直流电动机双闭环调速系统(1)

直流电动机双闭环调速系统(1)
直流电动机双闭环调速系统(1)

直流电动机双闭环调速系统

一、系统发展背景

直流电动机双闭环调速系统是一种当前应用广泛,经济的电力传动系统,在现代化工业生产中已经得到广泛应用,具有良好的起、制动性能和调速性能,易于在大范围内平滑调速,且调速后的效率很高。针对直流电机调速的方法也很多,目前国内外也研究了一些调速的控制器。例如已经用于实际生产的直流电机无级电子调速控制器采用国际先进的IGBT大功率模块器件和独特自行设计的PWM 微电子控制技术,以及节能反馈电路和丰富的保护功能控制电路。适用于无轨机车、矿山井下窄轨机车、磨床、木工机械、服装制作、纺织、造纸印刷等场所。

二、系统原理图

三、系统方块图

四、系统的工作原理分析

总述:分析系统原理图,可知这是一个双闭环调速系统,在双闭环系统中,系统的输出量通过检测装置引向系统的输入端,与系统的输入量进行比较,由于扰动作用使被控参数偏离给定值,从而产生偏差,调节器将此偏差信号进行调节,并输出一标准信号,去控制执行机构的动作。

下面,针对此直流电机双闭环调速系统,对其原理进行具体的分析:

1、双环的构成

直流电机双闭环调速系统同时具有速度反馈和电流反馈,实现了转速和电流两种负反馈的调节。二者之间如图所示实行嵌套模式,从闭环的结构上看,电流调节环属内环,速度调节环属外环,这样就形成了速度,电流双闭环调节系统。

2、电流环

速度调节器的输出作为电流调节器的输入,可控制电路的电流输出经电流互感器形成局部反馈,即电流反馈。其中,电流互感器是电流反馈的检测元件,电流调节器对其输入信号给定量和反馈量进行加法,减法,比例,积分等运算,使其按照某种预定规律运行。

3、速度环

可控硅电路的电压输入加在直流电动机的电枢上,使电动机旋转,电动机输

出转速,经测速发电机TG形成主反馈,即速度反馈。其中,测速发电机是速度反馈的检测元件,将电动机的转速转换为电压信号反馈到输入端,速度调节器是对给定和反馈两个输入量进行加法,减法,比例,积分等运算,使其输出按照某一规律变化。

4、其他元件的作用

电位器A输出作为系统的给定量,即给定电压U I,积分器属于校正元件,能够快速响应控制作用并能消除静差(被控变量的稳定值与给定值之差),静,动态特性较好,抗干扰能力强,对整个系统能够起到安全保护作用,提高了系统的稳定性,可控硅电路和直流电动机都属于执行机构。

五、系统的性能分析

反馈闭环系统具有良好的抗干扰性能,它对与被反馈环的前向通道上的所有干扰都能有效的加以抑制。转速负反馈和PI调节器的单闭环调速系统是可以保证系统稳定的条件下实现转速无静差,但是如果要求如突加负载后动态速降小一些等性能需求的话,就需要在单环基础上形成如上述的双环调速系统。

此直流电机双闭环调速系统是当前应用比较广泛的经济适用的电力传动系统,具有动态响应快,抗干扰能力强的优点。

1、启动特性

1)借助于PI调节器的饱和非线性特性,使得系统在电动机允许的过载能力下尽可能快速。

2)ASR从启动到稳速运行经历两个状态,饱和限幅输出与线性调节状态。

3)ACR从启动到稳态运行只工作在线性调节状态。

4)对于系统的性能指标,启动过程中电流超调量为3.125%,转速几乎无超调量,电动机启动特性已经接近理性特性。

2、抗干扰能力强

双闭环调速系统的干扰主要为负载突变干扰,通过调节器的适当设计可使系统转速对于负载突变等扰动迅速抑制,在恢复时间上达到最佳。

六、自我总结

1、通过本次大作业,使我加深了对反馈闭环调节系统的了解,双环系统在单环基础上所展现的优势。例如很明显的一点就是双闭环中调节器采用PI调节

器,就能消除系统静差,而且动态特性好,对突然干扰能迅速的做出反应,提高系统的稳定性。

2、为防止主电路电流过大,在电流调节器处应增加一过流保护。

3、在软件运用方面,由于以前没有接触过vison,所以对于各个元件所处的位置不是很熟悉,作图起来稍费时间了一些,但vison 对于系统原理图或者方块图的绘制方便性还是很明显的。

第二章内容 一、系统结构图

1、速度调节器的传递函数为:

G1(S)= R

s C R 111

+

-

= )1

(11s RC R R +

- 2、电流调节器的传递函数为:

G 2(s)= R

s C R 221

+

-

= s RC R R 221(+-)

3、 系统的传递函数为:

1

)1()()

(12

23344122++++++=Ωs T s T s T s T s s K s U s I ττ 其中,K=

5

1

K 22111R C R C +=τ 22112R C R C =τ m

m m K K K C R K C R RC K T 52211141)

(++=

m

m m K K K R R C C K K K R C T RC K K C C R T 532

1215322143212

22)(+++=

m

m m K K K R T K K RT R C RC T 532433213)

