超声导波简介

超声导波简介
超声导波简介

超声导波技术

超声导波(Ultrasonic Guided Wave)检测技术(又称长距离超声遥探法)主要用于在线管道检测,包括低碳钢、奥氏体不锈钢、二重不锈钢等材料的无缝管、纵焊管、螺旋焊管。可应用于油气管网(如天燃气管道、炼油厂火焰加热器中的垂直管路、带岩棉保温介质和漆层的架空液化气管道)及石油化工厂中的管网(如无保温层的输送CO与H合成类的淤浆管道、石油化工厂的交叉管路),码头管线、管区的连接管网,海上石油管网/导管,水下管道、电厂管网,结构管系,穿路/过堤管道、复杂或抬高管网,保温层下管道(例如带有保温层的氨水管道)、带有套管的管道,以及带有保护层的管道。超声导波检测技术能检出管道内外部腐蚀或冲蚀、环向裂纹、焊缝错边、焊接缺陷、疲劳裂纹等缺陷。最新的利用磁致伸缩换能器的超声导波检测已能应用于非铁磁性材料和非金属材料,除了管道检测还能用于棒材、钢索、电缆以及板盘件的检测。

超声导波检测的优点是能传播长距离而衰减很小,在一个位置固定脉冲回波列阵就可一次性对管壁进行长距离大范围的100%快速检测(100%覆盖管道壁厚),检测过程简单,不需要耦合剂,工作温度可达到零下40摄氏度到938摄氏度的高温范围,只需要剥离一小块防腐层以放置探头环即可进行检测,特别是对于地下埋管不开挖状态下的长距离检测更具有独特的优势。

下图示出管道腐蚀的常规检测与长距离超声导波检测的方法原理示意图。常规差评声波检测是在经过表面清理的管道外面逐点扫查或抽检进行超声测厚,而超声导波检测是以探头环位置发射低频导波沿管线向远处传播,甚至在保温层下面传播,一次就能在一定范围内100%覆盖长距离的管壁进行测量,反射回波经探头被仪器接收,并以此评价管道的腐蚀状况,架设在一个探头位置的探头列阵可向两侧长距离的发射导波和接收回波信号,从而可对探头套环两侧的长距离管壁作100%的检测,从而达到更长的检测距离,目前已经能用应用于直径1.5~80英寸的管道现场检测,理想状态下可以沿管壁单方向传播最长达200米。

图1 常规超声波检测与长距离超声导波检测

超声导波检测时,若管道内存在特大面积腐蚀或严重腐蚀会造成信号衰减而影响一测检测的有效距离,如果存在多重缺陷时还会产生叠加效应;超声导波检测技术采用的是低频超声波,无法发现总横截面损失量没有超过检测灵敏度的细小裂纹、纵向缺陷、小而孤立的腐蚀坑或腐蚀穿孔;超声导波检测需要通过实验选择最佳频率,需要采用模拟管壁减薄的对比试验管;检测中通常使用法兰、焊缝回波作基准,受焊缝余高不均匀而影响评价的准确程度;超声导波的有效检测距离除了与导波的频率、模式有关外,还与例如埋地管的沥青防腐绝缘层、埋地深度、周围土壤的压紧程度及土壤特性,或管道保温层及管道本身的腐蚀情况与程度等相关;超声导波一次检测距离段不宜有过多弯头(一般不宜超过2~3个弯头,且适合曲率半径大于管道直径3倍的弯头);对于有多种形貌特征的管段,例如在简短的区段内有多个T字头,就不可能进行可靠的检验;超声波的最小可检缺陷、检测范围随管子状态而异;超声导波监测数据的解释需要有训练有素、

特别是对复杂几何形状的管道系统有丰富经验的技术人员来进行。

由于超声导波检测不能提供壁厚的直接量值,因此最好把超声导波检测用于识别怀疑区的快速检测手段,对检出的缺陷的定量只是近似的,如果需要更准确确定缺陷的类型、大小及位置等,在有可能的条件下还需要借助其他更精确但检测速度较慢的无损检测手段进行补充评价确认。例如采用两步法:先用超声导波快速检测管子,发现腐蚀减薄区,然后在发现缺陷的位置局部开挖,用常规超声波检测方法进行定量测定,这取决于所要求的检测精度以及壁厚减薄的局部性或普遍性,已经有资料提出直接用导波遥控法来测定壁厚。

超声导波检测技术的研究进展_周正干

综 述 NDT 无损检测 2006年第28卷第2期 超声导波检测技术的研究进展 周正干,冯海伟 (北京航空航天大学机械工程及自动化学院,北京 100083) 摘 要:综述近年来超声导波检测研究的最新进展。介绍导波在不同材料和结构中的频散特性及与之相关的理论成果。从导波的结构出发,分析了导波在介质中能量与位移的分布。论述了导波检测技术领域中数值分析方法和信号处理方面的一些新技术。 关键词:超声检测;导波;频散特性;有限元;边界元;信号处理 中图分类号:T G 115.28 文献标识码:A 文章编号:1000 6656(2006)02 0057 07Progress in Research of Ultrasonic Guided Wave Testing Technique ZHOU Zheng gan,FENG Hai wei (School of M echanical Engineering and Automation,Beijing University of Aeronautics and Astr onautics,Beijing 100083,China) Abstract:T he recent advances in ult rasonic g uided w ave testing technique are summar ized.Firstly,the disper se char acter istics and the r elated t heo retical r esults of the g uided wav es in differ ent mater ials and distinct structur es ar e intro duced.T hen,based o n the structure o f the g uided waves,the distr ibution o f the energ y and displacement o f guided w aves is ana lyzed.L ast ly ,some new techniques o f numer ical analy sis and signal pro cessing fo r g uided wav e no ndest ructive testing are descr ibed. Keywords:U ltr aso nic t esting ;G uided wav e;Disperse characterist ic;F inite element;Boundary element;Signal pr ocessing 相对于传统的超声波检测技术,超声导波具有传播距离远、速度快的特点,因此,在大型构件(如在役管道)和复合材料板壳的无损检测中有良好的应用前景。但目前,导波的一些机理和特性仍然不很清楚,导波的理论研究成为近年来无损检测界的热点。随着理论研究的深入,产生了很多有关导波的 新技术,促使其应用于更广泛的领域。 1 导波的分类 导波是由于声波在介质中的不连续交界面间产生多次往复反射,并进一步产生复杂的干涉和几何弥散而形成的。主要分为圆柱体中的导波以及板中的SH 波、SV 波、兰姆波(Lam b)和漏兰姆波[1]等。 根据Silk 和Bainto n 的理论[2] ,圆柱体中的导波分为 轴对称纵向模式L(0,m)(m =1,2,3, 收稿日期:2005 01 13 基金项目:国家自然科学基金资助项目(50475006) )。 轴对称扭转模式T (0,m )(m =1,2,3, )。 非轴对称弯曲模式F(n,m )(n,m =1,2,3, )。各模式中整数m 是计数变量,反映该模式在管壁厚方向上的振动形态;整数n 反映该模式绕管壁螺旋式传播形态。其中,L(0,m )和T (0,m )模式是F(n,m )模式中n =0的特例。 虽然上述定义已被广泛接受,但是针对某些具体问题,研究人员也提出了不同的导波分类方法,以利于分析在具体问题中表现出来相似特征的导波模式。如Vo gt T 等[3] 在研究部分埋地圆柱体结构中的导波散射问题时提出了单一(v ,n)模式,其中v 1对应原弯曲模式;v =0对应原纵波和扭转模式。两种模式用计数变量n 区别。两种定义方式的模式,(0,1)对应L(0,1),(0,2)对应T(0,1),(0,3)对应L(0,2),(0,4)对应T (0,2)等。 2 频散特性与频散方程 频散是导波的主要特性之一,即导波的相速度 57

