超声导波检测技术原理

超声导波检测技术原理
超声导波检测技术原理

超声导波检测技术

超声导波(Ultrasonic Guided Wave)检测技术利用低频扭曲波(Torsinal Wave)或纵波(Longitudinal Wave)可对管路、管道进行长距离检测,包括对于地下埋管不开挖状态下的长距离检测。

超声导波(也称为制导波)的产生机理与薄板中的兰姆波激励机理相类似,也是由于在空间有限的介质内多次往复反射并进一步产生复杂的叠加干涉以及几何弥散形成的。但是对于管道检测,在一般管壁厚度下要产生适当的波型,则需要使用比通常超声波探伤低得多的频率,导波通常使用的频率f<100KHz,因此导波对单个缺陷的检出灵敏度与通常使用频率在MHz级别的超声检测相比是比较低的,但是导波检测的优点是能传播20~30米长距离而衰减很小,因此可在一个位置固定脉冲回波阵列就可做大范围的检测,特别适合于检测在役管道的内外壁腐蚀以及焊缝的危险性缺陷。低频导波长距离超声检测法用于管道在役状态的快速检测,内外壁腐蚀可一次探测到,也能检出管子断面的平面状缺陷。

超声导波应用的主要波型包括-扭曲波(Torsinal Wave,也简称为扭波)和纵波(Longitudinal Wave)。

扭曲波的特点是能够一边沿管子周向振动,一边沿管子轴

向传播,声能受管道内部液体影响较小(在导波检测时,

液体在管道中流动是允许的),回波信号能包含管轴方向

的缺陷信息,通常能得到清晰的回波信号,信号识别较容

易,在应用中需要换能器数量少,重量轻、费用省、因管

内液体介质而产生的扩散效应较小,波型转换较少,检测

距离较长,对轴向缺陷灵敏度高。

纵波特点是一边沿管子轴向振动,一边沿管子轴向传播,

回波幅度与缺陷性状关系不大,回波信号不如扭波清晰,

因为受管内流体流动的影响,也受探头接触面的表面状态

影响较大(油漆、凹凸等)受被测管内液体介质流动的影

响很大。

超声导波检测装置主要由固定在管子上的探伤套环(探头矩阵)、检测装置本体(低频超声探伤仪)和用于控制和数据采样的计算机三部分组成。

探头套环由一组并列的等间隔的环能器阵列组成,组成阵列的换能器数量取决于管径大小和使用波型,换能器阵列绕管子周向布置。

探伤套环的结构按管道尺寸采用不同节环-可以是一分为二,用螺丝固定以便于装拆(多用于直径较小的管道),或者充气式环(柔性探头套环),靠空气压力紧套在管子上(多用于直径较大的管道)。接触探头套环的管子表面需要进行清理但无须耦合剂,亦即除安放探头环的位置外,无需在清除和复原大面积包覆层或涂层上花费功夫,这也是超声导波检测的优点之一。超声导波探头套环上的探

头矩阵架在一个探测位置,就可向套环两侧远距离发射和接收100KHz以下的回波信号,从而可对探头环两侧各20~30米的长距离进行全面检测,可对整个管壁作100%检测,可检测难以接近的区域,如有管夹、支座、套环的管段,也可检测埋藏在地下的暗管,以及交叉路面下或桥梁下的管道等,因而减少因接近管道进行检测所需要的各项费用

常规做法是在经过表面清理的管道外表面逐点逐点地进行超声测厚、抽检,而超声导波检测(又称长距离超声遥探法)让声波从一个探头环位置发射,沿管壁内外向远处传播,就能覆盖长距离的管壁,在一定范围内100%检测管壁,从而对安全、经济具有重大价值,目前已经广泛应用于直径50~1200mm的管道现场检测。

超声导波检测的工作原理:探头阵列发出一束超声能量脉冲,此脉冲充斥整个圆周方向和整个管壁厚度,向远处传播,导波传输过程中遇到缺陷时,缺陷在径向截面上有一定的面积,导波会在缺陷处返回一定比例的反射波,因此可由同一探头阵列检出返回信号-反射波来发现和判断缺陷的大小。管壁厚度中的任何变化,无论内壁或外壁,都会产生反射信号,被探头阵列接收到,因此可以检出管子内外壁由腐蚀或侵蚀引起的金属缺损(缺陷),根据缺陷产生的附加波型转换信号,可以把金属缺损与管子外形特征(如焊缝轮廓等)识别开来。

导波的检测灵敏度用管道环状截面上的金属缺损面积的百分比评价(测得的量值为管子断面积的百分比),导波设备和计算机结合生成的图像可供专业人员分析和判断

超声导波检测得到的回波信号基本上是脉冲回波型,有轴对称和非轴对称信号两种,检测中以法兰、焊缝回波做基准,根据回波幅度、距离、识别是法兰或管壁横截面缺损率的缺陷评价门限等以及轴对称和非轴对称信号幅度之比可以评价管壁减薄程度,能提供有关反射体位置和近似尺寸的信息,确定管道腐蚀的周向和轴向位置,目前超声导波检测灵敏度可达到截面缺损率3%以上,即一般能检出占管壁截面3~9%以上的缺陷区以及内外壁缺陷。

缺陷的检出和定位借助计算机软件程序显示和记录,减少操作判断的依赖性(避免了操作者技能对检测结果的影响),能提供重复性高、可靠的检测结果。

应当注意超声导波检测不提供壁厚的直接量值,但对任何管壁深度和环向宽度范围内的金属缺损都较敏感,在一定程度上能测知缺陷的轴向长度,这是因为沿管壁传播的圆周导波会在每一点与环状截面相互作用,对截面的减小比较灵敏。

超声导波检测的局限性:

需要通过实验选择最佳频率,需要采用模拟管壁减薄的对比试样管;(据目前最新技术资料介绍,采用扫频技术,即在设定频率范围内进行全频扫查,通过比较后确定最合适的实验频率,可以大大提高缺陷的检出率);

因为在检测中是以法兰、焊缝回波做基准,因此受焊缝余高(焊缝横截面)不均匀而影响评价的准确程度;

多重缺陷会产生叠加效应;

对于外壁带有涂防锈油的防腐包覆带或浇有沥青层等的管道,超声导波可检范围将明显缩短,这是因为防腐带(层)能引起导波有较大的衰减;

导波通过弯头后使回波信号的检出灵敏度和分辨力受到影响,因为导波在圆周方向声程发生变化或者由于壁厚有变化而发生散射、波型转换和衰减,因此在一次检测距离段不宜有过多弯头;

对于有多种形貌特征的管段,例如在较短的区段有多个T字头,就不可能进行可靠的检验;

最小可检缺陷、检测范围随管子状态而异,对于有严重腐蚀的管道,检测的长度范围有限;

导波检测数据的解释要由训练有素、特别是对复杂几何形状的管道系统有丰富经验的技术人员来进行。

因此,最好把超声导波检测用作识别怀疑区的快速检测手段,对检出缺陷的定量只是近似的,因此在有可能的条件下还应采用更精确但速度较慢的NDT方法进行补充评价确认。亦即采用两步法:先用导波快速检测管子,发现腐蚀减薄区,然后用普通直探头纵波法进行定量测定,取决于需要的精度以及壁厚减薄的局部性或普遍性,也可直接用导波遥控法定量测定壁厚。