(++=

τ

m

m K K K T C C R T 533

2124τ=

G1(s)=

双闭环直流调速系统

题目:双闭环直流调速系统的设计与仿真 已知:直流电动机:P N=60KW,U N=220V,I N=305A,n N=1000r/min,λ=2,R a=0.08, R rec=0.1, T m=0.097s, T l=0.012s, T s=0.0017s, 电枢回路总电阻R=0.2Ω。设计要求:稳态无静差,σ ≤5%,带额定负载起动到额定转速的转速超调σn≤10%。(要求完 i 成系统各环节的原理图设计和参数计算)。 系统各环节的原理图设计和参数计算,包括主电路、调节器、电流转速反馈电路和必要的保护等,并进行必要的计算。按课程设计的格式要求撰写课程设计说明书。 设计内容与要求:1、分析双闭环系统的工作原理 2、改变调节器参数,分析对系统动态性能的影响 3、建立仿真模型

1.双闭环直流调速系统的原理及组成 对于正反转运行的调速系统,缩短起,制动过程的时间是提高生产率的重要因素。为此,在起动(或制动)过渡过程中,希望始终保持电流(电磁转矩)为允许的最大值,是调速系统以最大的加(减)速度运行。当到达稳态转速时,最好使电流立即降下来,使电磁转矩与负载转矩相平衡,从而迅速转入稳态运行。实际上,由于主电路电感的作用,电流不可能突变,为了实现在允许条件下的最快起动,关键是要获得一段使 电流保持为最大值dmI的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,采用电流负反馈应该能够得到近似的恒流过程。 为了使转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别引入转速负反馈和电流负反馈以调节转速和电流,二者之间实行嵌套连接,如图1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器。从闭环结构上看,电流环在里面,称做内环;转速环在外面,称做外环。这就形成了转速电流负反馈直流调速系统。为了获得良好的静动态性能,转速和电流两个调节器一般采用PI调节器。 2.双闭环控制系统起动过程分析 前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。双闭环调速系统突加给定电压*nU由静止状态起动时,转速和电流的过渡过程如图4所示。由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三

双闭环直流调速系统

转速、电流双闭环调速系统 班级:铁道自动化091 姓名:陈涛 指导老师:严俊 完成日期:2011-10-31 湖南铁道职业技术学院

目录 摘要 (3) 一、直流调速介绍 (4) 1、调速定义 (4) 2、调速方法 (4) 3、调速指标 (4) 二、双闭环直流调速系统介绍 (5) 1、转速、电流双闭环调速系统概述 (5) 2、转速、电流双闭环调速系统的组成 (6) 3、PI调节器的稳态特征 (7) 4、起动过程分析 (8) 5、动态性能 (11) 6、两个调节器的作用 (11) 三、总结 (12)

摘要 随着近代电力电子技术和计算机的发展以及现代控制理论的应用,自动化电力拖动正向着计算机控制的生产过程自动化的方向迈进,以达到高速、优质、高效率地生产。在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成部分。 本文讲述的是转速、电流双闭环直流调速系统,通过学习使我对转速、电流双闭环直流调速系统的组成、调速器的稳态特性和作用以及系统的动态特性有了一定的了解。该系统是在单闭环系统的基础上加以改进后完成的,通过对电力拖动自动控制系统的学习,我们里了解到转速、电流双闭环直流调速系统相对于单闭环调速系统的一些优势,它是通过转速反馈和电流反馈两个环节分别起作用的。 通过这次的学习,我懂得了很多,具有了通过运用理论上所掌握的知识来独立发现问题、思考问题、解决问题的能力,在这次的论文中,我有一次重新学习了转速、电流双闭环直流调速系统,使我这一系统有了更进一步的了解。

转速、电流双闭环调速系统 一、直流调速介绍 1、调速定义 调速是指在某一具体负载情况下,通过改变电动据或电源参数的方法,使机械特性曲线得以改变,从而使电动机转速发生变化或保持不变。 2、调速方法 1.调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无 级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 2.改变电动机主磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方 法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 3.改变电枢回路电阻 <。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。 3、调速指标 1.调速范围(包括:恒转矩调速范围/恒功率调速范围),