超声导波检测仪操作说明

超声导波检测仪操作说明 1.准备工作 (1)将探头与仪器连接; (2)按“通道”键选择任意通道; (3)按“参数”键进入探伤参数界面,转动旋钮找到“探头类型”栏,按“确认” 键将探头修改为“表面波探头”,按“参数”键返回操作界面; 2.调整声速 (1)按“调校”键,再按“声速”对应的三角键,仪器提示“请输入起始距离: mm”, 按方向键输入适当尺寸,按“确认”键; (2)计算管子中间层直径x,按“范围”对应的三角键,再按方向键将扫查范围调 整到合适范围(一般应大于三倍x); (3)将探头放置于试样工件上,找到人工刻槽的反射回波,使一次、二次、三次 回波明显易于区分; (4)按“闸门移位”对应的三角键,再按方向键将闸门A、B分别套住一次、二 次或二次、三次回波; (5)按“声速”,再按方向键调整声速,观察屏幕回波,并读取两次波的水平数值, 直到使两次回波水平之差等于x为止; 备注:此过程中可根据需要适当调整增益值 3.制备曲线 (1)按“曲线”再按“制作”,将探头放在工件试样上,找到内壁人工刻槽回波, 并使一次、二次、三次回波明显易于区分; (2)按“闸门移位”,再按方向键,使闸门套住一次回波; (3)按“波峰记忆”找到最高反射回波,再按“自动增益”,按“确认”制作第一 点的曲线; (4)依此类推制第二、第三点的曲线; (5)按“确认”键结束曲线制作; 4.探伤 (1)将探头放置于待测工件表面之上,小范围移动探头进行扫查;(注意探头与工

件的耦合) (2)根据表面粗糙程度适当在偏差dB栏增加表面补偿; (3)当发现回波,适当移动探头,看一次、二次、三次回波是否有规律的同升同 降,如果是则判定为缺陷; (4)根据缺陷波高度是否超过曲线决定是否对其作记录; 注: (1)若在同一位置来回移动探头,草状回波较多,且位置均不发生变化,则一般 不作为缺陷; (2)如果某处移动探头,一次、二次、三次回波前后同时移位,即水平位置发生 有规律的变化,则判定为缺陷。

超声波清洗机的结构与工作原理

超声波清洗机的结构与工作原理 超声波清洗机(ultrasonic cleaner)是利用超声波振动原理,对各类几何形状复杂的精密设备进行清洗,以除去其上粘附的油脂、放射性物质、血迹及细茵等污垢物。 (一)结构超声波清洗机主要由超声波发生器、清洗槽和箱体三大部份构成。 1.超声波发生器由电源变压器及整流系统、振荡器、推动级、功率放大器及输出变压器等组成。 2.清洗槽由不锈钢槽、复合换能器和匹配电感组成。换能器枯合于不锈钢槽底部,不锈钢槽与箱架之间垫有减振装置。 3.箱体面板上装有电流表、电源开关、输出插座、频率相功串调节旋钮;其后面装有电源进线插座及保险管。 (二)工作原理超声波清洗机是利用超声波的高能量,使物质分子产生显著的声压作用,超声波振动使液体分子排列紧密时,液体分子受到压力:超声波振动使液体分子稀疏时,液体分子受到向外散开的拉力。液体分子较能承受压力,但受到拉力作用时,其排列易发生断裂,这种断裂常发生在液体中存在杂质或气泡处。液体分子断裂后,其内出现许多泡状的小空腔,这些空腔在极短的时间内闭合,同时产生巨大的瞬时压力.一般可达数干MPa。巨大瞬时压力,可使浮悬在液体中的固体表面受到急剧的破坏作用,这种超声波对液体、固体的声压作用称为“孔蚀现象”。根据此原理,该机振荡器由电子管组成锅台式电感电容振荡回路,振荡频率由电容和电感决定。电位器用来控制反馈信号,振荡号

再经锅台电容输至推动级,经电子管甲类功率放大器放大后,再经未级功宰放大,然后传至换能器,将压电电能转为机械能,从而产生超声波振动。 本文作者:常宏药机 本文链接:https://www.360docs.net/doc/526111333.html,/shownews.html?id=3066 版权所有@转载时必须以链接形式注明作者和原始出处