对管道进行超声导波检测的缺陷圆周方向位置定位是以象限划分的,过去以四象限,目前最新采用的聚焦技术能够选择性地对重点区域进行进一步检测,已能达到8~16象限,从而更明确缺陷在管道环向上的分布,采用聚焦技术更有利于确定缺陷的尺寸和形状。

不同的超声波模式(导波技术中使用的三种主要波型为纵向波、扭转波和弯曲波)对管道的腐蚀缺陷特征有不同的灵敏度,因此新发展的超声导波技术采用多模式(多探头模块)检测,即同时进行例如纵向波和扭转波操作,可以收集到被检测管道更全面的信息而不致发生漏检。

对于长距离管道超声导波检测,每次可以检测多长的管线,这要考虑超声导波在管道中传输的距离,它取决于管道的表面状况(例如是否为裸管、保温层、防腐层以及埋地情况等)、管道的几何形状(分支、弯管、支撑和法兰的情况)、管道中流通的介质(气体、液体或固体),还有管道本身的腐蚀情况等,这些都会造成超声波传播的能量损失,减少其传播距离。据目前最新技术资料介绍,在理想状态下的单点双向可以检测到360米,典型情况下单点双向可检测60米。

长距离管道超声导波检测系统的检测精度一般是指管道横截面积的损失量,包括可达到精度(也称检测精度,但是是指可以部分检出,不能达到100%检出)和可靠精度(100%可以检出),两者是有重要区别的。

目前已见报道的关于超声导波检测技术应用的实例包括:带有保温层的氨水管道、埋地水管、无保温层的输送CO与H合成烃类的淤浆管道、石油化工厂的交叉管路、储槽坝壁的管道、道路交叉口地下管道、天然气管道、炼油厂火焰加热器中的垂直管路、带岩棉保温介质和漆层的架空液化气管道等。

超声导波检测的回波信号显示示意图

英国超声导波仪 Wavemaker SE16及柔性探头套环

目前制造超声导波检测装置的厂家例如英国超声导波应用公司(GUL Co.)的管道专用超声导波检测装置(检测频率自动设定,电池工作),另外还有韩国MKC CHINA公司采用磁致伸缩传感器(MsS)技术的MsSR-2020 AD 制导波检验系统(多用途)。

MsSR-2020 AD 制导波检验系统利用磁致伸缩换能器与相应仪器在钢管中产生与探测用的低频制导波(5~250 kHz):

*高灵敏度(比正常状态下发现缺陷提高2~3%)

*用于检验碳钢和合金钢管材可达40英寸直径,壁厚可达1.5英寸

*可在高温下工作(居里温度在钢中770℃,镍中354℃,在管道系统检验中应用带式线圈可达105℃)*传感器与被检验材料表面距离2英寸

*该技术是把一个带式线圈传感器围绕在大的圆柱结构上,或者是用棒型探头放置在平板构件上,通过线圈的电流脉冲使被检验构件中感应产生超声波传播,当超声波遇到裂纹或缺陷时,部分信号反射并由传感器拾取

*最适于长射程的球形构件检验和监视大型结构,仪器可容易地检验位于包括含水或弯曲的,或者埋入混凝土或地下的构件中的缺陷,例如输气管线,可从一个暴露端起检验100米。检验范围取决于构件的形状与埋入状态,当用于检验热交换器管时,可检验整个管长度,包括U形部分。平板金属或埋藏在混凝土或地下的工字梁和H梁也可以使用棒型探头进行检验。对于钢缆,可检验100mm2的钢缆达100米

*也可以监视运送有毒或酸性介质的危险管道的腐蚀,它们常常是隐藏在绝缘材料下而难以接近,带式传感器或板型传感器可以固定安装在管道周围并通过多路器连接到MsSR仪器上,可实时监视管道状况

MsSR-2020 AD 制导波检验系统

参考文献:

[1] 《无损检测》杂志2006年第2期:超声导波检测技术的研究进展(周正干冯海伟)

[2] 《无损检测》杂志2005年第3期:超声导波在液化气管道检测中的应用(蔡国宁)

[3] 《无损探伤》杂志2004年第1期:埋管超声导波长距离检测新技术(李衍)

[4] 《无损探伤》杂志2002年第4期:管道长距离超声导波检测新技术的特性和应用(李衍强天鹏)

[5] 韩国MKC CHINA公司产品资料

超声导波检测技术的研究进展_周正干

综 述 NDT 无损检测 2006年第28卷第2期 超声导波检测技术的研究进展 周正干,冯海伟 (北京航空航天大学机械工程及自动化学院,北京 100083) 摘 要:综述近年来超声导波检测研究的最新进展。介绍导波在不同材料和结构中的频散特性及与之相关的理论成果。从导波的结构出发,分析了导波在介质中能量与位移的分布。论述了导波检测技术领域中数值分析方法和信号处理方面的一些新技术。 关键词:超声检测;导波;频散特性;有限元;边界元;信号处理 中图分类号:T G 115.28 文献标识码:A 文章编号:1000 6656(2006)02 0057 07Progress in Research of Ultrasonic Guided Wave Testing Technique ZHOU Zheng gan,FENG Hai wei (School of M echanical Engineering and Automation,Beijing University of Aeronautics and Astr onautics,Beijing 100083,China) Abstract:T he recent advances in ult rasonic g uided w ave testing technique are summar ized.Firstly,the disper se char acter istics and the r elated t heo retical r esults of the g uided wav es in differ ent mater ials and distinct structur es ar e intro duced.T hen,based o n the structure o f the g uided waves,the distr ibution o f the energ y and displacement o f guided w aves is ana lyzed.L ast ly ,some new techniques o f numer ical analy sis and signal pro cessing fo r g uided wav e no ndest ructive testing are descr ibed. Keywords:U ltr aso nic t esting ;G uided wav e;Disperse characterist ic;F inite element;Boundary element;Signal pr ocessing 相对于传统的超声波检测技术,超声导波具有传播距离远、速度快的特点,因此,在大型构件(如在役管道)和复合材料板壳的无损检测中有良好的应用前景。但目前,导波的一些机理和特性仍然不很清楚,导波的理论研究成为近年来无损检测界的热点。随着理论研究的深入,产生了很多有关导波的 新技术,促使其应用于更广泛的领域。 1 导波的分类 导波是由于声波在介质中的不连续交界面间产生多次往复反射,并进一步产生复杂的干涉和几何弥散而形成的。主要分为圆柱体中的导波以及板中的SH 波、SV 波、兰姆波(Lam b)和漏兰姆波[1]等。 根据Silk 和Bainto n 的理论[2] ,圆柱体中的导波分为 轴对称纵向模式L(0,m)(m =1,2,3, 收稿日期:2005 01 13 基金项目:国家自然科学基金资助项目(50475006) )。 轴对称扭转模式T (0,m )(m =1,2,3, )。 非轴对称弯曲模式F(n,m )(n,m =1,2,3, )。各模式中整数m 是计数变量,反映该模式在管壁厚方向上的振动形态;整数n 反映该模式绕管壁螺旋式传播形态。其中,L(0,m )和T (0,m )模式是F(n,m )模式中n =0的特例。 虽然上述定义已被广泛接受,但是针对某些具体问题,研究人员也提出了不同的导波分类方法,以利于分析在具体问题中表现出来相似特征的导波模式。如Vo gt T 等[3] 在研究部分埋地圆柱体结构中的导波散射问题时提出了单一(v ,n)模式,其中v 1对应原弯曲模式;v =0对应原纵波和扭转模式。两种模式用计数变量n 区别。两种定义方式的模式,(0,1)对应L(0,1),(0,2)对应T(0,1),(0,3)对应L(0,2),(0,4)对应T (0,2)等。 2 频散特性与频散方程 频散是导波的主要特性之一,即导波的相速度 57