电流转速双闭环直流调速系统matlab仿真实验Word版

仿真设计报告 内容 学院 专业 班级 学号 学生姓名 指导教师 完成日期年月日 转速、电流双闭环直流调速系统的Simulink仿真设计

一、系统设计目的 直流调速系统具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动中获得了广泛应用。根据直流电动机的工作原理建立了双闭环直流调速系统的数学模型,并详细分析了系统的原理及其静态和动态性能。按照自动控制原理,对双闭环调速系统的设计参数进行分析和计算,利用Simulink 对系统进行了各种参数给定下的仿真,通过仿真获得了参数整定的依据。在理论分析和仿真研究的基础上,设计了一套实验用双闭环直流调速系统。对系统的性能指标进行了实验测试,表明所设计的双闭环调速系统运行稳定可靠,具有较好的静态和动态性能,达到了设计要求。采用MATLAB 软件中的控制工具箱对直流电动机双闭环调速系统进行计算机辅助设计,并用SIMULINK 进行动态数字仿真,同时查看仿真波形,以此验证设计的调速系统是否可行。 二、系统理论分析 2.1 双闭环直流调速系统工作原理 电动机在启动阶段,电动机的实际转速低于给定值,速度调节器的输入端偏差信号,经放大后输出的电压保持为限幅值,速度调节器工作在开环状态,速度调节器的输出电压作为电流给定值送入电流调节器, 此时以最大电流给定值使电流调节器输出移相信号,直流电压迅速上升,电流也随即增大直到最大给定值, 电动机以最大电流恒流加速启动。电动机的最大电流可通过整定速度调节器的输出限幅值来改变。在转速上升到给定转速后, 速度调节器输入端的偏差信号减小到近于零,速度调节器和电流调节器退出饱和状态,闭环调节开始起作用。对负载引起的转速波动,速度调节器输入端偏差信号将随时通过速度调节器、电流调节器修正触发器的移相电压,使整流桥输出的直流电压相应变化,校正和补偿电动机的转速偏差。另外电流调节器的小时间常数, 还能对因电网波动引起的电枢电流的变化进行快速调节,可在电动机转速还未来得及发生改变时,迅速使电流恢复到原来值,从而使速度稳定于某一转速。 2.2 双闭环直流调速系统组成 为实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流。两者实行嵌套连接,如图1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成转速、电流双闭环调速系统。 图1 转速、电流双闭环直流调速系统 其中:ASR-转速调节器 ACR-电流调节器 TG-测速发电机 TA-电流互感器 UPE-电力电子 变换器 *Un -转速给定电压 Un-转速反馈电压 * Ui -电流给定电压 Ui -电流反馈电压

直流电机双闭环调速系统设计.

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 目录 1 绪论 (1) 1.1课题研究背景 (1) 1.2研究双闭环直流调速系统的目的和意义 (1) 2 直流电机双闭环调速系统 (3) 2.1直流电动机的起动与调速 (3) 2.2直流调速系统的性能指标 (3) 2.2.1静态性能指标 (3) 2.2.2动态的性能指标 (4) 2.3双闭环直流调速系统的组成 (6) 3 双闭环直流调速系统的设计 (8) 3.1电流调节器的设计 (8) 3.2转速调节器的设计 (10) 3.3闭环动态结构框图设计 (12) 3.4设计实例 (12) 3.4.1设计电流调节器 (13) 3.4.2设计转速调节器 (15) 4.Matlab仿真 (17) 4.1仿真结果分析 (19) 5 结论 (20) 参考文献 (21)

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1 绪论 1.1课题研究背景 直流调速是现代电力拖动自动控制系统中发展较早的技术。就目前而言,直流调速系统仍然是自动调速系统的主要形式,电机自动控制系统广泛应用于机械,钢铁,矿山,冶金,化工,石油,纺织,军工等行业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电机,提高其运行性能,对国民经济具有十分重要的现实意义。 以上等等需要高性能调速的场合得到广泛的应用。然而传统双闭环直流电动机调速系统多数采用结构比较简单、性能相对稳定的常规PID控制技术,在实际的拖动控制系统中,由于电机本身及拖动负载的参数(如转动惯量)并不像模型那样保持不变,而是在某些具体场合会随工况发生改变;与此同时,电机作为被控对象是非线性的,很多拖动负载含有间隙或弹性等非线性的因素。因此被控制对象的参数发生改变或非线性特性,使得线性的常参数的PID控制器往往顾此失彼,不能使得系统在各种工况下都保持与设计时一致的性能指标,常常使控制系统的鲁棒性较差,尤其对模型参数变化范围大且具的非线性环节较强的系统,常规PID调节器就很难满足精度高、响应快的控制指标,往往不能有效克服模型参数变化范围大及非线性因素的影响。 1.2研究双闭环直流调速系统的目的和意义 双闭环直流调速系统是性能很好,应用最广的直流调速系统。采用该系统可获得优良的静、动态调速特性。此系统的控制规律,性能特点和设计方法是各种交、直流电力拖动自动控制系统的重要基础。 20世纪90年代前的大约50年的时间里,直流电动机几乎是唯一的一种能实现高性能拖动控制的电动机,直流电动机的定子磁场和转子磁场相互独立并且正交,为控制提供了便捷的方式,使得电动机具有优良的起动,制动和调速性能。尽管近年来直流电动机不断受到交流电动机及其它电动机的挑战,但至今直流电动机仍然是大多数变速运动控制和闭环位置伺服控制首选。因为它具有良好的线性特性,优异的控制性能,高效率等优点。直流调速仍然是目前最可靠,精度最高的调速方法。 通过对转速、电流双闭环直流调速系统的了解,使我们能够更好的掌握调速系统的基本理论及相关内容,在对其各种性能加深了解的同时,能够发现其缺陷之处,通过对该系统不足之处的完善,可提高该系统的性能,使其能够适用于各种工作场合,提高其使用效率。并以此为基础,再对交流调速系统进行研究,最终掌握各种交、直流调速系统的原理,使之能够应用于国民经济各个

