三角形的重心定理及其证明

三角形的重心定理及其证明
三角形的重心定理及其证明

三角形的重心定理及其证明

积石中学王有华

同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好.

已知:(如图)设ABC V 中,L 、M 、N 分

别是BC 、CA 、AB 的中点.

求证:AL 、BM 、CN 相交于一点G ,且

AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1. 证明1(平面几何法):(如图1)假设中

线AL 与BM 交于G ,而且假设C 与G 的连线与AB 边交于N ,首先来证明N 是AB 的中点.

现在,延长GL ,并在延长线上取点D ,使GL=LD 。因为四边形BDCG 的对角线互相平分,所以BDCG 是平行四边形.从而,B G ∥DC ,即GM ∥DC.但M 是AC 的中点,因此,G 是AD 的中点.

另一方面,GC ∥BD ,即NG ∥BD.但G 是AD 的中点,因此N 是AB 的中点.

另外,G 是AD 的中点,因此AG ﹕GL=2﹕1.同理可证: BG ﹕GM=2﹕1, CG ﹕GN=2﹕1.

这个点G 被叫做ABC V 的重心.

证明2(向量法):(如图2)在ABC V 中,设AB 边上的中B C

线为CN ,AC 边上的中线为BM ,其交点为

G ,边BC 的中点为L ,连接AG 和GL ,因

为B 、G 、M 三点共线,且M 是AC 的中点,

所以向量BG u u u r ∥BM u u u u r ,所以,存在实数1λ ,使得 1BG BM λ=uuu r uuu u r ,即 1()AG AB AM AB λ-=-u u u r u u u r u u u u r u u u r

所以,11(1)AG AM AB λλ=+-u u u r u u u u r u u u r

=111(1)2

AC AB λλ+-u u u r u u u r 同理,因为C 、G 、N 三点共线,且N 是AB 的中点. 所以存在实数2λ,使得 22(1)AG AN AC λλ=+-u u u r u u u r u u u r

= 221(1)2

AB AC λλ+-uu u r uuu r 所以 111(1)2AC AB λλ+-u u u r u u u r = 221(1)2

AB AC λλ+-u u u r u u u r 又因为 AB uuu r 、 AC u u u r 不共线,所以 1221112112λλλλ=-=-???

所以 1223λλ== ,所以 1133AG AB AC =+uuu r uu u r uuu r . 因为L 是BC 的中点,所以GL GA AC CL =++u u u r u u u r u u u r u u r =111()332AB AC AC CB -+++u u u r u u u r u u u r u u u r =121()332AB AC AB AC -++-uuu r uuu r uuu r uuu r =1166

AB AC +uuu r uuu r ,即2AG GL =u u u r u u u r ,所以A 、G 、L 三点共线.故AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1

C

证明3(向量法)(如图3)在ABC V 中,

BC 的中点L 对应于1()2OL OB OC =+u u u r u u u r u u u r , 中线AL 上的任意一点G ,有

(1)OG OA OL λλ=+-u u u r u u u r u u u r 1122OA OB OC λλλ--=++u u u r u u u r u u u r

.同理,AB 的中线

CN 上的任意点G ′,11

22OG OC OA OB μμ

μ--'=++u u u u r u u u r u u u r u u u r ,

求中线AL 和CN 的交点,就是要找一个λ和一个μ,使OG OG '=u u u r u u u u r .因此,我们令12μλ-=,1122λμ--=,12λ

μ-=.解之得13λμ==.所以111333OG OG OA OB OC '==++u u u r u u u u r u u u r u u u r u u u

r

.由对称性可知,

第三条中线也经过点G . 故AL 、CN 、BM 相交于一点G ,且易证AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1.