超声波探伤仪检测原理

超声波探伤仪检测原理

1、超声波探伤仪原理超声检测1、什么是无损探伤/无损检测?:(1)无损探伤是在不损坏工件或原材料工作状态的前提下,包装机械对被检验部件的表面和内部质量进行检查的一种测试手段。(2)无损检测: Nondestructive Testing(缩写 NDT) 2、常用的探伤方法有哪些?答:无损检测方法很多据美国国家宇航局调研分析,认为可分为六大类约70余种。但在实际应用中比较常见的有以下几种:常规无损检测方法有:-超声检测 Ultrasonic Testing(缩写 UT);-射线检测Radiographic Testing(缩写RT);-磁粉检测Magnetic particle Testing(缩写 MT);-渗透检验 Penetrant Testing(缩写 PT);-涡流检测Eddy current Testing(缩写 ET);非常规无损检测技术有:-声发射Acoustic Emission(缩写 AE);-泄漏检测Leak Testing(缩写 UT);-光全息照相Optical Holography;-红外热成象Infrared Thermography;-微波检测 Microwave Testing 3、超声波探伤的基本原理是什么?答:超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。代孕脉冲反射式超声波探伤仪就是根据这个原理设计的。目前便携式的脉冲反射式超声波探伤仪大部分是A扫描方式的,所谓A扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值。譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射(见图1 ),反射回来的能量又被探头接受到,在显示屏幕中横坐标的一定的位置就会显示出来一个反射波的波形,横坐标的这个位置就是缺陷在被检测材料中的深度。这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。 4、超声波探伤与X射线探伤相比较有何优的缺点?答:超声波探伤比X射线探伤具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对

超声诊断仪基本原理及其结构

江西中医学院计算机学院08生物医学工程2班黄月丹学号2 超声诊断仪原理及其基本结构 超声成像检查技术是指运用超声波的物理特性,通过高科技电子工程技术对超声波发射、接收、转换及电子计算机的快速分析处理和显像,从而对人体软组织的物理特性、形态结构与功能状态作出判断的一种非创性检查技术。 超声诊断技术的发展历程 20世纪50年代建立,70年代广泛发展应用的超声诊断技术,总的发展趋势是从静态向动态图像(快速成像)发展,从黑白向彩色图像过渡,从二维图像向三维图像迈进,从反射法向透射法探索,以求得到专一性、特异性的超声信号,达到定量化、特异性诊断的目的。80年代介入性超声逐渐普及,体腔探头和术中探头的应用扩大了诊断范围,也提高了诊断水平,90年代的血管内超声、三维成像、新型声学造影剂的应用使超声诊断又上了一个新台阶。 二.超声诊断仪的种类 (一) A型这是一种幅度调制超声诊断仪,把接收到的回声以波的振幅显示,振幅的高低代表回声的强弱,以波型形式出现,称为回声图,现已被B型超声取代,仅在眼科生物测量方面尚在应用,其优点是测量距离的精度高。(二) B型这是辉度调制型超声诊断仪,把接收到的回声,以光点显示,光点的灰度等级代表回声的强弱。通过扫

描电路,最后显示为断层图像,称为声像图。B型超声诊断仪由于探头和扫描电路的不同,显示的声像图有矩形、梯形和扇形。矩形声像图和梯形声像图用线阵探头实现,适用于浅表器官的诊断;扇形声像图用的探头有多种,机械扇扫探头、相控阵探头和凸阵探头均显示扇形声像图。前二种探头可由小的声窗窥见较宽的深部视野,适用于心脏诊断;后一种探头浅表与深部显示均宽广,适用于腹部诊断,有一种曲率半径小的凸阵探头,也可用小的声窗,窥见深部较宽的视野。 (三) M型 M型超声诊断仪是B型的一种变化,介于A型和B型之间,得到的是一维信息。在辉度调制的基础上,加上一个慢扫描电路,使辉度调制的一维回声信号,得到时间上的展开,形成曲线。用以观察心脏瓣膜活动等,现在M型超声已成为B型超声诊断仪中的一个功能部分不作为单独的仪器出售。(四) D型在二维图像上某点取样,获得多普勒频谱加以分析,获得血流动力学的信息,对心血管的诊断极为有用,所用探头与B型合用,只有连续波多普勒,需要用专用的探头。超声诊断仪兼有B型功能和D型功能者称双功超声诊断仪。(五) 彩色多普勒超声诊断仪具有彩色血流图功能,并覆盖在二维声像图上,可显示脏器和器官内血管的分布、走向,并借此能方便地采样,获得多普勒频谱,测得血流的多项重要的血流动力学参数,供诊断之用。彩色多普勒超声诊断仪一般均兼有B型、M型、D型和彩色血流图功能。(六) 三维超声诊断仪三维超声是建立在二维基础上,在彩色多普勒超声诊断仪的基础上,配上数据采集装置,再加上三维重建软件,该仪器即有三维显示功能。(七) C型C型超声仪也是辉度调制型的一种,与B型不同的是其显示层面与探测面呈同等深度。超声诊断仪基本原理