直流电动机双闭环调速系统(1)

直流电动机双闭环调速系统 一、系统发展背景 直流电动机双闭环调速系统是一种当前应用广泛,经济的电力传动系统,在现代化工业生产中已经得到广泛应用,具有良好的起、制动性能和调速性能,易于在大范围内平滑调速,且调速后的效率很高。针对直流电机调速的方法也很多,目前国内外也研究了一些调速的控制器。例如已经用于实际生产的直流电机无级电子调速控制器采用国际先进的IGBT大功率模块器件和独特自行设计的PWM 微电子控制技术,以及节能反馈电路和丰富的保护功能控制电路。适用于无轨机车、矿山井下窄轨机车、磨床、木工机械、服装制作、纺织、造纸印刷等场所。 二、系统原理图 三、系统方块图

四、系统的工作原理分析 总述:分析系统原理图,可知这是一个双闭环调速系统,在双闭环系统中,系统的输出量通过检测装置引向系统的输入端,与系统的输入量进行比较,由于扰动作用使被控参数偏离给定值,从而产生偏差,调节器将此偏差信号进行调节,并输出一标准信号,去控制执行机构的动作。 下面,针对此直流电机双闭环调速系统,对其原理进行具体的分析: 1、双环的构成 直流电机双闭环调速系统同时具有速度反馈和电流反馈,实现了转速和电流两种负反馈的调节。二者之间如图所示实行嵌套模式,从闭环的结构上看,电流调节环属内环,速度调节环属外环,这样就形成了速度,电流双闭环调节系统。 2、电流环 速度调节器的输出作为电流调节器的输入,可控制电路的电流输出经电流互感器形成局部反馈,即电流反馈。其中,电流互感器是电流反馈的检测元件,电流调节器对其输入信号给定量和反馈量进行加法,减法,比例,积分等运算,使其按照某种预定规律运行。 3、速度环 可控硅电路的电压输入加在直流电动机的电枢上,使电动机旋转,电动机输

推荐-直流vm双闭环直流不可逆调速系统设计 精品

课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 题 目: 直流V-M 双闭环不可逆调速系统设计 初始条件: 采用双闭环V —M 不可逆调速系统。电动机参数为:V U N 750=,kW P N 550=,A I a 780=,m in /375r n N =,r V Ce min/.92.1=,允许电流过载倍数为1.5,Ω=1.0R , 75=s K ,V U U U ctm im nm 12**===。采用三相桥式整流电路,电磁时间常数s T L 03.0=, s T m 084.0=,s T oi 002.0=,s T on 02.0=。 稳态无静差,电流超调量%5≤i σ,空载起动到额定转速时的转速超调量%10≤n σ。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1. 原理说明,原理图、系统动态结构图; 2. 说明系统起动过程,调节器设计; 3. 设计ACR 和ASR 的电路并计算参数。 4. 系统仿真 5. 按规范格式撰写设计报告(不少于5篇)打印 时间安排: 12 月 18日-21日 查阅资料 12月 22 日- 24日 方案设计 12月25 日- 26 日 馔写程设计报告 12月27日 提交报告,答辩 指导教师签名: 20XX 年 12月16日 系主任(或责任教师)签名: 年 月 日

摘要 直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。直流V-M双闭环不可逆调速系统是性能很好、应用广的直流调速系统。根据晶闸管的特性,通过调节触发延迟角α大小来调节电压。基于设计题目,直流电动机调速控制器选用了转速电流双闭环调速控制电路。在设计中调速系统的主电路采用了三相全控桥整流电路来供电。本文首先确定整个设计的方案和框图,然后确定主电路的结构形式和各元部件的设计,同时对其参数的计算,包括整流变压器、晶闸管、电抗器和保护电路的参数计算。接着驱动电路的设计包括触发电路和脉冲变压器的设计。最后,即本文的重点设计直流电动机调速控制器电路,本文采用转速电流双闭环直流调速系统为对象来设计直流电动机调速控制器。为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈,二者之间实行嵌套联接。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速电流双闭环调速系统。先确定其结构形式和设计各部件,并对其参数的计算,包括给定电压、转速调节器、电流调节器、检测电路、触发电路和稳压电路的参数计算,然后采用Simulink对整个调速系统进行了仿真分析,最后画出了调速控制电路电气原理图。 关键词:双闭环,晶闸管,转速调节器,电流调节器,Simulink

数字化直流电机双闭环调速系统

数字化直流电机双闭调速系统 摘要本文叙述了直流电动机的基本原理和调速原理,介绍了直流电动机开环和双闭环调速系统的组成及静、动态特性,并且根据直流电动机的基本方程建立了调速系统的数学模型,给出了动态结构框图,用工程设计方法设计了直流电动机双闭环调速系统。最后用MATLAB 软件搭建了仿真模型,对调速系统进行了仿真研究。通过对直流电动机双闭环调速系统动态特性的研究与仿真,可以清楚地看到,直流电动机双闭环调速系统具有较好的动态特性,可以在给定调速范围内,实现无静差平滑调速,这为直流电动机调速系统的硬件实验提供了理论依据。 关键词:直流调速;双闭环调速;转速环;电流环;MATLAB 仿真 目录 第1 章绪论 (1) 第2 章课程设计的方案 (2) 2.1 概述 (2) 2.2 方案选择 (2) 2.3 系统组成总体结构 (4) 第3 章硬件设计 (5) 3.1 单片机控制器 (5) 3.2 接口电路 (5)