超声波流量计的基本原理及类型

超声波流量计的基本原理及类型 超声波流量计的基本原理及类型 刘欣荣 超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种 非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。它与水位计联动可进行敞开水流的流量测量。使用超声波流量比不用在流体中安装测量元件故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。 众所周知,目前的工业流量测量普遍存在着大管径、大流量测量困难的问题,这是因为一般流量计随着测量管径的增大会带来制造和运输上的困难,造价提高、能损加大、安装不仅这些缺点,超声波流量计均可避免。因为各类超声波流量计均可管外安装、非接触测流,仪表造价基本上与被测管道口径大小无关,而其它类型的流量计随着口径增加,造价大幅度增加,故口径越大超声波流量计比相同功能其它类型流量计的功能价格比越优越。被认为是较好的大管径流量测量仪表,多普勒法超声波流量计可测双相介质的流量,故可用于下水道及排污水等脏污流的测量。在发电厂中,用便携式超声波流量计测量水轮机进水量、汽轮机循环水量等大管径流量,比过去的皮脱管流速计方便得多。超声被流量汁也可用于气体测量。管径的适用范围从2cm到5m,从几米宽的明渠、暗渠到500m宽的河流都可适用。 另外,超声测量仪表的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。另外,鉴于非接触测量特点,再配以合理的电子线路,一台仪表可适应多种管径测量和多种流量范围测量。超声波流量计的适应能力也是其它仪表不可比拟的。超声波流量计具有上述一些优点因此它越来越受到重视并且向产品系列化、通用化发展,现已制成不同声道的标准型、高温型、防爆型、湿式型仪表以适应不同介质,不同场合和不同管道条件的流量测量。

超声导波检测技术原理

超声导波检测技术 超声导波(Ultrasonic Guided Wave)检测技术利用低频扭曲波(Torsinal Wave)或纵波(Longitudinal Wave)可对管路、管道进行长距离检测,包括对于地下埋管不开挖状态下的长距离检测。 超声导波(也称为制导波)的产生机理与薄板中的兰姆波激励机理相类似,也是由于在空间有限的介质内多次往复反射并进一步产生复杂的叠加干涉以及几何弥散形成的。但是对于管道检测,在一般管壁厚度下要产生适当的波型,则需要使用比通常超声波探伤低得多的频率,导波通常使用的频率f<100KHz,因此导波对单个缺陷的检出灵敏度与通常使用频率在MHz级别的超声检测相比是比较低的,但是导波检测的优点是能传播20~30米长距离而衰减很小,因此可在一个位置固定脉冲回波阵列就可做大范围的检测,特别适合于检测在役管道的内外壁腐蚀以及焊缝的危险性缺陷。低频导波长距离超声检测法用于管道在役状态的快速检测,内外壁腐蚀可一次探测到,也能检出管子断面的平面状缺陷。 超声导波应用的主要波型包括-扭曲波(Torsinal Wave,也简称为扭波)和纵波(Longitudinal Wave)。 扭曲波的特点是能够一边沿管子周向振动,一边沿管子轴 向传播,声能受管道内部液体影响较小(在导波检测时, 液体在管道中流动是允许的),回波信号能包含管轴方向 的缺陷信息,通常能得到清晰的回波信号,信号识别较容 易,在应用中需要换能器数量少,重量轻、费用省、因管 内液体介质而产生的扩散效应较小,波型转换较少,检测 距离较长,对轴向缺陷灵敏度高。 纵波特点是一边沿管子轴向振动,一边沿管子轴向传播, 回波幅度与缺陷性状关系不大,回波信号不如扭波清晰, 因为受管内流体流动的影响,也受探头接触面的表面状态 影响较大(油漆、凹凸等)受被测管内液体介质流动的影 响很大。 超声导波检测装置主要由固定在管子上的探伤套环(探头矩阵)、检测装置本体(低频超声探伤仪)和用于控制和数据采样的计算机三部分组成。 探头套环由一组并列的等间隔的环能器阵列组成,组成阵列的换能器数量取决于管径大小和使用波型,换能器阵列绕管子周向布置。 探伤套环的结构按管道尺寸采用不同节环-可以是一分为二,用螺丝固定以便于装拆(多用于直径较小的管道),或者充气式环(柔性探头套环),靠空气压力紧套在管子上(多用于直径较大的管道)。接触探头套环的管子表面需要进行清理但无须耦合剂,亦即除安放探头环的位置外,无需在清除和复原大面积包覆层或涂层上花费功夫,这也是超声导波检测的优点之一。超声导波探头套环上的探

超声波的清洗作用原理

镀膜工艺与镀膜系统配置 镀膜工艺与镀膜系统配置 作者:弗兰克泽蒙(Frank Zimone,CEO of Denton )等 译者:美国丹顿设备有限公司北京代表处冯学丽 我们认为:既然镀膜设备是为镀膜生产服务的,那么我们设计制造的镀膜系统就必须适应用户的生产工艺,而不是让用户改变生产工艺来适应我们的镀膜机。------弗兰克泽蒙 概要 在过去的15-20年中, 光学薄膜镀制设备出现了令人瞩目的变化。以前,一般的镀膜机都是纯人工操作,最先进的也只是半自动控制, 都必须依*高水平的操作人员来保证镀膜产品的一致性。而现在,高质量的光学镀膜机已经是一个集成了系列智能化模块(子系统)的全自动系统。这些智能模块(子系统)通常在多个微处理器的指令下结成局域网(LAN), 而局域网又可并入整个工厂的自控系统。用户经验的不断增加使他们对设备性能的要求也越来越苛刻,以至于我们现在不难发现用户在购买镀膜机的同时,还要求厂家提供相关工艺技术。本文探讨的是当今光学镀膜系统中可采用的子系统及部件,以及镀膜工艺在部件选择和真空室配置等方面所起的决定性作用。尽管其他技术日渐流行, 但鉴于物理蒸镀依然是目前适用性最强、应用最广泛的手段,因此本文中的讨论只涉及物理蒸镀技术。 I. 概述 长期以来, 人们主要依*蒸镀法来镀制用于精密光学和眼视光学的电介质薄膜。为加快基片的预清洁和薄膜生长过程中的改性,全世界数以千计的镀膜系统都采用电阻式热蒸发源和电子束蒸发源。一些系统还同时采用颇具动能的离子源,与前两者搭配使用。虽然用磁控溅射法镀制电介质薄膜在某些专业领域非常成功, 但由于生产成本居高不下,而且只能满足相对简单的工艺要求(溅射薄膜中的压力控制是过程限制参数),使得它的应用范围较窄,仅限于像建筑玻璃镀膜那样的高产量行业。同样,二次离子束溅射法的应用也仅限于那些要求沉积率越低越好的工艺如:环形激光回转仪,波长多路分配(WDM)滤波器。众所周知,多数的光器件的表面都是弯曲不平的,而蒸发所需的长距离同时有利于曲面镀膜的均匀。结合高沉积率,现代控制与自动化技术(尤其是石英晶体沉积速率控制器和实时光学监控),蒸发系统为多种光学薄膜的镀制提供了切实可行的解决方案。 无论是规格尺寸还是工作性能,制造现代化蒸发镀膜系统所需部件和模块(子系统)的可选性都是有限的。基本上我们可以将自动化、机械和控制三大部分地制造成本视为整个系统的固定成本,这是因为:1)这三部分的成本为系统成本的主要构成来源;2)而且不管系统大小,这三部分的成本基本不变。以上两个因素导致了系统制造成本与系统产能的反比关系。一般来讲,现代化蒸发系统的产能与制造成本呈几何量级的比例关系。 尽管镀膜系统制造厂家对此观点倍感欣慰,但如果从另一面来思考一下,我们就会发现一个同样显著的经济问题:即当价格降低时,系统产能发生大幅度下降,以至于系统的规格明显地小于最低标准尺寸(图1)。目前,一台内容积175L以上, 大抽速(空气抽速>1500升/秒),具有离子束辅助沉积功能(IBAD)的现代化镀膜设备的价值约为25万美金。估计近期很难出现重大技术突破来大幅度降低现有成本。在过去几年中,越来越多的用户要求镀膜系统制造厂家提供高性能的小规格、简便型光学镀膜系统,同时,用户对性能的要求不仅没有降低,反而有所提高,特别是在薄膜密度和保证吸水后光谱变化最小化等方面。现在,系统的平均尺寸规格已经在降低,而应用小规格设备进行光学镀膜的生产也已经转变成为纯技术问题。因此,选用现代化光学镀膜系统的关键取决于对以下因素的认真考虑:即,对镀膜产品的预期性能,基片的尺寸大小和物理特性以及保证高度一致性工艺所必需的所有技术因素。 II.光学性能-公差三角形 要想保证镀膜产品的一致性,我们在开发镀膜系统时一定要确保系统的各个方面相互匹配,这不仅包括设计、工艺和机械、预期的性能指标,还要考虑制造过程中出现的可预见误差。我们认为:既然镀膜设备是为镀膜生产服务的,那么我们设计制造的镀膜系统就必须适应用户的生产工艺,而不是让用户改变生产工艺来适应我们的镀膜机。但遗憾的是,现在使用的许多