超声导波检测技术原理

超声导波检测技术 超声导波(Ultrasonic Guided Wave)检测技术利用低频扭曲波(Torsinal Wave)或纵波(Longitudinal Wave)可对管路、管道进行长距离检测,包括对于地下埋管不开挖状态下的长距离检测。 超声导波(也称为制导波)的产生机理与薄板中的兰姆波激励机理相类似,也是由于在空间有限的介质内多次往复反射并进一步产生复杂的叠加干涉以及几何弥散形成的。但是对于管道检测,在一般管壁厚度下要产生适当的波型,则需要使用比通常超声波探伤低得多的频率,导波通常使用的频率f<100KHz,因此导波对单个缺陷的检出灵敏度与通常使用频率在MHz级别的超声检测相比是比较低的,但是导波检测的优点是能传播20~30米长距离而衰减很小,因此可在一个位置固定脉冲回波阵列就可做大范围的检测,特别适合于检测在役管道的内外壁腐蚀以及焊缝的危险性缺陷。低频导波长距离超声检测法用于管道在役状态的快速检测,内外壁腐蚀可一次探测到,也能检出管子断面的平面状缺陷。 超声导波应用的主要波型包括-扭曲波(Torsinal Wave,也简称为扭波)和纵波(Longitudinal Wave)。 扭曲波的特点是能够一边沿管子周向振动,一边沿管子轴 向传播,声能受管道内部液体影响较小(在导波检测时, 液体在管道中流动是允许的),回波信号能包含管轴方向 的缺陷信息,通常能得到清晰的回波信号,信号识别较容 易,在应用中需要换能器数量少,重量轻、费用省、因管 内液体介质而产生的扩散效应较小,波型转换较少,检测 距离较长,对轴向缺陷灵敏度高。 纵波特点是一边沿管子轴向振动,一边沿管子轴向传播, 回波幅度与缺陷性状关系不大,回波信号不如扭波清晰, 因为受管内流体流动的影响,也受探头接触面的表面状态 影响较大(油漆、凹凸等)受被测管内液体介质流动的影 响很大。 超声导波检测装置主要由固定在管子上的探伤套环(探头矩阵)、检测装置本体(低频超声探伤仪)和用于控制和数据采样的计算机三部分组成。 探头套环由一组并列的等间隔的环能器阵列组成,组成阵列的换能器数量取决于管径大小和使用波型,换能器阵列绕管子周向布置。 探伤套环的结构按管道尺寸采用不同节环-可以是一分为二,用螺丝固定以便于装拆(多用于直径较小的管道),或者充气式环(柔性探头套环),靠空气压力紧套在管子上(多用于直径较大的管道)。接触探头套环的管子表面需要进行清理但无须耦合剂,亦即除安放探头环的位置外,无需在清除和复原大面积包覆层或涂层上花费功夫,这也是超声导波检测的优点之一。超声导波探头套环上的探

超声导波检测技术的发展与应用

2008大庆石化情报课题 超声导波检测技术的发展与应用 王学增侯贵富刘华王辉 李媛媛李健奇 大庆石化工程检测技术公司 2008年12月8日

超声导波检测技术的发展与应用 相对于传统的超声波检测技术,超声导波具有传播距离远、速度快的特点,因此在大型构件(如在役管道)和复合材料板壳的无损检测中有良好的应用前景。 一、超声导波技术的原理 1.1超声导波的产生 机械振动在弹性介质中的传播称为弹性波(声波)。将弹性介质定义为波导,在波导中传播的超声波称为超声导波。超声波的本质是机械振动,在扰动源的激发下产生,并通过介质传播,因而它既携带扰动源的信息,同时又包含介质本身的特征。 导波是由于声波在介质中的不连续交界面间产生多次往复反射,并进一步产生复杂的干涉和几何弥散而形成的。 导致超声波弥散的原因有物理弥散和几何弥散。物理弥散是由于介质的特性而引起的,而几何弥散是由于介质的几何效应引起。超声导波技术则是利用传播介质几何上某些特征尺寸而导致的几何工件往往有很多声学性质不连续的交界面存在。当介质中有一个以上的交界面存在时,超声波就会在这些界面间产生多次往复反射,并进一步产生复杂的干涉作用,由于受到这些界面几何尺寸的影响,超声波的传播速度将依赖于波的频率,从而导致波的几何弥散。由于超声波在交界面上的复杂行为,如果工件的交界面复杂无规则,则导波信号很难识别,所以导波技术一般用于特殊的规则的工件(板、管、棒等)检测。无缝管中的超声导波技术则是利用管子的几何效应,在管子中

激发导波。导波可沿轴向传播数米至数十米,因此利用管壁中沿管子轴向传播的导波可对管子进行长距离快速无损检测。 1.2 导波的频散特性和谐振模式 1.2.1导波的频散特性 当把被测物件视为无限均匀弹性介质时,各种类型的反射波、透射波以及界面等以恒定的速度传播,传播速度只与传播介质本身材质有关。而当超声波倾斜入射到各向同性的管子边界上,波源处的机械振动在管子中传播时,由于管子自由表面的反射,波运动变为轴向运动和径向运动的合成,使得超声波被拘束在管状的边界内而形成导波。 频散是导波的特征之一,即超声波的相速度随频率不同而有所变化。频散特性是导波应用于复合材料无损检测的主要依据。由于导波脉冲由多个不同频率的谐波成分叠加而成,介质质点振动是各个波作用下振动的合成,质点振动最大振幅的传播速度(群速度)不同于各单个波的传播速度(相速度),导波能量以群速度向前传播,相速度则随频率的不同而有所改变。 导波在介质中的传播特性与介质特性有很大的关系。目前的研究已不仅仅局限于导波在各向同性弹性介质中的传播特性,还涉及到各项异性和具有黏弹性的材料。 导波相速度不仅取决于探头频率,还与管材的特性(包括材质的声学性质和规格尺寸)有关,即使是同类材料的管子,如果其壁厚和直径不同,其频散曲线也不同。这给导波技术的实际检测应用带来了

磁粉探伤和超声波探伤原理

有表面或近表面缺陷的工件被磁化后,当缺陷方向与磁场方向成一定角度时,由于缺陷处的磁导率的变化,磁力线逸出工件表面,产生漏磁场,吸附磁粉形成磁痕。用磁粉探伤检验表面裂纹,与超声探伤和射线探伤比较,其灵敏度高、操作简单、结果可靠、重复性好、缺陷容易辨认。但这种方法仅适用于检验铁磁性材料的表面和近表面缺陷。 当前位置:首页 >> 企业新闻 >> 技术文章 >> 正文 磁粉探伤的原理 我要打印 IE收藏放入公文包我要留言查看留言 切割设备网:利用在强磁场中,铁磁性材料表层缺陷产生的漏磁场吸附磁粉的现象而进行的无损检验法,称磁粉探伤。 磁粉探伤原理:首先将被检焊缝局部充磁,焊缝中便有磁力线通过。对于断面尺寸相同、内部材料均匀的焊缝,磁力线的分布是均匀的。当焊缝内部或表面有裂纹、气孔、夹渣等缺陷时,磁力线将绕过磁阻较大的缺陷产生弯曲。此时在焊缝表面撒上磁粉,磁力线将穿过表面缺陷上的磁粉,形成“漏磁”。根据被吸附磁粉的形状、数量、厚薄程度,便可判断缺陷的大小和位置。内部缺陷由于离焊缝表面较远,磁力线在其上不会形成漏磁,磁粉不能被吸住,无堆积现象,所以缺陷无法显露。 超声波探伤仪 运用超声检测的方法来检测的仪器称之为超声波探伤仪。它的原理是:超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测了解材料性能和结构变化的技术称为超声检测。超声检测方法通常有穿透法、脉冲反射法、串列法等。 说白了就是变频原理

