各个领域。由于它是一种接触性检测技术,要求受检工件表面具有较高的光洁度(一般要求粗糙度 Ra12.5―Ra6.3μm之间)。探头和工件之间要加耦合器剂,并对探头施加一定的压力。以上特点造成检测成本高、工作量大、劳动强度高、时间长,难于实现大围、普查性质的检查,只能是一种点或区域性质的抽查方法。因此发展一种克服常规超声检测技术不足之处的检测技术具有实际意义。电磁超声检测技术,是一种依靠电磁感应和电磁致伸缩原理在工件中产生和接收超声波的方法,因此电磁超声探头不需要接触工件,也可在工件中产生超声波。电磁超声检测技术是一种非接触性检测技术,它不要求对工件表面进行处理。是一种快速、方便、有效的检测技术,可容易

的实现大围、普查性质的检查,检测成本低、劳动强度小。电磁超声检测技术早已被人们研究掌握,由于当时的科学技术发展水平限制了它的发展和应用。80年代以来,随着科学技术的不断发展,电磁超声检测水平得到了极大的发展和提高,可以实际应用于许多种类工件的缺陷检测。近几年,电磁超声检测技术已成功应用于火力发电厂水冷壁管的壁厚测量和缺陷检测,以及电站高、低压加热器钢管和凝汽器管的缺陷检测,电磁超声检测技术的优势,将使其愈来愈多的应用于热力设备的检测当中。 2、电磁超声技术原理 在铁磁性金属材料当中,电磁超声波的激发机制有三种:一是罗仑兹力;二是磁致伸缩力;三是电磁力。第三种电磁力机制产生超声波的作用可以不考虑。 3、电磁超声波探伤装置和可使用的波型 电磁超声波探伤装置主要由电磁超声换能器和探伤仪两部分组成。探伤仪主要由高频脉冲源?D?D用于对探头的发射/接收线圈激磁;直流电源?D?D用于对探头的直流线圈激磁;显示器?D?D显示放大器传送来的工件中回波情况的信号;同步电路?D?D产生周期性的同步信号,使仪器各部分协调有序的工作。 电磁超声探伤仪的工作原理和组成结构与常规超

超声波在技术上的应用

超声波在技术上的应用 今天的物理学家和技术专家已经有方法可以创造振动频率比刚才说过的高得多的“听不见的声音”,超声波的振动频率可以高到每秒钟10亿次。 产生超声波的一种方法是利用石英片的一种性能,石英片是用一定的方法从石英晶体上切下来的,在压缩的情况下,它的表面会起电。 如果反过来,在这种石英片的表面上周期地使它带电,那末这表面就会在电荷的作用下,交替着一伸一缩,也就是起了振动:使我们得到超声波振动。使石英片带电,得用无线电技术里所用的电子管振荡器,振荡器的频率可以挑选同石英片“固有”振动周期相合的。 超声波虽然不能被我们听见,但是它们却能用别的极明显的方式来显示出它们的作用。例如,如果把振动着的石英片浸在油缸里,那末,在受到超声波作用的那一部分液体的表面上,就会激起高达10厘米的波峰,同时还有小油滴飞溅到40厘米高。把一根长1米的玻璃管的一头浸在这油缸里,并且用手抓住玻璃管的另一头,你的手就会感到非常烫,烫得你的皮肤上会留下伤痕。让这玻璃管的一端跟木料接触,会把木料烧穿一个洞,超声波的能量变成了热能。 现在各国的研究家都在仔细地研究着超声波。这种振动对于生物能够起强烈的作用:遇到它们,海草的纤维会裂开,动

物的细胞会破碎,血球会破坏,小鱼和蛙类会在一二分钟里面被杀死。 用超声波做实验的时候,动物的体温会提高,譬如老鼠的体温会提高到45摄氏度。以后超声波还一定会在医药方面起相当重要的作用;听不见的超声波会同看不见的紫外线一起,帮助医师治病。 特别有成就的是在冶金术方面,人们利用超声波来探察金属内部是不是均匀,有没有气泡、裂缝等缺点。利用超声波来“透视”金属的方法,就是把被检查的金属浸在油里,然后使它受到超声波的作用。这时候金属里不均匀的区域就会把超声波漫射开,投射出一种好像是“声音的阴影”来。结果,在那均匀的油面上就会出现金属的不均匀部分的轮廓,这轮廓非常明显,甚至可以照下相来用超声波可以“透视”厚到1米以上的金属,这是用爱克斯射线来透视所完全做不到的。超声波在这时候可以发现极小的。小到1毫米的不均匀的部分。毫无疑问,超声波是有非常远大的前途的。