超声波检测技术及应用

超声波检测技术及应用 刘赣 (青岛滨海学院,山东省青岛市经济开发区266000) 摘要:无损检测(nondestructive test)简称NDT。无损检测就是不破坏和不损伤受检物体,对它的性能、质量、有无内部缺陷进行检测的一种技术。本文主要讲的是超声波检测(UT)的工作原理以及在现在工业中的应用和发展。 关键词:超声波检测;纵波;工业应用;无损检测 1.超声波检测介绍 1.1超声波的发展史 声学作为物理学的一个分支, 是研究声波的发生、传播、接收和效应的一门科学。在1940 年以前只有单晶压电材料, 使得超声波未能得到广泛应用。20 世纪70 年代, 人们又研制出了PLZT 透明压电陶瓷, 压电材料的发展大大地促进了超声波领域的发展。声波的全部频率为10- 4Hz~1014Hz, 通常把频率为2×104Hz~2×109Hz 的声波称为超声波。超声波作为声波的一部分, 遵循声波传播的基本定律, 1.2超声波的性质 1)超声波在液体介质中传播时,达到一定程度的声功率就可在液体中的物体界面上产生强烈的冲击(基于“空化现象”)。从而引出了“功率超声应用技术“例如“超声波清洗”、“超声波钻孔”、“超声波去毛刺”(统称“超声波加工”)等。2)超声波具有良好的指向性 3)超声波只能在弹性介质中传播,不能再真空中传播。一般检测中通常把空气介质作为真空处理,所以认为超声波也不能通过空气进行传播。 4)超声波可以在异质界面透射、反射、折射和波型转化。 5)超声波具有可穿透物质和在物质中衰减的特性。 6)利用强功率超声波的振动作用,还可用于例如塑料等材料的“超声波焊接”。 1.2超声波的产生与接收 超声波的产生和接收是利用超声波探头中压电晶体片的压电效应来说实现的。由超声波探伤仪产生的电振荡,以高频电压形式加载于探头中压电晶体片的两面电极上时,由于逆压电效应的结果,压电晶体片会在厚度方向上产生持续的伸缩变形,形成了机械振动。弱压电晶体片与焊件表面有良好的耦合时,机械振动就以超声波形式传播进入被检工件,这就是超声波的产生。反之,当压电晶体片收到超声波作用而发生伸缩变形时,正压电效应的结果会使压电晶体片两面产生不同极性的电荷,形成超声频率的高频电压,以回波电信号的形势经探伤仪显示,这就是超声波的接收。 1.3超声波无损检测的原理 超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种

超声导波检测技术的发展与应用

2008大庆石化情报课题 超声导波检测技术的发展与应用 王学增侯贵富刘华王辉 李媛媛李健奇 大庆石化工程检测技术公司 2008年12月8日

超声导波检测技术的发展与应用 相对于传统的超声波检测技术,超声导波具有传播距离远、速度快的特点,因此在大型构件(如在役管道)和复合材料板壳的无损检测中有良好的应用前景。 一、超声导波技术的原理 1.1超声导波的产生 机械振动在弹性介质中的传播称为弹性波(声波)。将弹性介质定义为波导,在波导中传播的超声波称为超声导波。超声波的本质是机械振动,在扰动源的激发下产生,并通过介质传播,因而它既携带扰动源的信息,同时又包含介质本身的特征。 导波是由于声波在介质中的不连续交界面间产生多次往复反射,并进一步产生复杂的干涉和几何弥散而形成的。 导致超声波弥散的原因有物理弥散和几何弥散。物理弥散是由于介质的特性而引起的,而几何弥散是由于介质的几何效应引起。超声导波技术则是利用传播介质几何上某些特征尺寸而导致的几何工件往往有很多声学性质不连续的交界面存在。当介质中有一个以上的交界面存在时,超声波就会在这些界面间产生多次往复反射,并进一步产生复杂的干涉作用,由于受到这些界面几何尺寸的影响,超声波的传播速度将依赖于波的频率,从而导致波的几何弥散。由于超声波在交界面上的复杂行为,如果工件的交界面复杂无规则,则导波信号很难识别,所以导波技术一般用于特殊的规则的工件(板、管、棒等)检测。无缝管中的超声导波技术则是利用管子的几何效应,在管子中