(完整word版)初中几何三角形五心及定理性质

初中几何三角形五心定律及性质 三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。 三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称 重心定理 三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。 2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。 5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。 外心定理

三角形外接圆的圆心,叫做三角形的外心。 外心的性质: 1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。 2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或 ∠BOC=360°-2∠A(∠A为钝角)。 3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。 5、外心到三顶点的距离相等 垂心定理 图1 图2 三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质: 1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。 2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线(Euler line)) 3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。 4、垂心分每条高线的两部分乘积相等。 推论: 1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。(图1) 2. 三角形的垂心是其垂足三角形的内心。(图1) 3. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。(图2) 定理证明 已知:ΔABC中,AD、BE是两条高,AD、BE相交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB 证明: 连接DE ∵∠ADB=∠AEB=90度 ∴A、B、D、E四点共圆 ∴∠ADE=∠ABE

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --= ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理 3.1 教材证法 证明 作辅助函数 ()()()()f b f a F x f x x b a -=-- 显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且 ()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使 ()()()()0''=--- =a b a f b f f F ζζ.即()()()a b a f b f f --=ζ'. 3.2 用作差法引入辅助函数法 证明 作辅助函数 ()()()()()()?? ???? ---+-=a x a b a f b f a f x f x ? 显然,函数()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ??,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得 ()()()()0''=---=a b a f b f f ζζ?,即 ()()()a b a f b f f --=ζ' 推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ?,因为直线OT 的斜率与直线AB 的斜率相同,即有:

重心定理

重心定理 三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.上述交点叫做三角形的重心. 外心定理 三角形的三边的垂直平分线交于一点. 这点叫做三角形的外心. 垂心定理 三角形的三条高交于一点. 这点叫做三角形的垂心. 内心定理 三角形的三内角平分线交于一点. 这点叫做三角形的内心. 旁心定理 三角形一内角平分线和另外两顶点处的外角平分线交于一点. 这点叫做三角形的旁心.三角形有三个旁心. 三角形的重心、外心、垂心、内心、旁心称为三角形的五心. 它们都是三角形的重要相关点. 中位线定理 三角形的中位线平行于第三边且等于第三边的一半. 三边关系定理 三角形任意两边之和大于第三边,任意两边之差小于第三边.

三角形面积计算公式 S(面积)=a(边长)h(高)/2---三角形面积等于一边与这边上的高的积的一半[编辑本段]勾股定理 在Rt三角形ABC中,A≤90度,则 AB·AB+AC·AC=BC·BC A〉90度,则 AB·AB+AC·AC>BC·BC [编辑本段]梅涅劳斯定理 梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。 证明: 过点A作AG‖BC交DF的延长线于G, 则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。 三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1 它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。 另外,有很多人会觉得书写这个公式十分烦琐,不看书根本记不住,下面从别人转来一些方法帮助书写 为了说明问题,并给大家一个深刻印象,我们假定图中的A、B、C、D、E、F是六个旅游景点,各景点之间有公路相连。我们乘直升机飞到这些景点的上空,然后选择其中的任意一个景点降落。我们换乘汽车沿公路去每一个景点游玩,最后回到出发点,直升机就停在那里等待我们回去。

拉格朗日中值定理的证明

拉格朗日中值定理是微分学中最重要的定罗尔定理来证明。理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础。一般高等数学教材上,大都是用罗尔定理证明拉朗日中值定理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数。 怎样构作这一辅助函数呢?给出两种构造辅助函数的去。 罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o (如图1)。 拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_ ∈,使(如图2). 比较定理条件,罗尔定理中端点函数值相等,f ,而拉格朗日定理对两端点函数值不作限制,即不一定相等。我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为: 1.首先分析要证明的等式:我们令 (1) 则只要能够证明在(a,b)内至少存在一点∈,使f(∈ t就可以了。 由有,f(b)-tb=f(a)-ta (2) 分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值。从而,可设辅助函数F(x)=f(x)-tx。该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且 F(a)=F(b) 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F。(∈)=O。也就是f(∈)-t=O,也即f(∈ )=t,代人(1 )得结论 2.考虑函数

我们知道其导数为 且有 F(a)=F(b)=0. 作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且f F 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F’ 从而有结论成立.