3.3 D/A 转换电路 (6) 3.4 触发电路 (6) 3.5 三相整流电路 (7) 3.6 电流检测电路 (7) 3.7 A/D 转换电路 (8) 3.8 转速检测电路 (8) 3.9 键盘显示电路 (9) 第4 章软件设计 (11) 4.1 设计要求 (11) 4.2 电流环的设计 (11) 4.3 转速环的设计 (12) 4.4 闭环动态结构框图设计 (12) 4.5 程序设计 (13) 第5 章系统测试与分析/实验数据及分析 (15) 第6 章课程设计总结 (17) 参考文献 (18) 第1章绪论 三十多年来,直流电机调速控制经历了重大的变革。传统的控制系统采用模拟元件,虽在一定程度上满足生产要求,但是因为元件容易老化,在使用中易受外界干扰影响,并且线路复杂、通用性差,控制效果受器件性能、温度等因素的影响,故系统的运行可靠性及标准性得不到保证,甚至出现事故。而如今首先实现了整流器的更新换代,以晶闸管整流装置取代了习用已久的直流发电机电动机组及水银整流装置使直流电气传动完成了一次大的跃进。大功率直流调速系统通常采用三相全控桥式整流电路对电动机进行供电,从而控制电动机的转速。同时,控制电路已经实现高集成化、小型化、高可靠性及低成本。以上技术的应用,使直流调速系统的性能指标大幅提高,应用范围不断扩大。直流调速技术不断发展,走向成熟化、完善化、系列化、标准化,在可逆脉宽调速、高精度的电气传动领域中仍然难以替代。直流调速是指人为地或自动地改变直流电动机的转速,以满足工作机械的要求。从机械特性上看,就是通过改变电动机的参数或外加电压等方法来改变电动机的机械特性,从而改变电动机机械特性和工作特性机械特性的交点,使电动机的稳定运转速度发生变化。直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在轧钢机、矿井卷扬机、挖掘机、高层电梯等需要高性能可控电力拖动领域应用历史悠久。近年来,

VM双闭环直流调速系统课程设计报告

V M双闭环直流调速系统 课程设计报告 This model paper was revised by LINDA on December 15, 2012.

实训报告课程名称:专业实训 专业:班级: 学号:姓名: 指导教师:成绩: 完成日期: 2015 年 1月15 日

任务书

1 单闭环直流调速系统 主电路设计 单闭环直流调速系统是指只有一个转速负反馈构成的闭环控制系统。在电动机轴上装一台测速发电机SF ,引出与转速成正比的电压U f 与给定电压U d 比较后,得偏差电压ΔU ,经放大器FD ,产生触发装置CF 的控制电压U k ,用以控制电动机的转速,如图所示。 图 单闭环直流调速系统原理框图 直流电机,额定电压20V ,额定电流7A ,励磁电压20V ,最大允许电流40A 。 整流变压器额定参数的计算 为了保证负载能正常工作,当主电路的接线形式和负载要求的额定电压确定之后,晶闸管交流侧的电压 U 2 只能在一个较小的范围内变化,为此必须精确计算整流变压器次级电压U 2。 (1)二次侧相电流和一次侧相电流 在精度要求不高的情况下,变压器的二次侧相电压U 2的计算公式: 几种整流线路变压器电压计算系统参数,如表所示。 表 几种整流线路变压器电压计算系统

电路模式 单相全波 单相桥式 三相半波 三相桥式 A C 所以变压器二次侧相电压为:2 1.35200.930U V =?÷= 变压器的二次侧电流I 2的计算公式: 几种整流线路变压器电流I d /I 2系数,如表。 表 几种整流线路变压器电流Id/I2 电路模式 电阻性负载 电感性负载 单相全控桥 1 三相全控桥 查表得, 1A =。 变压器的二次侧电流:2 7d I I A == 变压器的一次侧电流I 1的计算公式: 一次侧电流:2112/7302200.95I I U U A =*=?÷= (2)变压器容量