激发导波。导波可沿轴向传播数米至数十米,因此利用管壁中沿管子轴向传播的导波可对管子进行长距离快速无损检测。 1.2 导波的频散特性和谐振模式 1.2.1导波的频散特性 当把被测物件视为无限均匀弹性介质时,各种类型的反射波、透射波以及界面等以恒定的速度传播,传播速度只与传播介质本身材质有关。而当超声波倾斜入射到各向同性的管子边界上,波源处的机械振动在管子中传播时,由于管子自由表面的反射,波运动变为轴向运动和径向运动的合成,使得超声波被拘束在管状的边界内而形成导波。 频散是导波的特征之一,即超声波的相速度随频率不同而有所变化。频散特性是导波应用于复合材料无损检测的主要依据。由于导波脉冲由多个不同频率的谐波成分叠加而成,介质质点振动是各个波作用下振动的合成,质点振动最大振幅的传播速度(群速度)不同于各单个波的传播速度(相速度),导波能量以群速度向前传播,相速度则随频率的不同而有所改变。 导波在介质中的传播特性与介质特性有很大的关系。目前的研究已不仅仅局限于导波在各向同性弹性介质中的传播特性,还涉及到各项异性和具有黏弹性的材料。 导波相速度不仅取决于探头频率,还与管材的特性(包括材质的声学性质和规格尺寸)有关,即使是同类材料的管子,如果其壁厚和直径不同,其频散曲线也不同。这给导波技术的实际检测应用带来了

管道超声导波检测技术

管道超声导波检测技术 发表时间:2018-08-14T11:41:10.603Z 来源:《防护工程》2018年第7期作者:张加恬[导读] 超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为国内外前沿的管道检测技术 浙江赛福特特种设备检测有限公司浙江杭州 310000 摘要:超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为国内外前沿的管道检测技术。超声导波技术作为新型的无损检测技术,因为其具有检测距离长、速度快、成本低并且可以检测到一般常规检测器无法检测的地方,例如有套管或者埋地管道等特殊管道。本文通过介绍管道超声导波检测技术的一些基础理论知识,提出这一检测技术的应用关键,对此,为以后人们能广泛应用管道超 声导波技术提出合理化的建议。 关键词:超声导波技术;管道;检测技术 在化工及其相关类工厂中大量压力管道被集中在管廊上,沿着装置或在厂区外布置。管廊上压力管道的距离长,离地距离高,而常规检测技术是单点检测,对于数量庞大的管道,其检测成本高,效率低。超声导波检测技术具有检测距离长,效率高且可以同时检测管道内外壁的优点。超声导波检测技术作为一种长距离、全范围的检测手段,已经发展成为重要的管道检测技术。 1 超声导波技术 1.1基本原理 导波原理好像平板中的板波,它发出的超声波频率比板波更低,它横穿整个管壁,并可以继续沿管壁传播上百米。当在传播过程中碰到缺陷、结构变化的地方,脉冲波会发生反射并沿管壁传播到传感器而被接收。这一特殊的工作原理决定了管道超声波可以应用于工业企业中大范围、远距离的检测中去,实现全覆盖管道壁。 1.2导波检测技术的应用范围、优缺点 应用于:管道、管状设备等。检测管道类型:无缝管、纵焊管等。优点:(1)一般常规超声波检测只能检测到管壁一个点的腐蚀情况,而管道导波检测技术可以利用一个检测点,从两个方向检测到几米甚至上百米管道腐蚀情况。(2)可以检测到常规检测技术无法检测到的地方,如埋地管道等特殊管道。(3)检测速度快、效率高、全方位覆盖,无漏检。(4)可敏感地感应到横截面检测面的金属损失,检测深度也达到管道横截面的4%。缺点:(1)超声导波不能对缺陷准确定性,定量也是不准确的,对可疑地方只能再根据其他检测方法进行进一步检测。(2)超声导波检测技术很难将单个点状缺陷和轴向条状缺陷检测出来。(3)焊接处的管道因为结构发生变化影响整个检测的长度和准确度。 2 弯管检测研究现状 导波在弯头部位容易发生频散和模态转换,并且导波能量将主要集中在弯头的背弯部位。因此导波检测弯头时,容易发现处于弯头背弯部位的缺陷,而可能漏检内弯的缺陷。在弯头生产时,弯头背弯处壁厚将小于内弯壁厚,且背弯处受到管道中介质冲刷的影响,更容易产生缺陷。因此采用超声导波检测弯头部位缺陷是可行的,但其难点在于信号分析。国内外对于弯管的研究还较少。 2.1国内研究概况 目前大多数从事导波检测的科研人员主要针对的是直管道的缺陷检测展开的研究,然而管道系统里的直管道绝大部分是 90°弯曲管道连接起来的,研究导波在弯曲管道中的传播在近年来变成一个热门的话题。学者已经对导波在弯曲处的传播特性进行了研究,并对弯管中缺陷的进行了检测,模态具有检测弯曲管道外侧区域的能力。也有学者通过改变90度弯头的曲率半径进行试验,模态在不同的曲率半径下,穿过90度弯头的能力(即透射系数)。 2.2导波检测仪器对比 超声导波的激励方式主要有压电晶片和磁致伸缩,相比于压电晶片式导波仪器,磁致伸缩激励方式易于实现非耦合状态下检测,且易于激励扭转模态导波。其中磁致伸缩导波检测是通过磁致伸缩效应和逆磁致伸缩效应激发和接收超声导波信号。铁磁体在外磁场作用下会引起磁畴的变化,而磁畴的变化也引起晶格的变形,从而产生振动激发应力波。反之,在磁场的作用下,铁磁体中晶格的变化会改变磁畴,从而影响外磁场的变化。磁磁致伸缩仪器的功放研制是关键点和难点。压电晶片激励超声导波的研究难点和热点在于晶片的研制。采用压电方式激励导波时难以激励纯正的扭转模态,但是很容易激励纵向模态导波,而磁致伸缩激励方式正好相反。在价格方面,压电晶片导波检测仪器比磁致伸缩导波仪器更昂贵。 3 超声导波检测方法 经过这么多年的发展,超声导波检测技术在压力管道中进行检测的技术得到了国内外很多研究机构的关注与研究。因为在实际生产作业中非常需要利用先进的检测技术对压力管道检测管道情况,所以超声导波技术逐渐浮出水面,成为管道检测的一大技术。 3.1单一模式导波检测 一般来说,激励源产生的波是处于其所在频域范围内所有的模式,是很复杂的,几乎是没办法直接利用这种信号直接进行分析的。但是如果利用一些特定的激励形式把复杂的信号转化成具有单一模式的信号,这样将大大减少工作强度。当前在国外研究领域,超声导波检测经常使用的单一模式导波是 L的模式。采用L模式的导波的优点在于:(1)在某个固定的频率带宽内,这种模式下的信号基本都是非频散的,意思就是导波的群速度和相速度都不会随着频率的变化而发生巨大变化,所以这样当导波进行传播时是相对稳定的,几乎不发生变形;(2)这种模式下的导波的传播速度是最快的,这样会使其他杂乱的、不需要利用的信号处在后面;(3)这种方法对内表面和外表面的灵敏度都很高,因此这种模式的导波不但可以检测内外表面的损伤,还可以沿径向方向进行检测。 3.2模态声发射技术 声发射技术是近五十年才发展起来的,但是因为其有很大的优势所以发展很迅速。这种技术是利用其在发生作用的时候可以快速释放能量对管带物体进行检测的,它的优势在于能够形成动态检测,而且覆盖面广。 3.3多模式导波检测