中心极限定理的内涵和应用

中心极限定理的内涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。 于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

三角形的重心定理及其证明

三角形的重心定理及其证明 积石中学王有华 同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好. 已知:(如图)设ABC V 中,L 、M 、N 分 别是BC 、CA 、AB 的中点. 求证:AL 、BM 、CN 相交于一点G ,且 AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1. 证明1(平面几何法):(如图1)假设中 线AL 与BM 交于G ,而且假设C 与G 的连线与AB 边交于N ,首先来证明N 是AB 的中点. 现在,延长GL ,并在延长线上取点D ,使GL=LD 。因为四边形BDCG 的对角线互相平分,所以BDCG 是平行四边形.从而,B G ∥DC ,即GM ∥DC.但M 是AC 的中点,因此,G 是AD 的中点. 另一方面,GC ∥BD ,即NG ∥BD.但G 是AD 的中点,因此N 是AB 的中点. 另外,G 是AD 的中点,因此AG ﹕GL=2﹕1.同理可证: BG ﹕GM=2﹕1, CG ﹕GN=2﹕1. 这个点G 被叫做ABC V 的重心. 证明2(向量法):(如图2)在ABC V 中,设AB 边上的中B C

线为CN ,AC 边上的中线为BM ,其交点为 G ,边BC 的中点为L ,连接AG 和GL ,因 为B 、G 、M 三点共线,且M 是AC 的中点, 所以向量BG u u u r ∥BM u u u u r ,所以,存在实数1λ ,使得 1BG BM λ=uuu r uuu u r ,即 1()AG AB AM AB λ-=-u u u r u u u r u u u u r u u u r 所以,11(1)AG AM AB λλ=+-u u u r u u u u r u u u r =111(1)2 AC AB λλ+-u u u r u u u r 同理,因为C 、G 、N 三点共线,且N 是AB 的中点. 所以存在实数2λ,使得 22(1)AG AN AC λλ=+-u u u r u u u r u u u r = 221(1)2 AB AC λλ+-uu u r uuu r 所以 111(1)2AC AB λλ+-u u u r u u u r = 221(1)2 AB AC λλ+-u u u r u u u r 又因为 AB uuu r 、 AC u u u r 不共线,所以 1221112112λλλλ=-=-??? 所以 1223λλ== ,所以 1133AG AB AC =+uuu r uu u r uuu r . 因为L 是BC 的中点,所以GL GA AC CL =++u u u r u u u r u u u r u u r =111()332AB AC AC CB -+++u u u r u u u r u u u r u u u r =121()332AB AC AB AC -++-uuu r uuu r uuu r uuu r =1166 AB AC +uuu r uuu r ,即2AG GL =u u u r u u u r ,所以A 、G 、L 三点共线.故AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1 C

拉格朗日中值定理证明中的辅助函数的构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

(完整版)大数定律及中心极限定理

第五章大数定律及中心极限定理 【基本要求】1、了解切比雪夫不等式; 2、了解切比雪夫大数定律,Bernoulli大数定律和辛钦大数定律成立的条件及结论; 3、了解独立同分布的中心极限定理(列维—林德伯格定理)和德莫佛—拉普拉斯 中心极限定理(二项分布以正态分布为极限分布)的应用条件和结论,并会用 相关定理近似计算有关随机事件的概率。 【本章重点】切比雪夫不等式,切比雪夫大数定理及Bernoulli大数定理。 【本章难点】对切比雪夫大数定理及独立同分布的中心极限定理的理解。 【学时分配】2学时 【授课内容】 §5.1 大数定律 0.前言 在第一章我们提到过事件发生的频率具有稳定性,即随着试验次数的增加,事件发生的频率逐渐稳定于某个常数,这一事实显示了可以用一个数来表征事件发生的可能性大小,这使人们认识到概率是客观存在的,进而由频率的三条性质的启发和抽象给出了概率的定义,而频率的稳定性是概率定义的客观基础。在实践中人们还认识到大量测量值的算术平均值也具有稳定性,而这种稳定性就是本节所要讨论的大数定律的客观背景,而这些理论正是概率论的理论基础。 下面介绍三个定理,它们分别反映了算术平均值及频率的稳定性。 一、切比雪夫大数定律 1