双闭环直流调速系统工作原理

双闭环直流调速系统设计 内容摘要 电机自动控制系统广泛应用于各行业,尤其是工业。这些行业中绝大部分生产机械都采用电动机作原动机。有效地控制电.直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。有效地控制电机,提高其运行性能,具有很好的现实意义。本文介绍了基于工程设计对直流调速系统的设计,根据直流调速双闭环控制系统的工作原理以及介绍变频调速技术的发展概况,变频调速技术的发展趋势关键词:双闭环控制系统,转速控制环,系统现状,发展趋势 英文翻译:Electrical automatic control system widely used in various industries, especially in industry. Most of the production machinery used in these industries motor as a prime mover. Effectively control electricity. Dc motor has a good start, braking performance, adaptable to smooth speed regulation in large scale, in many need to speed or fast forward and reverse has been widely used in the area of electric drive. Effectively control motor, improve its operation performance, has the very good practical significance. I ntroduced in this paper, based on the engineering design to the design of dc speed regulating system, the working principle of the double closed loop control system of dc speed regulating and also I ntroduce the development general situation and the development trend Key words: double closed loop control system, speed control loop, th e status quo,the development of trend 一:引言 矿井提升机是煤矿、有色金属矿中的重要运输设备,是“四大运转设备”之一。矿井提升系统具有环节多、控制复杂、运行速度快、惯性质量大、运行特性复杂的特点,且工作状况经常交替转换。 近几年,交流调速飞速发展,逐渐有赶超并代替直流调速的趋势。直流调速理论基础是经典控制理论,而交流调速主要依靠现代控制理论。不过最近研制成功的直流调速器,具有和交流变频器同等性能的高精度、高稳定性、高可靠性、

双闭环直流电机调速系统设计参考案例

《运动控制系统》课程设计指导书 一、课程设计的主要任务 (一)系统各环节选型 1、主回路方案确定。 2、控制回路选择:给定器、调节放大器、触发器、稳压电源、电流截止环节,调节器锁零电路、电流、电压检测环节、同步变压器接线方式(须对以上环节画出线路图,说明其原理)。 (二)主要电气设备的计算和选择 1、整流变压器计算:变压器原副方电压、电流、容量以及联接组别选择。 2、晶闸管整流元件:电压定额、电流定额计算及定额选择。 3、系统各主要保护环节的设计:快速熔断器计算选择、阻容保护计算选择计算。 4、平波电抗器选择计算。 (三)系统参数计算 1、电流调节器ACR 中i i R C 、 计算。

2、转速调节器ASR 中n n R C 、 计算。 3、动态性能指标计算。 (四)画出双闭环调速系统电气原理图。 使用A1或A2图纸,并画出动态框图和波德图(在设计说明书中)。 二、基本要求 1、使学生进一步熟悉和掌握单、双闭环直流调速系统工作原理,了解工程设计的基本方法和步骤。 2、熟练掌握主电路结构选择方法,主电路元器件的选型计算方法。 3、熟练掌握过电压、过电流保护方式的配置及其整定计算。 4、掌握触发电路的选型、设计方法。 5、掌握同步电压相位的选择方法。 6、掌握速度调节器、电流调节器的典型设计方法。 7、掌握电气系统线路图绘制方法。 8、掌握撰写课程设计报告的方法。 三、 课程设计原始数据

有以下四个设计课题可供选用: A 组: 直流他励电动机:功率P e =1.1KW ,额定电流I e =6.7A ,磁极对数P=1, n e =1500r/min,励磁电压220V,电枢绕组电阻R a =2.34Ω,主电路总电阻R =7Ω,L ∑=246.25Mh(电枢电感、平波电感和变压器电感之和),K s =58.4,机电时间常数 T m =116.2ms ,滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* B 组: 直流他励电动机:功率P e =22KW ,额定电压U e =220V ,额定电流I e =116A,磁极对 数P=2,n e =1500r/min,励磁电压220V,电枢绕组电阻R a =0.112Ω,主电路总电阻R = 0.32Ω,L ∑=37.22mH(电枢电感、平波电感和变压器电感之和),电磁系数 C e =0.138 Vmin /r ,K s =22,电磁时间常数T L =0.116ms ,机电时间常数T m =0.157ms , 滤波时间常数T on =T oi =0.00235s ,过载倍数λ=1.5,电流给定最大值 10V U im =*,速度给定最大值 10V U n =* C 组: 直流他励电动机:功率Pe =145KW ,额定电压Ue=220V ,额定电流Ie=733A,磁极对数P=2,ne=430r/min,励磁电压220V,电枢绕组电阻Ra=0.0015Ω,主电路总电阻R =0.036Ω,Ks=41.5,电磁时间常数TL=0.0734ms ,机电时间常数

VM双闭环不可逆直流调速系统设计

VM双闭环不可逆直流调速系统设计

运动控制系统 课程设计 题目:某V-M双闭环不可逆直流调速系统设计 专业班级: 姓名: 学号: 指导教师: 评阅意见: 指导老师签名:

目录 1 绪论 (1) 1.1 研究背景 (1) 1.2 研究目的与意义 (1) 2 课程设计概述与要求 (2) 2.1 课程设计概述 (2) 2.2课程设计要求............................................... 错误!未定义书签。 3 转速、电流双闭环直流调速系统的组成 (3) 4 调速系统主电路元部件的确定及其参数计算4 4.1变压器参数选取 (4) 4.1.1变压器二次侧电压U2的计算 (4) 4.1.2一次、二次侧相电流I1、I2的计算 (4) 4.1.3 变压器容量S的计算5 4.2 平波电抗器参数计算5 4.2.1电流连续的临界电感量L1的计算5 4.2.2限制输出电流脉动的临界电感量L2的计算5 4.2.3电动机电感量L D的计算6 4.2.4实际串入平波电抗器的电感量L的计算6 4.3可控晶闸管参数计算6 4.3.1晶闸管的额定电压计算6 4.3.2晶闸管的额定电流计算7 4.3.3三相桥式全控整流电路原理7