超声导波技术-3优势和局限性

2.2超声导波检测技术 2.2.1超声导波检测技术的工作原理 超声波检测技术利用探头发射超声导波(低频扭曲波或纵波),通过管道内外壁反射波的时间差来判定壁厚和腐烛情况[30],可用于各种管道进的缺陷检测,包括对于地下埋管不开挖状态下管道的长距离检测等。导波检测技术是一种新兴的无损检测技术,现正随着它发展势头的迅猛,应用越来越广泛。 超声导波检测的工作原理:探头受到激励信号发射超声导波,导波信号包裹管道的整个圆周和整个壁厚,并沿着管道向远处传播;在传播过程中遇到缺陷时,会在缺陷处返回一定比例的反射波,利用探头传感器接收到的内外壁反射波的时间差来识别和判断缺陷,并对其定位。对于有缺陷的的管道,缺陷处的壁厚必定有所变化,利用内壁或外壁产生反射信号,被传感器接收的返回信号-反射波就会产生时间差,根据缺陷产生的附加波型进行处理可以识别的回波信号,因此可以检测出管道内外壁由腐蚀或侵蚀引起的缺陷。 2.2.2超声导波检测技术的优势 导波检测具有直接和定量化的特点,数据损失也可由相关的仪器和软件获得,因此有较高的灵敏度[30],相对其他检测方法优势明显。 导波检测技术的主要优势: 1) 操作使用较方便,检测点只要选取得当,长距离检测的距离就大大增加; 2) 检测迅速,在管道360度安装好探头后打开导波检测仪,几分钟即可对管道的正负方向完成检测; 3) 检测能力强,对管道结构特征和缺陷特征分辨能力强[31]; 4) 能够检测某些人员无法到达的区域,如海平面以下管道、埋地管道等[31]; 5) 灵敏度高,截面损失率超过2%的缺陷都可以被检测出来[31]; 6)—次安装后,进行预处理的检测点可以保留便于以后的定期复查,如果是重要管段,可安放导波检测仪器全天候监测; 7)不容受到外界因素影响,如温度、压力和内部流动介质等[31]。 2.2.3超声导波检测技术的局限性 超声导波检测虽然相对于传统常规的检测方法有很明显的优势,但一项技术

超声技术在医疗方面的应用

超声技术在医疗方面的应用 超声技术在医疗方面的独特疗效已得到医学界的普遍认可,并越来越被临床重视和采用。国内外医学专家利用超声技术在治疗肢体软组织损伤、肢体慢性疼痛康复、肢体运动康复方面积取得了非常好的疗效,并把超声治疗拓展到中医科、骨科、外科、内科、儿科、肿瘤科、男科、妇产科等,在临床得以广泛应用,取得了满意的治疗效果。 机械 超声振动可引起组织细胞内物质运动,由于超声的细微按摩,使细胞浆流动、细胞震荡、旋转、摩擦、从而产生细胞按摩的作用,也称为“内按摩”这是超声波治疗所独有的特性,可以改变细胞膜的通透性,刺激细胞半透膜的弥散过程,促进新陈代谢、加速血液和淋巴循环、改善细胞缺血缺氧状态,改善组织营养、改变蛋白合成率、提高再生机能等。 温热 人体组织对超声能量有比较大的吸收能力,因此当超声波在人体组织中传播过程中,其能量不断地被组织吸收而变成热量,其结果是组织的自身温度升高。即内生热。超声温热效应可增加血液循环,加速代谢,改善局部组织营养,增强酶活力。一般情况下,超声波的热作用以骨和结缔组织为显著,脂肪与血液为最少。 理化 超声的机械效应和温热效应均可促发若干物理化学变化。 a.弥散作用:超声波可以提高生物膜的通透性,对钾,钙离子的通透性发生较强的改变。从而增强生物膜弥散过程,促进物质交换,改善组织营养。 b.触变作用:超声作用下,可使凝胶转化为溶胶状态。对肌肉,肌腱的软化作用,以及对一些与组织缺水有关的病理改变。如类风湿性关节炎病变和关节、肌腱、韧带的退行性病变的治疗。 c.空化作用:空化形成,或保持稳定的单向振动,或继发膨胀以致崩溃,细胞功能改变,细胞内钙水平增高。成纤维细胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,胶原张力增加。 d.聚合作用与解聚作用:水分子聚合是将多个相同或相似的分子合成一个较大的分子过程。大分子解聚,是将大分子的化学物变成小分子的过程。可使关节内增加水解酶和原酶活性增加。 e.消炎,修复细胞和分子:超声作用下,可使组织PH值向碱性方面发展。缓解炎症所伴有的局部酸中毒。超声可影响血流量,产生致炎症作用,抑制并起到抗炎作用。使白细胞移动,促进血管生成。从而达到对受损细胞组织进行清理、激活、修复的过程。 临床应用编辑 软组织损伤及慢性疼痛 广泛用于软组织损伤及慢性疼痛的治疗。超声波的穿透力强,可轻易深入到体内10-15cm。提高治疗部位细胞膜的通透性、改善血液循环、促使细胞修复过程的发生和发展;同时,人体神经和体液系统对超声能的作用具有较强的敏感性,其形成的神经反射和体液反应,具有综合调节人体的机制,特别是对陈旧性损伤有特效,超声在传播时,超声能量的方向集中,具有独特的高能量特性。主要适应症:急、慢性软组织损伤、软组织慢性疼痛、颈椎病、腰椎间盘突出症、慢性腰肌劳损、风湿类关节炎、类风湿性关节炎、慢性血肿、慢性膝盖筋腱疼痛等 肢体康复