超声波探伤技术简介 1、超声检测 超声波检测是无损检测方法之一,无损检测是在不破坏前提下,检查工件宏观缺陷或测量工件特征的各种技术方法的统称。常规无损检测方法有:超声检测Ultrasonic Testing(缩写UT);射线检测Radiographic Testing(缩写RT);磁粉检测Magnetic particle Testing (缩写MT);渗透检验Penetrant Testing (缩写PT);涡流检测Eddy current Testing (缩写ET); 2、超声波探伤仪 运用超声检测的方法来检测的仪器称之为超声波探伤仪。它的原理是:超声波在被检测材料中传播时,材料的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测了解材料性能和结构变化的技术称为超声检测。超声检测方法通常有穿透法、脉冲反射法、串列法等。 PXUT-350 1、检测范围0.0-5000.0mm 2、工作频率 3、增益调节 4、 波形显示 3、衰减控制 4、垂直性误差≤3% 5、水平性误差≤0.3% 6、抑制电平 7、探伤灵敏度余量≥60dB 8、脉冲移位 9、使用电源7.2VDC,220VAC 10、外形尺寸250×140×50 11、备注全国服务,上门调试培训。如有特殊需要,特聘上海铁路局机务系统无损检测设备服务中心工程师,上门培训指导。探伤工艺乃保证质量的重中之重,选购信誉好,产品好的商家尤为重要。 12、产品介绍PXUT-350全数字智能超声波探伤仪采用新型超大屏幕高亮度EL显示器件(6.5"高亮场致发光显示器),仪器造型优美,体积小巧,屏幕超大,强光下无需遮光也能清晰显示,仪器功能实用,性能稳定,操作简便,是一款性能价格比非常优异的笔记本式全数字智能超声波探伤仪。 13、产地中国 回答者:Eisenhower314 - 魔法学徒一级5-18 11:23 PXUT系列超声波探伤仪是南通友联生产的主要机型,我用其中的几款。 工作原理一两句说不清楚,我就简单说一下吧。 首先,超声波,探伤仪发射出电脉冲,通过屏蔽传输线给探头上的压电晶片(换能器)两个

管道超声导波检测技术

管道超声导波检测技术 发表时间:2018-08-14T11:41:10.603Z 来源:《防护工程》2018年第7期作者:张加恬[导读] 超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为国内外前沿的管道检测技术 浙江赛福特特种设备检测有限公司浙江杭州 310000 摘要:超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为国内外前沿的管道检测技术。超声导波技术作为新型的无损检测技术,因为其具有检测距离长、速度快、成本低并且可以检测到一般常规检测器无法检测的地方,例如有套管或者埋地管道等特殊管道。本文通过介绍管道超声导波检测技术的一些基础理论知识,提出这一检测技术的应用关键,对此,为以后人们能广泛应用管道超 声导波技术提出合理化的建议。 关键词:超声导波技术;管道;检测技术 在化工及其相关类工厂中大量压力管道被集中在管廊上,沿着装置或在厂区外布置。管廊上压力管道的距离长,离地距离高,而常规检测技术是单点检测,对于数量庞大的管道,其检测成本高,效率低。超声导波检测技术具有检测距离长,效率高且可以同时检测管道内外壁的优点。超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为重要的管道检测技术。 1 超声导波技术 1.1基本原理 导波原理好像平板中的板波,它发出的超声波频率比板波更低,它横穿整个管壁,并可以继续沿管壁传播上百米。当在传播过程中碰到缺陷、结构变化的地方,脉冲波会发生反射并沿管壁传播到传感器而被接收。这一特殊的工作原理决定了管道超声波可以应用于工业企业中大范围、远距离的检测中去,实现全覆盖管道壁。 1.2导波检测技术的应用范围、优缺点 应用于:管道、管状设备等。检测管道类型:无缝管、纵焊管等。优点:(1)一般常规超声波检测只能检测到管壁一个点的腐蚀情况,而管道导波检测技术可以利用一个检测点,从两个方向检测到几米甚至上百米管道腐蚀情况。(2)可以检测到常规检测技术无法检测到的地方,如埋地管道等特殊管道。(3)检测速度快、效率高、全方位覆盖,无漏检。(4)可敏感地感应到横截面检测面的金属损失,检测深度也达到管道横截面的4%。缺点:(1)超声导波不能对缺陷准确定性,定量也是不准确的,对可疑地方只能再根据其他检测方法进行进一步检测。(2)超声导波检测技术很难将单个点状缺陷和轴向条状缺陷检测出来。(3)焊接处的管道因为结构发生变化影响整个检测的长度和准确度。 2 弯管检测研究现状 导波在弯头部位容易发生频散和模态转换,并且导波能量将主要集中在弯头的背弯部位。因此导波检测弯头时,容易发现处于弯头背弯部位的缺陷,而可能漏检内弯的缺陷。在弯头生产时,弯头背弯处壁厚将小于内弯壁厚,且背弯处受到管道中介质冲刷的影响,更容易产生缺陷。因此采用超声导波检测弯头部位缺陷是可行的,但其难点在于信号分析。国内外对于弯管的研究还较少。 2.1国内研究概况 目前大多数从事导波检测的科研人员主要针对的是直管道的缺陷检测展开的研究,然而管道系统里的直管道绝大部分是 90°弯曲管道连接起来的,研究导波在弯曲管道中的传播在近年来变成一个热门的话题。学者已经对导波在弯曲处的传播特性进行了研究,并对弯管中缺陷的进行了检测,模态具有检测弯曲管道外侧区域的能力。也有学者通过改变90度弯头的曲率半径进行试验,模态在不同的曲率半径下,穿过90度弯头的能力(即透射系数)。 2.2导波检测仪器对比 超声导波的激励方式主要有压电晶片和磁致伸缩,相比于压电晶片式导波仪器,磁致伸缩激励方式易于实现非耦合状态下检测,且易于激励扭转模态导波。其中磁致伸缩导波检测是通过磁致伸缩效应和逆磁致伸缩效应激发和接收超声导波信号。铁磁体在外磁场作用下会引起磁畴的变化,而磁畴的变化也引起晶格的变形,从而产生振动激发应力波。反之,在磁场的作用下,铁磁体中晶格的变化会改变磁畴,从而影响外磁场的变化。磁磁致伸缩仪器的功放研制是关键点和难点。压电晶片激励超声导波的研究难点和热点在于晶片的研制。采用压电方式激励导波时难以激励纯正的扭转模态,但是很容易激励纵向模态导波,而磁致伸缩激励方式正好相反。在价格方面,压电晶片导波检测仪器比磁致伸缩导波仪器更昂贵。 3 超声导波检测方法 经过这么多年的发展,超声导波检测技术在压力管道中进行检测的技术得到了国内外很多研究机构的关注与研究。因为在实际生产作业中非常需要利用先进的检测技术对压力管道检测管道情况,所以超声导波技术逐渐浮出水面,成为管道检测的一大技术。 3.1单一模式导波检测 一般来说,激励源产生的波是处于其所在频域范围内所有的模式,是很复杂的,几乎是没办法直接利用这种信号直接进行分析的。但是如果利用一些特定的激励形式把复杂的信号转化成具有单一模式的信号,这样将大大减少工作强度。当前在国外研究领域,超声导波检测经常使用的单一模式导波是 L的模式。采用L模式的导波的优点在于:(1)在某个固定的频率带宽内,这种模式下的信号基本都是非频散的,意思就是导波的群速度和相速度都不会随着频率的变化而发生巨大变化,所以这样当导波进行传播时是相对稳定的,几乎不发生变形;(2)这种模式下的导波的传播速度是最快的,这样会使其他杂乱的、不需要利用的信号处在后面;(3)这种方法对内表面和外表面的灵敏度都很高,因此这种模式的导波不但可以检测内外表面的损伤,还可以沿径向方向进行检测。 3.2模态声发射技术 声发射技术是近五十年才发展起来的,但是因为其有很大的优势所以发展很迅速。这种技术是利用其在发生作用的时候可以快速释放能量对管带物体进行检测的,它的优势在于能够形成动态检测,而且覆盖面广。 3.3多模式导波检测