2 事件的频率稳定于概率,能否有p n lim n n =μ∞→,答案是否定的。而是用)(0}{ ∞→→ε≥-μn p n P n [依概率收敛]来刻划 (弱)。或者用{}1n n P p n →∞ μ???→=[a.e.收敛] 来刻划(强)。 1.定义:设ΛΛ,,,,21n X X X 是一个随机变量序列,a 是一个常数,若对于任意正数ε,有 ()1lim =<-∞ →εa X P n n , 则称序列ΛΛ,,,,21n X X X 依概率收敛于a .记为a X P n ?→? . 2.切比雪夫不等式 设随机变量ξ具有有限的期望与方差,则对0>?ε,有 2 ) ())((ε ξεξξD E P ≤ ≥-或2 ) (1))((ε ξεξξD E P - ≥<- 证明:我们就连续性随机变量的情况来证明。设~()p x ξ,则有 2 2 ()()(())(())()()x E x E x E P E p x dx p x dx ξ ε ξ ε ξξξεε -≥-≥--≥= ≤ ?? 22 2 1 () (())()D x E p x dx ξξεε+∞ -∞ ≤ -= ? 该不等式表明:当)(ξD 很小时,))((εξξ≥-E P 也很小,即ξ的取值偏离)(ξE 的可能性很小。这再次说明方差是描述ξ取值分散程度的一个量。 切比雪夫不等式常用来求在随机变量分布未知,只知其期望和方差的情况下,事件 {}E ξξε-≥概率的下限估计;同时,在理论上切比雪夫不等式常作为其它定理证明的工具。 3.定理1(切比雪夫大数定律) 设}{n ξ是相互独立的随机变量序列,每一随机变量都有有限的方差,且一致有界,即存在 常数C ,使Λ,2,1)(=≤i C D i ξ,则对任意的0>ε,有01111 =ε≥ξ-ξ∑∑==∞→})(E n n {P lim n i n i i i n [即

三角形重心性质定理题教案资料

三角形重心性质定理 1.三角形重心性质定理 课本原题(人教八年级《数学》下册习题19.2第16题) 在△ABC中,BD、CE是边AC、AB上的中线,BD与CE相交于O。BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么? (提示:作BO中点M,CO的中点N。连接ED、EM、MN、ND) 分析:三角形三条中线的交点是三角形的重心(第十九章课题学习《重心》)。这道习题要证明的结论是三角形 重心的一个重要数学性质:三角形的重心将三角形的每条中线都分成1∶2两部分,其中重心到三角形某一顶点的距离是到该顶点对边中点距离的2倍。 证法1:(根据课本上的提示证明) (点评:证法1是利用中点构造三角形中位线,从而得到平行四边形,再利用平行四边形性质得到中线上三个线段之间的相等关系。) (点评:利用线段中点,还可以将与线段中点有关的线段倍长,构造全等,从而利用全等三角形的性质及三角形中位线的性质证明结论。) 2.三角形重心性质定理的应用 ⑴求线段长 例1如图3所示,在Rt△ABC中,∠A=30°,点D是斜边AB的中点,当G是Rt△ABC的重心,GE⊥AC 于点E,若BC=6cm,则GE= cm。 解: ⑵求面积 例2在△ABC中,中线AD、BE相交于点O,若△BOD的面积等于5,求△ABC的面积。 解:

练习:1.如图5,△ABC 中,AD 是BC 边上的中线,G 是重心,如果AG=6,那么线段DG= 。 2.如图6,在△ABC 中,G 是重心,点D 是BC 的中点,若△ABC 的面积为6cm 2,则△CGD 的面积为 。 巧用中线的性质解题 我们知道三角形的一条中线将三角形分成的两个三角形等底同高,这样的两个三角形的面积相等.下面我们利用上述性质来巧解以下问题. 一、巧算式子的值 例1 在数学活动中,小明为了求23411112222++++…12n +的值(结果用n 表示),设计了如图1所示的几何图形.请你利用这个几何图形求 23411112222++++ (12) n +的值. 解析:从图中可以看出大三角形的面积为1,根据三角形的中线把它分成两个面积相等的三角形可知,23411112222++++…12n +12 n +表示:组成面积为1的大三角形的所有小三角形的面积之和,于是23411112222++++ (12) n +112n =-. 【点评】此题运用“数形结合思想”,借助三角形的面积来求数的运算. 二、求图形的面积 例2 如图2,长方形ABCD 的长为a ,宽为b ,E 、F 分别是BC 和CD 的中点,DE 、BF 交于点G ,求四边形ABGD 的面积.

拉格朗日插值定理证明

拉格朗日插值定理证明 作者:田茂(tianmao999@https://www.360docs.net/doc/1211084694.html, ) 已知: 110111212 211()1...()1...*......................()1...N N N N N N N f x a x x f x a x x f x a x x ----??????????????????=???????????????? ??(1) 则有: 01111100()1*....()()() N N N N i i j i i j j i a a f x x x a x a f x a a ----==≠????????=???????? -=-∑∏ (2) 证明过程如下: 由: ()()0i i f x a f a =-=(3) 可知: ()()()()i i f x f a x a g x -=-(4) 即有: ()()mod()i i f x f a x a ≡-(5) 由中国余数定理(CRT )可知: 1()()*()*()n i i i i f x N x M x f a ==∑(6) 式(6)中,()i M x 满足: 1()()n i j j j i M x x a =≠=-∏(7) ()i N x 满足: ()()()()1i i i i N x M x n x x a +-=(8) 即有:

()()1mod ()i i i N x M x x a ≡-(9) 由(7)得: ()()()111()() ()mod()n i j j j i n i i j j j i n i j i j j i M x x a x a a a a a x a =≠=≠=≠=-=-+-≡--∏∏∏(10) 如果要满足式(9),由(10)可知,()i N x 为: ()11 ()i n i j j j i N x a a =≠=-∏(11) 将(7)和(11)代入(6)可得: ()1 1111100()()*()*() 1*()*()()()() n i i i i n n j i n i j i j j i j j i N N i i j i i j j i f x N x M x f a x a f a a a x a f x a a ===≠=≠--==≠==---=-∑∑∏∏∑∏(12) 命题得证。

三角形的重心、垂心、内心、外心知识讲解

一、三角形重心定理 二、三角形外心定理 三、三角形垂心定理 四、三角形内心定理 五、三角形旁心定理 有关三角形五心的诗歌 三角形五心定理 三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。 一、三角形重心定理 三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。 2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。 二、三角形外心定理 三角形外接圆的圆心,叫做三角形的外心。外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。2、若O 是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A 为钝角)。3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。外心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。 5、外心到三顶点的距离相等 三、三角形垂心定理 三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。垂心的性质:1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线(Euler line))3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。4、垂心分每条高线的两部分乘积