先进的超声导波无损检测技外文文献翻译、中英文翻译、外文翻译

先进的超声导波无损检测技术 炼油石化工业和其它工业所用的管道在长时间服役后,腐蚀是一个经常被人们关心的问题,尤其是管外(即使是加装了防腐层后管外壁)的腐蚀问题,一旦失效,将给生产和人身带来严重的损害。因此,管道安全运行,首先要适时检测其管壁强度,被腐蚀或有裂纹﹑渗漏等要有预警。 管外防腐层的剥除费用高,不但费时、费工,而且当遇有公路交叉时,管道只有进行大规模挖掘才能进行腐蚀检测。这就引出了具有世界先进水平的较理想的“超声导波技术”,现已由国内开发研究成功。对管壁的这种超声导波检测为上述问题提供了一个非常好的解决方法。在一处安装后,可以沿管道传播若干米,反射的回波便可显示管道的腐蚀或其它特征。 超声导波检测技术利用低频扭曲波或纵波可对管路、管道进行长距离检测,包括对于地下埋管不开挖状态下的长距离检测。超声导波(也称为制导波)的产生机理与薄板中的兰姆波激励机理相类似,也是由于在空间有限的介质内多次往复反射并进一步产生复杂的叠加干涉以及几何弥散形成的。但是对于管道检测,在一般管壁厚度下要产生适当的波型,则需要使用比通常超声波探伤低得多的频率,导波通常使用的频率f<100KHz,因此导波对单个缺陷的检出灵敏度与通常使用频率在MHz级别的超声检测相比是比较低的,但是导波检测的优点是能传播20~30米长距离而衰减很小,因此可在一个位置固定脉冲回波阵列就可做大范围的检测,特别适合于检测在役管道的内外壁腐蚀以及焊缝的危险性缺陷。低频导波长距离超声检测法用于管道在役状态的快速检测,内外壁腐蚀可一次探测到,也能检出管子断面的平面状缺陷。 超声导波应用的主要波型包括-扭曲波(也简称为扭波)和纵波。扭曲波的特点是能够一边沿管子周向振动,一边沿管子轴向传播,声能受管道内部液体影响较小(在导波检测时,液体在管道中流动是允许的),回波信号能包含管轴方向的缺陷信息,通常能得到清晰的回波信号,信号识别较容易,在应用中需要换能器数量少,重量轻、费用省、因管内液体介质而产生的扩散效应较小,波型转换较少,检测距离较长,对轴向缺陷灵敏度高。

超声波清洗的工作原理

上千个大气压力,数百度的高温,利用闭合时的爆炸冲击波破坏不溶性污物而使它们分散于 清洗液中,当团体粒子被油污裹着而粘附在清洗件表面时,油被乳化, 而达到清洗件表面净化的目的。 由于超声波固有的穿透力, 所以可以清洗各种表面复杂, 形 状特异的物件,对小孔和缝隙都有很好的清洗效果, 对不吸音或吸音系数小的物体清洗效果 最佳。 正确使用超声波设备 1、了解超声波 用超声波可以分为三种,即次声波、声波、超声波。次声波的频率为 的频率为20Hz~20kHz ;超声波的频率则为 20kHz 以上。其中的次声波和超声波一般人耳是 听不到 的。超声波由于频率高、波长短,因而传播的方向性好、穿透能力强,这也就是为什 么设计制作超声波清洗机的原因。 2、超声波如何完成清洗工作 超声波清洗是利用超声波在液体中的社会化作用、 加速度作用及直进流作用对液体和污 物直接、间接的作用,使污物层被分散、乳化、剥离而达到清洗目的。目前所用的超声波清 超声波清洗的应用原理 超声波清洗的应用原理是由超声波发生器发出的高频振荡信号, 通过换能器转换成高频 机械振荡而传播到介质, 清洗溶剂中超声波在清洗液中疏密相间的向前辐射, 使液体流动而 产生数以万计的微小气泡,存在于液体中的微小气泡(空化核)在声场的作用下振动, 当声 压达到一定值时,气泡迅速增长,然后突然闭合, 在气泡闭合时产生冲击波,在其周围产生 固体粒子即脱离,从 20Hz 以下;声波

洗机中,空化作用和直进流作用应用得更多。 (1) 空化作用:空化作用就是超声波以每秒两万次以上的压缩力和减压力交互性的高 频变换方式向液体进行透射。在减压力作用时,液体中产生真空核群泡的现象,在压缩力作 到精密洗净目的。 (2) 直进流作用:超声波在液体中沿声的传播方向产生流动的现象称为直进流。声波 强度在cm2时,肉眼能看到直进流,垂直于振动面产生流动,流速约为 进流使被清洗物表面的微油污垢被搅拌, 污垢表面的清洗液也产生对流,溶解污物的溶解液 与新液混合,使溶解速度加快,对污物的搬运起着很大的作用。 (3) 加速度:液体粒子推动产生的加速度。对于频率较高的超声波清洗机,空化作用 就很不显著了,这时的清洗主要靠液体粒子超声作用下的加速度撞击粒子对污物进行超精密 清洗。 3、超声波清洗机的原理是什么 超声波换能器将高频振荡电讯号转换成高频机械振荡,以纵波的形式在清洗液中辐射。 在辐射波扩张的半波期间, 清洗液的致密性破坏并形成无数直径为 50- 500 ^m 的气泡。这种 气泡中充满着溶液蒸汽。在压缩的半波期间,气泡讯速闭合,会产生上百Mpa 的局部液压撞 击。这种现象称为“空化”效应。 在“空化”效应的连续作用下, 工件表面或隐蔽处的污垢 被爆裂、剥落。同时,在超声的作用下,清洗液的渗透作用加强;脉动搅拌加剧;溶解、分 散和乳化加速;从而将工件彻底清洗干净。 4、超声波清洗机 是由哪几部分构成的 超波清洗机主要由超声波清洗槽和超声波发生器两部分构成。 好、耐腐蚀的优质不锈钢制成, 底部安装有超声波换能器振子; 超声波发生器产生高频高压, 用时,真空核群泡受压力压碎时产生强大的冲击力, 由此剥离被清洗物表面的污垢, 从而达 10cm/s 。通过此直 超声波清洗槽用坚固弹性