基于超声导波的结构健康状态无损检测及在线监测

基于超声导波的结构健康状态无损检测及在线监测 2014-09-02 09:17:51 来源:eefocus 关键字:PCI-9846高速数字化仪超声波检测 应用领域: 基于超声导波的结构材料损伤快速无损检测及损伤在线监测应用。 挑战: 目前广泛应用的超声波检测技术大多基于超声体波,由于超声体波的传播特点,需要对结构进行逐点检测,因此存在检测效率低,成本高等缺点;同时逐点扫描的检测方式也限制了其在结构健康监测领域的应用。 超声导波是体波在结构界面反射叠加形成的沿结构界面传播的应力波。超声导波相对于体波具有衰减小,传播距离长的特点,可实现对形状规则的大结构件的快速无损检测;并且具有在线应用潜力,可作为结构健康在线监测的技术手段。 但是超声导波相对于体波更加复杂,主要表现为两方面:一方面为导波的多模态特性,即同一频率下同时存在有多种导波模态;另一方面为频散特性,即同一模态导波在不同频率下的传播速度不同。超声导波的复杂性对检测平台和检测方法提出了更高的要求。 解决方案: 超声导波检测方法为主动检测,包括信号的激发的和接收。针对导波的多模态的特性,拟采用单一模态导波作为检测信号,因此需要在检测平台从信号激发和接收两方面抑制其他模态。主要通过传感器尺寸,信号激发频率,优化匹配实现单一导波模态激发。 为了实现对被检对象的快速检测,根据雷达原理发展了适用于超声导波的相控阵列及信号处理算法,以此实现对材料损伤的快速成像检测。 1 应用背景 随着当前对大型设备结构安全性的日益关注,无损检测技术已成为现代结构设备制造和使用过程中必不可少的检测手段之一, 广泛应用于各个领域,如航空航天领域、电力生产领域、石化输运加工领域等。这些领域的设备结构通常处于较恶劣的工作条件,容易发生磨损、腐蚀、疲劳、蠕变等损伤,进而造成结构内部产生缺陷,危害结构安全性。因此对这些设备结构进行实时监测和诊断成为无损检测技术应用中的一个重要方面。 目前工业界常用的五大无损检测方式包括:渗透检测,磁粉检测,涡流检测,超声波检测,射线检测。在这五种检测方式中,超声波检测由于适用范围广(既可检测金属,也可检测非

管道超声导波检测专用探头的研制

第18卷 第4期2003年12月 实 验 力 学 JOU RNAL O F EXPER I M EN TAL M ECHAN I CS V o l.18 N o.4 D ec.2003   文章编号:100124888(2003)0420500206 管道超声导波检测专用探头的研制Ξ 何存富,于海群,吴斌 (北京工业大学机电学院,北京100022) 摘要:结合常规超声探头的研制技术,根据检测对象管道的特殊性,从敏感元件、背衬材料、保护层以及外型等各方面详细介绍了一种管道超声导波检测专用探头的研制过程;利用这种探头分别在板和管中进行了激励接收超声导波的实验,结果表明,这种探头能够激励接收超声导波. 关键词:管道检测;超声导波;探头;长度伸缩型压电陶瓷 中图分类号:O348 文献标识码:A 1 引言 目前比较常用的管道检测技术,如涡流、漏磁检测等,都有其本身无法克服的缺点,像检测速度慢、需要剥离管道外包层、不能在线检测等.而超声导波技术正是因为能够弥补这些不足而成为管道检测的一种新兴和前沿的发展方向.它具有传播距离远、检测范围大,检测效率高、不需要剥离外包层、可以进行在线检测等优点.目前国外对超声导波检测理论的研究比较深入,并且已经研制出专用探头和专用仪器以便对管道进行检测.如文献[1]和文献[2]都对超声导波的理论及其实际应用进行了比较深入的研究.但是正因为它是一个新的发展方向,管道超声导波检测技术还不是太完善,在国内目前还没有用于管道超声导波检测的专用探头及仪器.在实验室,比较常用的方法是用胶将压电陶瓷片直接粘贴在管道表面来激励和接收超声导波信号,这将导致压电陶瓷片得不到重复使用,不但造成了资源的浪费,而且对所接收到的信号产生影响,给信号的提取以及分析都造成了很大的不便.为了解决此问题,本文研制了一种专用探头,使其与管道之间采用干耦合来对管道进行检测.目前,用于管道超声导波检测的专用探头已基本研制成功,并在实验室中进行了用于管道检测的初步实验,取得了比较理想的结果.实验结果表明所研制的探头可以代替粘贴在管道表面的压电陶瓷片用于在管道中激励和 Ξ收稿日期:2002207208;修订日期:2003205219 基金项目:国家自然科学基金、北京市自然科学基金重点项目、教育部骨干教师资助计划、北京市教委科技合同项目资助项目 作者简介:何存富(1938-),男,博士,教授.近年来一直从事实验固体力学、无损检测、测试技术等方面的研究工作.

超声波检测技术的应用概述

现代工程测试技术论文

超声波技术应用综述 +++ (++++++++++++++++++) 摘要 简述超声波的产生方式,特点和主要参数,其特点决定在实际生活中的诸多领域广泛应用,着重分析了超声波传感器的应用和研究现状,对超声波技术发展做出展望。 关键词:超声波,检测技术,传感器 Abstract The article sketch the main parameters, features and the production of ultrasonic. Its features determine the wide application in our lives. We analyzed the application of the ultrasonic sensor and the research status and prospect the development of ultrasonic technology. Key words: Ultrasonic; Measurement Technique; Sensor 超声波是一种频率高于20000赫兹的声波,它的方向性好,穿透能力强,易于获得较集中的声能,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业等诸多领域有广泛应用。 1.超声波的产生和主要参数 声波是物体机械振动状态(或能量)的传播形式。超声波是指振动频率大于20000Hz以上的声波,其每秒的振动次数(频率)甚高,超出了人耳听觉的上限,人们将这种听不见的声波叫做超声波。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动模式,通常以纵波的方式在弹性介质内传播,是一种能量的传播形式。 1.1超声波特点 超声波有如下特点: (1)方向性强,能量易于集中。 (2)能在各种不同媒质中传播,且可传播较远距离。 (3)与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗。 (4)反射、干涉、叠加和共振现象明显。 1.2超声波的两个主要参数 频率:F≥20KHz(在实际应用中因为效果相似,通常把F≥15KHz的声波也称为超声波)。 功率密度:p=发射功率(W)/发射面积(cm2),通常p≥0.3w/cm2。

相关文档
最新文档