三角形重心、外心、垂心、内心的向量表示及其性质70409

三角形“四心”向量形式的充要条件应用 1.O 是ABC ?的重心?=++; 若O 是ABC ?的重心,则 AB C AOB AOC BOC S 31 S S S ????= ==故=++; 1()3 PG PA PB PC =++u u u r u u u r u u u r u u u r ?G 为ABC ?的重心. 2.O 是ABC ?的垂心?OA OC OC OB OB OA ?=?=?; 若O 是ABC ?(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC :: ::=??? 故0OC C tan OB B tan OA A tan =++ 3.O 是ABC ?的外心?|OC ||OB ||OA |==(或2 2 2 OC OB OA ==) 若O 是ABC ?的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=???:: :: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4.O 是内心ABC ?的充要条件是 ( ( ( =?=?=-? 引进单位向量,使条件变得更简洁。如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是 ABC ?内心的充要条件可以写成 0)e e ()e e ()e e (322131=+?=+?=+? ,O 是 ABC ?内心的充要条件也可以是c b a =++ 。若O 是ABC ?的内心,则 c b a S S S AOB AOC BOC ::::=??? 故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或; ||||||0AB PC BC PA CA PB P ++=?u u u r u u u r u u u r u u u r u u u r u u u r r 是ABC ?的内心; 向量()(0)|||| AC AB AB AC λλ+≠u u u r u u u r u u u r u u u r 所在直线过ABC ?的内心(是BAC ∠的角平分线所在直线); (一)将平面向量与三角形内心结合考查 例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满 足 OA OP + +=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ?的( ) (A )外心(B )内心(C )重心(D )垂心 解析:因为 是向量AB u u u r 的单位向量设AB u u u r 与AC u u u r 方向上的单位向量分别为21e e 和, 又

罗尔定理与拉格朗日定理的证明与应用

罗尔定理与拉格朗日定理的证明与应用

单位:旅游系 专业:酒店管理 姓名:王姐 学号:1414061039 【摘要】罗尔定理与拉格朗日定理是是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断导数的整体性质的工具。拉格朗日定理存在于多个科学领域之中,其中微积分中的拉格朗日定理即拉格朗日中值定理,又称拉式定理,是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的形式。它在初等数学中有着重要作用,也是一个基础性定理。在许多方面它都有重要的作用 ,在进行一些公式推导与定理证明中都有很多应用。 【关键词】罗尔定理、拉格朗日定理、重要应用。 引言 拉格朗日定理是高等数学的基础,同时也是一个基础性的定理,在高等数学中有着重要作用,要学习和掌握它的证明方法。 罗尔定理:如果函数()f x 满足条件:○ 1在闭区间[,]a b 上连续;○2在开区间(,)a b 内可导;○ 3在区间两个端点的函数值相等,即()()f a f b =,(,)a b ξ∈,使得'()0f ξ=。 罗尔定理的证明:因为函数()f x 在闭区间[,]a b 上连续,所以它在[,]a b 上必能取得最大值M 和最小值m 。 (1)如果M m =,则()f x 在[,]a b 上恒等于常数M ,因此,在整个区间(,)a b 内恒有 '()0f x =,所以,(,)a b 内每一点都可取作ξ,此时定理显然成立。 (2)如果m M <,因()()f a f b =,则数M 与m 中至少有一个不等于端点的函数值()f a ,设()m f a ≠,这就是说,在(,)a b 内至少有一点ξ,使得()f M ξ=。 下面证明'()0f ξ=。 由于()f M ξ=是最大值,所以不论x ?为正或负,恒有()()0f x f x ξ+?-ξ≤?, (,)x a b ξ+?∈。 当0x ?>时,()()0f x f x ξ+?-ξ≤?,有已知条件'()f ξ存在可知,