超声波技术在医疗上的应用

超声波技术及其应用报告超声波技术在医疗上的应用 硕士研究生: 学号: 学科: 报告日期:

超声波技术及其应用报告 摘要 频率高于可听声频范围(20KHZ以上)的机械波,称为超声波(ultrasonic),简称超声。它方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。本文主要介绍超声波技术在医疗上的应用。主要由超声波在医疗检测上的应用和超声波在治疗上的应用两部分组成。主要内容包括B超,彩超,超声全息影像技术,超声波手术刀,超声波碎石技术。文章论述了这些超声波技术的基本原理,相比于传统技术的优缺点,存在的局限和发展前景,以及超声波技术要突破的一些技术瓶颈和将来的发展方向。由于篇幅及理论基础有限,本文避免了难以理解的公式推导和证明,只是定性地,原理性地介绍了超声波在医疗上应用的这些技术。 关键词:超声检测;手术刀;超声全息影像技术;超声碎石;超声理疗 - -I

超声波技术及其应用报告 - - II 目录 摘 要 ....................................................................................................................... I 1.1 技术应用的领域 (3) 1.2 技术应用特点及原理 (3) 1.3 国内外情况分析 (6) 1.3.1 国外情况 (7) 1.3.2 国内情况 (7) 1.4 系统组成 (7) 结论 (10) 参考文献 (11)

超声波气体流量计基本原理介绍

超声波气体流量计基本原理介绍 超声波流量计一般可分为两大类:传播时间式超声波流量计和多普勒超声波流量计。在含有悬浮粒子的流动流体中,可以利用声学多普勒效应测量多普勒频移来确定媒质流速v,这种方法称为超声波多普勒法。 因为目前市场上的超声气体流量计产品都是传播时间式超声波流量计,所以下文将重点阐述传播时间式超声波流量计的原理。当超声波在流动的媒质中传播时,相对于固定坐标系统,超声波速度与在静止媒质中的传播速度有所不同,其变化值与媒质流速有关。因此根据超声波速度的变化量可以求出媒质的流速,传播时间式超声波流量计就是根据这一原理设计而成的。超声波流量计由两大部分组成:测量变换器部分和电子电路部分。 测量变换器又称为换能器,包括超声波发射器、接收器、声楔以及相应的机械连接组件等。 电子电路包括超声波的发射、接收电路,信号处理电路,流量数据指示或输出电路等。 超声波传播时间法测量流量的原理 时差法是通过测量超声波脉冲顺流和逆流的传播时间差来得到媒质流速的一种方法。参看图1-1,在管道两侧分别装置有两个收发通用型超声波换能器R 和T,管道中的媒质以速度u向前流动。

Fig.1-1管道内流速断面和超声射线的轨迹 图中的两个换能器在发射、接收状态交替工作,当T 发射R 接收时称为顺流发射状态,反之,R 发射T 接收时称为逆流发射状态。设顺流发射时超声脉冲的传播时间为1t ,而逆流发射时超声脉冲的传播时间为2t ,则有 ???????+-=++=τθθτθθcos sin /cos sin /2221u c D t u c D t (1-1) 式中,u 为管道中媒质流速,2c 为超声波在静止媒质中的声速,e c l ττ+=1 12;这里1l 为声楔(O-P)或(B-C)之长度,1c 为超声波在管壁中的声速,1 1c l 为超声脉冲通过声楔的时间,e τ为电路延迟时间。 考虑到一般情况下22c >>2u ,根据1-1式可以得到流速的计算公式: ???? ??-???????+=1222 112sin sin 1t t D c D u θθτ (1-2) 根据1-2式可以得出管道内流体中的声速的计算公式:

超声导波在铁轨故障检测方面的应

超声导波在铁轨故障检测方面的应用 ?摘要: 作者提供了他们在实际运行和测试用铁路上进行的实验结果。给出的实验结果频率稳定在40 到80kHz 这个超声导波的范围内。作者也给出了包括铁轨和一系列波长漂移的离散方程式解的理论结果。不接触气介式电磁声传感器(EMATS被作为铁路发出的声音能量的接收器。提出了应用气介式传感器来测绘铁轨辐射图像的实验结果。讨论了应用EMATs切割铁轨用以模拟铁轨故障横截面的技术。本文结尾总结了作者从他们的工作 中所得出的结论。 1、简介: 本论文旨于激发对超声导波可能在完善检测铁轨故障方面提供有效帮助的可能性的讨论。本文不在任何角度上提供或评测铁轨检测的方法,而是出于认识到世界铁路网的正常运行是基于铁轨结构的完整性。铁轨结构的完整性综合了使用年限、压力疲劳程度、制造缺陷、腐蚀等一系列因素。这些因素一直伴随着我们,也随着时间的累积变得更为显著。在某个时间点上,之前提到的平时不被注意的因素中,有些将会使部分铁轨路段成为不可预测的危险的‘定时炸弹' 。 虽然铁轨检测是常规性的进行,但不代表他们能满足铁路运营者所需的可信性和经济性。理论上我们将现如今应用的方法成为‘超声波体波'方法。这种方法的缺陷与他们有限的覆盖率、超声波稀薄化的特点等一系列因素相关。对于被覆盖遮挡的表面故障,现如今的方法将完全不起作用。而超声导波不同之处在于,它可以在铁轨中传播极远距离,可达2130 米,同时可穿透铁轨的整个体积。 在本文中,我们将讨论基于在实际运行和测试用铁路上进行的导波实验的发现。所用 设施包括了交通科技中心(TTQ、Pueblo公司、Bay Area Rapid Tran sit (BART公司测试轨道,Hayward 公司和Nittany and Bald Eagle Railroad (N and BE RR)(一段实际运行的短线铁路)。 我们希望我们的讨论可以激发更多对超声导波可能在完善检测铁轨故障方面提供有效帮助的可能性的讨论。

相关文档
最新文档