4.3.4 整流电路及晶闸管保护电路设计8 4.4 过电压保护和du/dt限制9 4.5 过电流保护和di/dt限制10 5 控制系统设计10 5.1 双闭环调速系统的动态结构10 5.2 电流调节器的设计11 5.2.1 电流环结构框图的化简11 5.2.2 电流环结构框图小惯性环节近似处理12 5.2.3 电流调节器结构的选择12 5.2.4 电流调节器的实现13 5.2.5 电流调节器的参数计算13 5.3转速调节器的设计15 5.3.1 转速环结构框图的化简15 5.3.2转速调节器结构的选择1 6 5.3.3转速调节器的实现17 5.3.4 转速调节器的参数计算17 6 触发电路的选择与原理图19 7 双闭环直流调速系统MATLAB仿真22 8 设计总结23 9参考文献24附录V-M双闭环不可逆直流调速系统电气原理图25

双闭环直流调速系统(精)

直流双闭环调速系统设计 1设计任务说明书 某晶闸管供电的转速电流双闭环直流调速系统,整流装置采用三相桥式电路,基本数据为: 直流电动机:V U N 750=,A I N 780=,min 375r n N =,04.0=a R ,电枢电路 总电阻R=0.1Ω,电枢电路总电感mH L 0.3=,电流允许过载倍数5.1=λ,折算到电动机轴的飞轮惯量2 2 4.11094Nm GD =。 晶闸管整流装置放大倍数75=s K ,滞后时间常数s T s 0017.0= 电流反馈系数?? ? ??≈=N I V A V 5.11201.0β 电压反馈系数?? ? ??=N n V r V 12min 032.0α 滤波时间常数.02.0,002.0s T s T on oi == V U U U cm im nm 12===* *;调节器输入电阻Ω=K R O 40。 设计要求: 稳态指标:无静差 动态指标:电流超调量005≤i σ;空载起动到额定转速时的转速超调量 0010≤n σ。

目录 1设计任务与分析? 2调速系统总体设计...................................................................................................................................... 3直流双闭环调速系统电路设计? 3.1晶闸管-电动机主电路的设计........................................................ 3.1.1主电路设计? 3.1.2主电路参数计算................................................................. 3.2转速、电流调节器的设计? 3.2.1电流调节器.................................................................. 3.2.1.1电流调节器设计? 3.2.1.2电流调节器参数选择........................................................ 3.2.2转速调节器.................................................................... 3.2.2.1转速调节器设计.............................................................. 3.2.2.2转速调节器参数选择.......................................................... 4计算机仿真.................................................................................................................................................. 4.1空载起动? 4.2突加负载........................................................................................................................................ 4.3突减负载 5设计小结与体会? 6参考文献.....................................................................................................................................................

运动控制系统双闭环直流调速系统

运动控制课程设计任务书 题目:双闭环直流调速系统设计 使用班级:电气081、082 设计内容 已知电机参数为:PN=500kW,UN=750V,IN=760AΩ,允许过载倍数λ=,触发整流环节Ks=75,Tl=,Tm=,调节器输入输出最大电压为10V,设计双闭环调速系统,达到最理想的调速性能。 主要设计内容包括:1、ACR、ASR调节器类型选择与参数计算。2、系统建模与仿真。3、调节器电路设计。4、主电路设计。5、反馈电路设计。6、触发电路设计。7、故障处理电路设计。 设计步骤 一、总体方案设计 二、参数初步计算。 三、控制系统的建模和MALAB仿真 四、根据仿真结果调整参数 五、主电路及控制电路设计 六、编写课程设计说明书,绘制完整的系统电路图( A3 幅面)。 课程设计说明书要求 1 .课程设计说明书应书写认真.字迹工稚,论文格式参考国家正式出版的书籍和论文编排。 2 .论理正确、逻辑性强、文理通顾、层次分明、表达确切,并提出自己的见解和观点。 3 .课程设计说明书应有目录、摘要、序言、主干内容(按章节编写)、主要结论和参考书,附录应有系统方枢图和电路原理图。 4 .课程设计说明书应包括按上述设计步骤进行设计的分析和思考内容和引用的相关知识

摘要 双闭环(转速环、电流环)直流调速系统是一种当前应用广泛,经济,适用的电力传动系统。它具有动态响应快、抗干扰能力强的优点。直流双闭环调速系统中设置了两个调节器, 即转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流。可实现频繁的无级快速起动、制动和反转;能满足生产过程自动化系统各种不同的特殊运行要求,历来是自动控制系统的主要执行元件,在轧钢及其辅助机械、矿井卷扬机、挖掘机、海洋钻机、大型起重机、金属切削机床、造纸机、纺织机械等领域中得到了广泛的应用。换向器是直流电机的主要薄弱环节,它使直流电机的单机容量、过载能力、最高电压、最高转速等重要指标都受到限制,也给直流电机的制造和维护添了不少麻烦。然而,鉴于直流拖动控制系统的理论和实践都比较成熟,直流电机仍在广泛的使用。因此,长期以来,在应用和完善直流拖动控制系统的同时,人们一直不断在研制性能与价格都赶得上直流系统的交流拖动控制系统,近年来,在微机控制和电力电子变频装置高度发展之后,这个愿望终于有了实现的可能。在许多需要调速或快速正反向的电力拖动系统领域中得到了广泛的应用。并且随着电力电子器件开关性能的不断提高,直流脉宽调制( PWM) 技术得到了飞速的发展。 关键词: 双闭环,晶闸管,转速调节器,电流调节器,MALAB仿真