超声导波技术-3优势和局限性

2.2超声导波检测技术 2.2.1超声导波检测技术的工作原理 超声波检测技术利用探头发射超声导波(低频扭曲波或纵波),通过管道内外壁反射波的时间差来判定壁厚和腐烛情况[30],可用于各种管道进的缺陷检测,包括对于地下埋管不开挖状态下管道的长距离检测等。导波检测技术是一种新兴的无损检测技术,现正随着它发展势头的迅猛,应用越来越广泛。 超声导波检测的工作原理:探头受到激励信号发射超声导波,导波信号包裹管道的整个圆周和整个壁厚,并沿着管道向远处传播;在传播过程中遇到缺陷时,会在缺陷处返回一定比例的反射波,利用探头传感器接收到的内外壁反射波的时间差来识别和判断缺陷,并对其定位。对于有缺陷的的管道,缺陷处的壁厚必定有所变化,利用内壁或外壁产生反射信号,被传感器接收的返回信号-反射波就会产生时间差,根据缺陷产生的附加波型进行处理可以识别的回波信号,因此可以检测出管道内外壁由腐蚀或侵蚀引起的缺陷。 2.2.2超声导波检测技术的优势 导波检测具有直接和定量化的特点,数据损失也可由相关的仪器和软件获得,因此有较高的灵敏度[30],相对其他检测方法优势明显。 导波检测技术的主要优势: 1) 操作使用较方便,检测点只要选取得当,长距离检测的距离就大大增加; 2) 检测迅速,在管道360度安装好探头后打开导波检测仪,几分钟即可对管道的正负方向完成检测; 3) 检测能力强,对管道结构特征和缺陷特征分辨能力强[31]; 4) 能够检测某些人员无法到达的区域,如海平面以下管道、埋地管道等[31]; 5) 灵敏度高,截面损失率超过2%的缺陷都可以被检测出来[31]; 6)—次安装后,进行预处理的检测点可以保留便于以后的定期复查,如果是重要管段,可安放导波检测仪器全天候监测; 7)不容受到外界因素影响,如温度、压力和内部流动介质等[31]。 2.2.3超声导波检测技术的局限性 超声导波检测虽然相对于传统常规的检测方法有很明显的优势,但一项技术

超声波探伤方法原理及应用

超声波探伤方法原理及应用 【摘要】根据笔者多年的工作经验与实践,着重阐述超声波探伤在建筑钢结构中检测焊缝内部缺陷的应用进行了分析探讨。 【关键词】建筑钢结构;无损检测;钢结构焊缝;超声波探伤 1.建筑钢结构焊缝类型及焊缝内部缺陷 1.1焊缝类型及剖口型式 建筑钢结构体系主要有两种:门式钢架体系和网架空间结构体系,其中以门式钢架体系居多。其焊缝类型主要有对接焊缝和T型焊缝两种。对接焊缝是指将两母材置于同一平面内(或曲面内)使其边缘对齐,沿边缘直线(或曲线)进行焊接的焊缝:T型焊缝是指两母材成T字形焊接在一起的焊缝。为了保证焊缝部位两母材在施焊后能完全熔合,焊接前应根据焊接工艺要求在接头处开出适当的坡口,钢结构焊缝常见的坡口形式主要有c型(薄板对接)、V型(中厚板对接)、X 型(厚板对接)、单V型(T型连接)和K型(T型连接)等。 1.2常见内部缺陷 由于在焊接过程中受焊接工艺、环境条件等因素的影响,钢结构焊缝不可避免地会产生内部缺陷。常见的内部缺陷有气孔、夹渣、未焊透、未熔合和裂纹等。在缺陷性质上,单个气孔、点状夹渣属一般缺陷,对焊缝整体强度影响较小;群状气孔或不规则状夹渣、未焊透、未熔合、裂纹属严重缺陷,会严重降低焊缝整体强度等性能。 2.超声波探伤方法原理及分类 超声波探伤是利用超声波经过不同的介质产生反射的特性。超声波通过构件检测表面的耦合剂进入构件,在构件中传播,碰到缺陷或构件底面就会反射回至探头,根据反射波在超声波探伤仪荧光屏中的位置及波幅高度就可计算出其位置及大小。根据波形显示的不同,超声波探伤仪分为A型、B型、C型,常见的是A型脉冲反射式探伤仪。 3.超声波探伤在建筑钢结构中的应用 3.1超声波探伤的主要要求 3.1.1探伤人员的要求 探伤人员必须取得相应检测方法的等级资格证书,3级为最高,2级次之,1级为最低。 3.1.2探测面的选择 根据构件的形状、焊接工艺、可能产生的缺陷部位、缺陷的延展方向及焊缝要求的经验等级等来选取探测面。 3.1.3探头频率及角度(K值或折射角β)的选择 探头频率高,衰减大,穿透力差,不宜用于厚板构件焊缝的检测。但频率高,分辨率高,因此在穿透能力允许下,频率选得愈高愈好。一般选用2-5MHz探头,推荐使用2-2.5MHz探头。探头角度一般根据材料厚度、焊缝坡口型式及预计主要缺陷种类来选择,由于建筑钢结构的板材厚度一般不大,推荐使用K2.0(β600)或K2.5(β700)。 3.1.4耦合剂的选择 必须具有良好的透声性和适宜的流动性,对材料和人体无害,且价廉易取,建议使用洗洁精。