中心极限定理与大数定理的关系

渤海大学学士学位论文 题目: 中心极限定理与大数定理的关系 系别: 渤海大学 专业: 数学系 班级: 2002级1班 姓名:于丹 指导教师:金铁英 完成日期:2006年5月19日 中心极限定理与大数定理的关系 于丹 (渤海大学数学系辽宁锦州 121000 中国) 摘要:中心极限定理是概率与数理统计的一个重要分支,大数定理和中心极限定理都是讨论的随机变量序列的极限问题,它们是概率论中比较深入的理论结果。 本篇论文从研究大数定理开始,然后由大数定理以及收敛性引出了中心极限定理,最后通过对定理在实际应用中的举例和定理的一些反例的研究使我们弄清中心极限定理的内涵与外延,进一步弄清了大数定理与中心极限定理之间的关系。 关键词:大数定理中心极限定理收敛性 The relation of the central limit theorem and large numbers law Yu Dan (Department of Mathematics Bohai University Liaoning jinzhou 121000 China) Abstract:The Central limit theorem is an important branch of probability and mathematical statistic. The large numbers law and the central limit theorem is limit question of random variable sequence .They are the quite thorough theory result in the theory of probability. This paper commences from large numbers law,then the central limit theorem is cited by large numbers law and convergence.Eventually,we can understand connotation and extension of the central limit theorem by its examples and relationship between large numbers law and the central limit theorem . Key words:large numbers law ; the central limit theorem ; convergence. 引言

三角形重心三角形重心定理

三角形重心-三角形重心定理 三角形中的几个重要定理 三角形中的几个重要定理 1.梅涅劳斯定理 一直线与ΔABC的三边AB、BC、CA或它们的延长线分别相交于X,Y,Z,AXBYCZ则 梅涅劳斯定理的逆定理也成立 在ΔABC的边AB、BC、CA分别取X,Y,Z. AXBYCZ 如果1,那么X,Y,Z三点共线。 XBYCZA 梅氏定理的逆定理常用来证明三点共线。

2. 塞瓦定理常可分为边元塞瓦定理和角元塞瓦定理。边元塞瓦定理:ΔABC内任取一点P,直线AP,BP,CP分别与边BC,CA,AB相交于点D,BDCEAF E,F,则 1. DCEAFB 边元塞瓦定理逆定理也成立: 在ΔABC的边BC,CA,AB上分别取点D,E,F,如果那么直线AD,BE,CF三线相交于同一点. 塞瓦定理的逆定理常用来证明三线共点。角元塞瓦定理 BDCEAF 1. DCEAFB A F M E B D

C 如图,设D、E、F 分别是△ABC 的三边BC、CA、AB 上的点,三条线段AD、BE、CF 交于一点M.则 对ΔABC与点M,有 sin BAMsin ACMsin CBM 1 sin MACsin MCBsin MBAsin BM Dsin MCAsin CBA 1 sin DMCsin ACBsin AMBsin CM Esin MABsin ACB 1 sin EMAsin BACsin BCM 对ΔMBC与点A,有 对ΔMCA与点B,有 对ΔMAB与点C,有 角元塞瓦定理的逆定理也成立。 sin AMFsin MBCsin BAC 1

sin FMBsin CBAsin CAM A D DE B F C B C E A F B E DA CF 如图,过△ ABC的三个顶点各引一条异于三角形三边的直线AD、BE、CF.若 sin BADsin ACFsin CBE 1,则AD、BE、CF三线共点或互相平行。

中心极限定理证明

中心极限定理证明 目录 第一篇:中心极限定理证明 第二篇:大数定理中心极限定理证明 第三篇:中心极限定理 第四篇:中心极限定理应用 第五篇:中心极限定理 更多相关范文 正文 第一篇:中心极限定理证明 中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史

上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此 故服从中心极限定理. 三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:. 抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次? 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多.

三角形的重心定理及其证明

三角形的重心定理及其证明 积石中学王有华 同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好. 已知:(如图)设ABC 中,L 、M 、N 分别是BC 、CA 、AB 的中点. 求证:AL 、BM 、CN 相交于一点G ,且 AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1. 证明1(平面几何法):(如图1)假设中 线AL 与BM 交于G ,而且假设C 与G 的连线与AB 边交于N ,首先来证明N 是AB 的中点. 现在,延长GL ,并在延长线上取点D ,使GL=LD 。因为四边形BDCG 的对角线互相平分,所以BDCG 是平行四边形.从而,B G ∥DC ,即GM ∥DC.但M 是AC 的中点,因此,G 是AD 的中点. 另一方面,GC ∥BD ,即NG ∥BD.但G 是AD 的中点,因此N 是AB 的中点. 另外,G 是AD 的中点,因此AG ﹕GL=2﹕1.同理可证: BG ﹕GM=2﹕1, CG ﹕GN=2﹕1. 这个点G 被叫做ABC 的重心. 证明2(向量法):(如图2)在ABC 中,设AB 边上的中 B C