双闭环直流电动机调速系统设计及MATLAB仿真

目录 1、引言 (2) 二、初始条件: (2) 三、设计要求: (2) 四、设计基本思路 (3) 五、系统原理框图 (3) 六、双闭环调速系统的动态结构图 (3) 七、参数计算 (4) 1. 有关参数的计算 (4) 2. 电流环的设计 (5) 3. 转速环的设计 (6) 七、双闭环直流不可逆调速系统线路图 (8) 1.系统主电路图 (8) 2.触发电路 (9) 3.控制电路 (13) 4. 转速调节器ASR设计 (13) 5. 电流调节器ACR设计 (14) 6. 限幅电路的设计 (14) 八、系统仿真 (15) 1. 使用普通限幅器进行仿真 (15) 2. 积分输出加限幅环节仿真 (16) 3. 使用积分带限幅的PI调节器仿真 (17) 九、总结 (20)

一、设计目的 1.联系实际,对晶闸管-电动机直流调速系统进行综合性设计,加深对所学 《自动控制系统》课程的认识和理解,并掌握分析系统的方法。 2.熟悉自动控制系统中元部件及系统参数的计算方法。 3.培养灵活运用所学自动控制理论分析和解决实际系统中出现的各种问题 的能力。 4.设计出符合要求的转速、电流双闭环直流调速系统,并通过设计正确掌 握工程设计的方法。 5.掌握应用计算机对系统进行仿真的方法。 二、初始条件: 1.技术数据 (1)直流电机铭牌参数:P N =90KW, U N =440V, I N =220A, n N=1500r/min,电枢电阻Ra=0.088Ω,允许过载倍数λ=1.5; (2)晶闸管整流触发装置:Rrec=0.032Ω,Ks=45-48。 (3)系统主电路总电阻:R=0.12Ω (4)电磁时间常数:T1=0.012s (5)机电时间常数:Tm =0.1s (6)电流反馈滤波时间常数:Toi=0.0025s,转速率波时间常数:Ton=0.014s. (7)额定转速时的给定电压:Unm =10V (8)调节器饱和输出电压:10V 2.技术指标 (1)该调速系统能进行平滑的速度调节,负载电机不可逆运行,具有较宽的调速范围(D≥10),系统在工作范围内能稳定工作错误!未指定书签。; (2)系统静特性良好,无静差(静差率s≤2); (3)动态性能指标:转速超调量δn<8%,电流超调量δi<5%,动态速降Δn≤8-10%,调速系统的过渡过程时间(调节时间)ts≤1s; (4)调速系统中设置有过电压、过电流等保护,并且有制动措施。三、设计要求: (1)根据题目的技术要求,分析论证并确定主电路的结构型式和闭环调速系统的组成,画出系统组成的原理框图; (2)调速系统主电路元部件的确定及其参数计算。 (3)动态设计计算:根据技术要求,用Mrmin准则设计转速环,确定ASR 调节器与ACR调节器的结构型式及进行参数计算,使调速系统工作稳 定,并满足动态性能指标的要求; (4)绘制V-M双闭环直流不可逆调速系统线路图(主电路、触发电路、控

vm双闭环直流调速系统资料

目录 1课程设计目的........................................................... - 1 - 2课程设计题目描述和要求................................................. - 1 - 2.1设计要求..................................................................................................................... - 1 - 2.2设计内容..................................................................................................................... - 1 - 2.3设计数据..................................................................................................................... - 1 -3课程设计报告内容....................................................... - 1 - 3.1转速、电流双闭环直流调速系统的组成................................................................. - 1 - 3.2主电路结构形式......................................................................................................... - 1 - 3.3变压器的选择............................................................................................................. - 1 - 3.4双闭环直流调速系统调节器的设计......................................................................... - 1 - 3.5 整流元件晶闸管的选型............................................................................................ - 1 - 3.6快速熔断器的选择..................................................................................................... - 1 - 3.7平波和均衡电抗器的设计......................................................................................... - 1 - 3.8直流稳压稳压电源设计............................................................................................. - 1 - 3.9调节器的限幅............................................................................................................. - 1 - 3.10电流互感器............................................................................................................... - 1 - 3.11 保护电路的设计...................................................................................................... - 1 - 3.12 晶闸管触发电路的设计.......................................................................................... - 1 -4设计体会.............................................................. - 18 - 5参考书目.............................................................. - 18 - 6附表.................................................................. - 18 -

相关文档
最新文档