超声波无损检测基础原理

第1章绪论 1.1超声检测的定义和作用 指使超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。 作用:质量控制、节约原材料、改进工艺、提高劳动生产率 1.2超声检测的发展简史和现状 利用声响来检测物体的好坏 利用超声波来探查水中物体1910‘ 利用超声波来对固体内部进行无损检测 1929年,前苏联Sokolov 穿透法 1940年,美国的Firestone 脉冲反射法 20世纪60年代电子技术大发展 20世纪70年代,TOFD 20世纪80年代以来,数字、自动超声、超声成像 我国始于20世纪50年代初范围 专业队伍理论及基础研究标准超声仪器 差距 1.3超声检测的基础知识 次声波、声波和超声波 声波:频率在20~20000Hz之间次声波、超声波 对钢等金属材料的检测,常用的频率为0.5~10MHz 超声波特点: 方向性好 能量高 能在界面上产生反射、折射、衍射和波型转换 穿透能力强 超声检测工作原理 主要是基于超声波在试件中的传播特性 声源产生超声波,采用一定的方式使超声波进入试件; 超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变; 改变后的超声波通过检测设备被接收,并可对其进行处理和分析; 根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 超声检测工作原理 脉冲反射法: 声源产生的脉冲波进入到试件中——超声波在试件中以一定方向和速度向前传播——遇到两侧声阻抗有差异的界面时部分声波被反射——检测设备接收和显示——分析声波幅度和位置等信息,评估缺陷是否存在或存在缺陷的大小、位置等。 通常用来发现和对缺陷进行评估的基本信息为: 1、是否存在来自缺陷的超声波信号及其幅度; 2、入射声波与接收声波之间的传播时间; 3、超声波通过材料以后能量的衰减。 超声检测的分类 原理:脉冲反射、衍射时差法、穿透、共振法 显示方式:A 、超声成像(B C D P) 波型:纵波、横波、表面波、板波

先进的超声导波无损检测技外文文献翻译、中英文翻译、外文翻译

先进的超声导波无损检测技术 炼油石化工业和其它工业所用的管道在长时间服役后,腐蚀是一个经常被人们关心的问题,尤其是管外(即使是加装了防腐层后管外壁)的腐蚀问题,一旦失效,将给生产和人身带来严重的损害。因此,管道安全运行,首先要适时检测其管壁强度,被腐蚀或有裂纹﹑渗漏等要有预警。 管外防腐层的剥除费用高,不但费时、费工,而且当遇有公路交叉时,管道只有进行大规模挖掘才能进行腐蚀检测。这就引出了具有世界先进水平的较理想的“超声导波技术”,现已由国内开发研究成功。对管壁的这种超声导波检测为上述问题提供了一个非常好的解决方法。在一处安装后,可以沿管道传播若干米,反射的回波便可显示管道的腐蚀或其它特征。 超声导波检测技术利用低频扭曲波或纵波可对管路、管道进行长距离检测,包括对于地下埋管不开挖状态下的长距离检测。超声导波(也称为制导波)的产生机理与薄板中的兰姆波激励机理相类似,也是由于在空间有限的介质内多次往复反射并进一步产生复杂的叠加干涉以及几何弥散形成的。但是对于管道检测,在一般管壁厚度下要产生适当的波型,则需要使用比通常超声波探伤低得多的频率,导波通常使用的频率f<100KHz,因此导波对单个缺陷的检出灵敏度与通常使用频率在MHz级别的超声检测相比是比较低的,但是导波检测的优点是能传播20~30米长距离而衰减很小,因此可在一个位置固定脉冲回波阵列就可做大范围的检测,特别适合于检测在役管道的内外壁腐蚀以及焊缝的危险性缺陷。低频导波长距离超声检测法用于管道在役状态的快速检测,内外壁腐蚀可一次探测到,也能检出管子断面的平面状缺陷。 超声导波应用的主要波型包括-扭曲波(也简称为扭波)和纵波。扭曲波的特点是能够一边沿管子周向振动,一边沿管子轴向传播,声能受管道内部液体影响较小(在导波检测时,液体在管道中流动是允许的),回波信号能包含管轴方向的缺陷信息,通常能得到清晰的回波信号,信号识别较容易,在应用中需要换能器数量少,重量轻、费用省、因管内液体介质而产生的扩散效应较小,波型转换较少,检测距离较长,对轴向缺陷灵敏度高。

超声波探伤原理

[关闭] 超声波探伤原理 2007-4-24 10:49:00 表面波检测球销表面裂纹原理:表面波是超声波的一种,仅在物体表面浅层进行传播,其能量主要集中在深度小于两倍声波波长的表面浅层。在超声波探伤中,探头是关键部件。除它自身性能外,它与球销表面的接触状况对探测信号的稳定性影响较大。 昨天,上海市政养护管理有限公司卢浦大桥分公司的两位师傅,在四周封闭的卢浦大桥钢拱内部,沿着台阶上上下下忙了一天,目的是给卢浦大桥进行“体检”―――用超声波探伤仪对钢结构的大桥焊缝进行检测,“探伤仪是利用超声波会在材料介质上产生反射声波的原理, 所谓“探伤”,主要是利用超声波在材料介质中传播时,遇到不同材料介质会显示出不同的声学传播特征的原理,对大桥钢结构焊缝做定期检查,及时发现焊缝可能出现的隐患。年开始,市政养护部门开始采用人工观察和超声波“探伤”相互结合的方法,对大桥钢结构的焊缝进行检查和测试。 对卢浦大桥钢结构焊缝进行检查和测试。超声波探伤主要是利用超声波在材料介质中传播时,遇到不同材料介质会显示出不同的声学传播特征的原理,及时发现焊缝是否有开裂、夹灰和空隙等缺陷。目前,大桥探伤测试工作正在有序地进行。 当前,实用的连铸坯表面缺陷检测方法有:光学检测法、超声波检测法、涡流检测法等,本文将重点介绍光学法和涡流检测法。 2 涡流检测法原理、结构、主要技术指标、探伤工艺及设备报价1) 涡流检测法

北京设计院徐斌工程师的一句话,给我们留下了非常深的印象:“凯晨,是用机械加工原理修建出的土建工程”。为此,工程总包单位专门聘用获得过国家资格认证的焊工进行焊接工作,保证对重点部位进行超声波“焊缝探伤”一次通过。 检测人员所采用检验工艺的理论依据是几何聚焦原理,这是一种近似的几何运算,在进行实际检验时可能存在一些偏差。水浸聚焦探伤中,探头是通过水耦合到工件上的。声波在进入工件之前,在水中要走一段距离。代表超声波遇到工件后进一步会聚形成的二次焦距。 据介绍,这套名为“MS-32nC型192通道超声波钢板探伤设备”的仪器,可针对最大宽度为3.8米的宽厚钢板进行自动检测,该设备运用超声波在传播过程中一旦遇到有缺陷部位就会产生反射回波的原理,来检测材料内部是否完全均匀; 这套名为"MS-32nC型192通道超声波钢板探伤设备"的仪器,可针对最大宽度为3.8米的宽厚钢板进行自动检测,是目前国内通道最多、可检测钢板宽度最大的探伤设备。而这一设备运用超声波在传播过程中一旦遇到有缺陷部位就会产生反射回波的原理,来检测材料内部是否完全均匀, 原理和分类触摸屏系统一般包括两个部分:触摸检测装置和触摸屏控制器。表面声波性能稳定、易于分析,并且在横波传递过程中具有非常尖锐的频率特性,近年来在无损探伤、造影和退波器等应用中发展很快。这种触摸屏的显示屏四角分别设有超声波发射换能器及接收换能器,能发出一种超声波并覆盖屏幕表面。 然而,再热也得挺过去,热胀冷缩的原理使夏天钢轨极易变形,加上南站新设备刚刚投入使用,稳定性较差,所以必须坚持每天检修。然后是做“CT”用超声波探伤仪探测看不见的内伤。