线为CN ,AC 边上的中线为BM ,其交点为G ,边BC 的中点为L ,连接AG 和GL ,因为B 、G 、M 三点共线,且M 是AC 的中点, 所以向量B G ∥BM ,所以,存在实数1λ ,使得 1BG BM λ= ,即 1()AG AB AM AB λ-=- 所以,11(1)AG AM AB λλ=+- =111 (1)2 A C A B λλ+- 同理,因为C 、G 、N 三点共线,且N 是AB 的中点. 所 以存在实数2λ,使得 22(1)AG AN AC λλ=+- = 221(1)2 A B A C λλ+- 所以 111 (1)2A C A B λλ+- = 221(1)2 A B A C λλ+- 又因为 AB 、 A C 不共线,所以 12 21 112112 λλλλ=-=-?? ? 所以 122 3λλ== ,所以 1133 A G A B A C =+ . 因为L 是BC 的中点,所以G L G A AC C L =++ =111()332 A B A C A C C B -+++ =121()332AB AC AB AC -++- =1166 A B A C + ,即2AG GL = ,所以A 、G 、L 三点共线. 故AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1 C

中心极限定理的发展

中心极限定理的创立和发展 1141010113 万帅 关键词:中心极限定理,创立,严格证明,新的发展,三阶段。 引言:这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理” 法国数学家拉普拉斯写了很多论文,想推广棣莫弗的工作。他意识到需要一种新的数学技巧,并在1785年成功地发明了这个技巧:特征函数的简单形式和反演公式。拉普拉斯把他的两个主要研究方向结合起来得到了这个方法-----母函数和积分的监禁展开。通过把母函数中的t换成it e ,就得到了特征函数。然而,直到1810年他才发表了特征函数与反演公示的一般理论,并证明了中心极限定理。他之所以推迟到1810年,有一种解释是,从1786年开始,他就专注于《天体力学》的写作,这本书1805年才完成。1810年,拉普拉斯证明了中心极限定理,先是服从均匀发布的连续随机变量的情形,接着是服从任意分布的随机变量。拉普拉斯的证明显然对独立有界的随机变量和成立,证明过程使用了现在所谓的特征函数,或傅里叶变换,即itXEe(t为实数)。在1812年,他先后考虑了对称的、离散的均匀分布,对称的连续分布,任意分布情形。最后,拉普拉斯在他的名著《概率的分析理论》中对任意的p证明了如下中心极限定理:【1】 泊松完善和推广了拉普拉斯关于中心极限定理的证明。在所有考虑的情况里,都假设随机变量是独立的。泊松证明了服从相同分布的随机变量的情况,还推广到服从不同分布的随机变量的情况。1824年,泊松证明了连续随机变量的中心极限定理,并给出了三个反例,其中包括服从柯西分布的随机变量和,这时中心极限定理不成立。受当时传统的影响,泊松没有明确阐明中心极限定理成立的条件。但是,从他的证明和例子中,可以看到,他假设每个变量的方差都是有界的,且不等于零。其他数学家也做了这方面工作,比如贝塞尔和柯西。拉普拉斯等人给出证明的前提假设是,和的分布是有限的,因此所有的矩都存在。他们把结果推广到无限情形,但没有给出证明,并隐含假定了矩的存在。以现在的观点来看,只要沿着拉普拉斯的方向继续下去,法国数学家们是可以给出中心极限定理的严格证明的,比如柯西,他知道特征函数和稳定率。 从当时环境来看,大约1870年代,概率学家还处于心理上的劣势,苦于自己的研究领

相关文档
最新文档