超声波无损检测概述

超声波无损检测概述

J I A N G S U U N I V E R S I T Y 超声波无损检测概述

2.2 国内研究情况 20 世纪50 年代,我国开始从国外引进模拟超声检测设备并应用于工业生产中。上世纪80 年代初,我国研制生产的超声波探伤设备在测量精度、放大器线性、动态范围等主要技术指标方面已有很大程度的提高[3]。80 年代末期,随大规模集成电路的发展,我国开始了数字化超声检测装置的研制。近年来,我国的数字化超声检测装置发展迅速,已有多家专业从事超声检测仪器研究、生产的机构和企业(如中科院武汉物理研究所、汕头超声研究所、南通精密仪器有限公司、鞍山美斯检测技术有限公司等)[1]。目前,国内的超声超声检测装置正在向数字化、智能化的方向发展并且取得了一定的成绩。另外,国内许多领域(如航空航天、石油化工、核电站、铁道部等)的大型企业通过引进国外先进的成套设备和检测技术(如相控阵超声检测设备与技术和TOFD 检测设备与技术),既完善了国内的超声检测设备,又促进了超声无损检测技术的发展[5]。 2.3 超声波无损检测技术发展趋势 超声检测技术的应用依赖于具体检测工件的检测工艺和方法,同时,超声检测还存在检测的可靠性,缺陷的定量、定性、定位以及缺陷检出概率、漏检率、检测结果重复率等问题,这些对超声检测仪器的研制提出了更高要求。 为克服传统接触式超声检测的不足,人们开始探索非接触式超声检测技术,提出了激光超声、电磁超声、空气耦合超声等。为提高检测效率,发展了相控阵超声检测。随着机械扫描超声成像技术的成熟,超声成像检测也得到飞速发展。目前,超声检测仪器已明显向检测自动化、超声信号处理数字化、诊断智能化、多种成像技术的方向发展[5-7]。 3.超声波检测的基本原理 3.1超声波无损检测基本介绍 超声检测(UT)是超声波在均匀连续弹性介质中传播时,将产生极少能量损失;但当材料中存在着晶界、缺陷等不连续阻隔时,将产生反射、折射、散射、绕射和衰减等现象,从而损失比较多的能量,使我们由接收换能器上接收的超声波信号的声时、振幅、波形或频率发生了相应的变化,测定这些变化就

超声导波在铁轨故障检测方面的应

超声导波在铁轨故障检测方面的应用 ?摘要: 作者提供了他们在实际运行和测试用铁路上进行的实验结果。给出的实验结果频率稳定在40 到80kHz 这个超声导波的范围内。作者也给出了包括铁轨和一系列波长漂移的离散方程式解的理论结果。不接触气介式电磁声传感器(EMATS被作为铁路发出的声音能量的接收器。提出了应用气介式传感器来测绘铁轨辐射图像的实验结果。讨论了应用EMATs切割铁轨用以模拟铁轨故障横截面的技术。本文结尾总结了作者从他们的工作 中所得出的结论。 1、简介: 本论文旨于激发对超声导波可能在完善检测铁轨故障方面提供有效帮助的可能性的讨论。本文不在任何角度上提供或评测铁轨检测的方法,而是出于认识到世界铁路网的正常运行是基于铁轨结构的完整性。铁轨结构的完整性综合了使用年限、压力疲劳程度、制造缺陷、腐蚀等一系列因素。这些因素一直伴随着我们,也随着时间的累积变得更为显著。在某个时间点上,之前提到的平时不被注意的因素中,有些将会使部分铁轨路段成为不可预测的危险的‘定时炸弹' 。 虽然铁轨检测是常规性的进行,但不代表他们能满足铁路运营者所需的可信性和经济性。理论上我们将现如今应用的方法成为‘超声波体波'方法。这种方法的缺陷与他们有限的覆盖率、超声波稀薄化的特点等一系列因素相关。对于被覆盖遮挡的表面故障,现如今的方法将完全不起作用。而超声导波不同之处在于,它可以在铁轨中传播极远距离,可达2130 米,同时可穿透铁轨的整个体积。 在本文中,我们将讨论基于在实际运行和测试用铁路上进行的导波实验的发现。所用 设施包括了交通科技中心(TTQ、Pueblo公司、Bay Area Rapid Tran sit (BART公司测试轨道,Hayward 公司和Nittany and Bald Eagle Railroad (N and BE RR)(一段实际运行的短线铁路)。 我们希望我们的讨论可以激发更多对超声导波可能在完善检测铁轨故障方面提供有效帮助的可能性的讨论。

超声波探伤原理

超声波探伤原理 目前,运用数字式数据处理比模拟电子技术显示了极大的优越性,随着探伤技术的发展,数字信号处理与分析已不再仅仅是辅助技术,而是一种基本技术。高性能的A/D转换器和高效率的微处理器的问世,将不断地取代模拟电子的技术,尤其在高频领域应用模拟电子技术明显受到限制。数字化超声波探伤使测试系统开拓了新的检测能力。 数字化超声波探伤仪的整个系统由计算机(工控机IPC)作为主机(上位机),以单片机芯片为主构成的四块专用板卡及系统构成及通用的开关量I/O板卡组成下位机,统一控制管理超声系统(见下图)。 工控机管理的数字式超声探伤系统结构 系统程序流程:系统上电运行探伤操作程序→IPC机送下位机初始数据→中断响应进入缺陷判断报警程序→IPC机读取底波峰值电压VB,缺陷波峰值电压VF,底波距发射的时间TF信号及一组高速采样数据→分析计算处理数据→符合缺陷判断条件报警→显示屏上画出高速采样波形→调整后的闸门和衰减量等参数存储,待下一循环送出→返回探伤操作程序,并等待响应下一次中断。 由此,可见计算机与传统的超声检测系统相结合时,是超声检测技术向数字化、智能化方向发展的一个突破,因为它具有了以下的特点: 1.计算机控制的超声检测系统可自动选择检测参数

2.相互校正自动选择操作工艺 3.自动记录数据 4.进行换能器的自动补偿和检测结果的自动判断 从而实现自动判伤,自动读出和显示缺陷位置与当量值,并存储和打印输出探伤报告,大大地提高了探伤结果的可信度。 数字超声波探伤仪是目前研究的热点,主要集中在研究其适应性强,灵敏性高。我段自2000年引进数字式超声波探伤仪后,使我段在SS7型电力机车检修中车轴及轮箍的缺陷检测得率大有提高,尤其是同型机车且均运营在南昆线上,昆明机务段已有几起崩箍事故发生,而我段还无一类似事故。这是因为我段在事故发生前将缺陷检出,从而避免了事故的发生,如我段在2000年检测出12个轮箍有超限缺陷,2001年检测出13个轮箍有缺陷,3条车轴有裂纹。由此可见,数字式超声波探伤仪的缺陷检出可信度是模拟超声波探伤仪所无法比拟的,因此,发展数字式超声波检测技术在机车检测领域的应用是极其重要的。

相关文档
最新文档