两相4线步进电机驱动时序

两相4线步进电机驱动时序

两相4线步进电机驱动时序

无意中间从网上看到两个人的发言,我总结了一下终于把两相4线步进电机脉冲搞定了.

这个图是我自己画的,从图中可以看出来,要实现步进电机的转动,可以用以下两种方式:

(1)8拍的方式

八个状态:1、在A与A-正电压,B与B-不给电悬空;2、在A与A-正电压,B 与B-也给正电压;3、A与A-不给电压悬空,B与B-正电压;4、A与 A-给负电压,B与B-给正电压;5、A与A-给负电压,B与B-不给悬空;6、A与A-给负电压,B与B-给负电压;7、A与A-不

给电悬空,B与B-给负电压;8、A与给正电压,B与B-给负电压;按以上八个状态轮流供电,控制一下脉宽应该就可以了。

四个引脚各一根控制线:A~H表示各线时序

A B C D E F G H

A 1 1 0 0 0 0 0 1

A- 0 0 0 1 1 1 0 0

B 0 1 1 1 0 0 0 0

B- 0 0 0 0 0 1 1 1 .........

(2)4拍的方式

我的方法

一般是电流驱动的。 我下面的a~ 和b~ 表示反向电流。

两相双二拍:

ab - a~b - a~b~ - ab~ 为一个转向。

ab - ab~ - a~b~ - a~b 为反向。

自己的一点体会:偶觉得两相4线电机 和 四相4线电机 差不多.(这从上面我画的图)也可以看出来,只不过物理上绕线的方式不同(这也导致编程上脉冲表的不同),在功能上是一样的.

4四相五线减速步进电机28BYJ48原理仿真及演示程序使用ULN2019A驱动-4页文档资料

减速步进电机28BYJ-48的原理如下图:中间部分是转子,由一个永磁体组成,边上的是定子绕组。当定子的一个绕组通电时,将产生一个方向的电磁场,如果这个磁场的方向和转子磁场方向不在同一条直线上,那么定子和转子的磁场将产生一个扭力将定子扭转。 依次改变绕组的磁场,就可以使步进电机正转或反转(比如通电次序为 A->B->C->D正转,反之则反转)。而改变磁场切换的时间间隔,就可以控制步进电机的速度了,这就是步进电机的驱动原理。 由于步进电机的驱动电流较大,单片机不能直接驱动,一般都是使用 ULN2003达林顿阵列驱动,当然,使用下拉电阻或三极管也是可以驱动的,只不过效果不是那么好,产生的扭力比较小。 参考:减速步进电机28BYJ-48最简单的驱动方法 28BYJ-48的内部结构请见这里 下面是一个步进电机的演示程序: #include sbit key=P2^0; //按键控制步进电机的方向 unsigned char speed=5; //步进电机的转速

//八拍方式驱动,顺序为A AB B BC C CD D DA unsigned char code clockWise[]={0x01,0x03,0x02,0x06,0x04,0x0c,0x08,0x0d}; void delay(unsigned char z) { unsigned char x,y; for(x=0;x

SD-2H4A128型两相步进电机驱动器使用手册_图文.

版权声明 本用户手册的所有部分,其著作财产权归属阿尔札特自动化有限公司(以下简称阿尔札特所有,未经阿尔札特许可,任何人不可任意仿制,拷贝、摘抄或转译。本用户手册没有任何形式的担保,立场表达或其它暗示。若有任何因本用户手册或其所提到之产品的所有信息,所引起的直接或间接的资料流出,利益损失或事业终止,阿尔札特及其所属员工恕不担负任何责任。除此之外,本用户手册提到的产品规格及资料仅供参考,内容有可能会更新,恕不另行通知。 商标声明 用户手册中所涉及到的产品名称仅作识别之用,而这些名称可能是属于其它不同的商标或版权,在此声明如下:

●SD-2H4A128是阿尔札特公司的产品型号。 ●其它未提到的标识,均属各注册公司所拥有。版权所有,不得翻印。 目录 一、概述 (1 二、特点 (1 三、应用范围 (1 四、使用环境和参数 (1 五、电源供给 (2 六、细分数、电流设定及接线端子 (2 附录 A、安装尺寸 (4 附录 B、常见故障及排除 (5 SD-2H4A128型两相步进电机驱动器说明书【使用前请详细阅读】

一、概述 SD-2H4A128是一款采用先进控制技术设计的高性能多细分的步进电机驱动器,用于驱动两相四线步进电机。采用全新的电流控制技术,实现电机电流的精确控制,有效降低输出力矩脉动,提高了细分精度,并且可以将电机的损耗降低25%,达到减小电机温升的效果。更宽的电压电流范围可以满足更多的应用场合,电流连续设定功能方便适配39,42,57系列等多种型号电机。 二、特点 采用恒流斩波微步驱动控制技术 2、8、16、32、64、128、10、20 细分 12~45V宽范围直流供电 最大输出驱动电流4.2A/相 输出电流连续可调 待机自动半电流功能,减少发热、降低能耗 控制方式简单,只需三根数据线(脉冲、方向、+5V 最大脉冲频率512KHz 细分设定方便 精巧的外形尺寸便于安装 高低电平控制,便于用单片机控制 三、应用范围 包装机械

两相四线步进电机的实验

实验器材:DM5676A步进电机一台,DMD605驱动器一台,MPC08B一张,P62转接板一张,5v/24v开关电源一台,计算机一台,62芯屏蔽电缆一调,导线若干。 1.低速转动的测试:测电机在1rpm、2rpm 、4rpm时,电机的振动强弱,与60rpm作比较。实验环境:常速运动,1rpm时输入数据 初始频率f (HZ)细分轴号 13 4 2 测得数据: 1转所用时间t(S)震动强弱(与2rpm、4rpm、60rpm比较)所发脉冲(个) 62 电机一跳一跳的震动(最强)821 常速运动,2rpm时输入数据 初始频率f (HZ)细分轴号 26 4 2 测得数据: 1转所用时间t(S)震动强弱(与1rpm、4rpm、60rpm比较)所发脉冲(个) 30 电机一跳一跳的震动(较强)802 常速运动,4rpm时输入数据 初始频率f (HZ)细分轴号 53 4 2 测得数据: 1转所用时间t(S)震动强弱(与2rpm、1rpm、60rpm比较)所发脉冲(个) 14.9 较弱814 常速运动,60rpm时输入数据 初始频率f (HZ)细分轴号 800 4 2 测得数据: 1转所用时间t(S)震动强弱(与2rpm、4rpm、1rpm比较)所发脉冲(个) 1 最弱814 结论: 电机频率越低,震动效果越明显。 2.细分设置对电机的影响,设置细分分别为2,4,8时分别观察电机f0=0,f1=8000时电机的转速,加速度;观察电机在低速时,振动的强弱。(了解细分的作用) 轴号电机频率加 速度加速度 A 细 分 点击到达 F1=8000Hz时 的时间t(s) 最终速度 N1 rpm 当F=100Hz时 电机振动效果 (常速) 电机转速 的加速度 rps2 2 1000 2 8.29 1200 较大震动 2.4 4 8.32 600 有震动 1.2 8 8. 3 300 震动噪声最小0.6 结论: 电机细分越大,在低速时震动和噪声越小;在相同时间内电机转速的加速度越小;相同频率内速度变小;由最终频率所到达的速度不同可知电机精度在不断增高。 3.改变驱动器输出电流,观察电机转动的速度。

A步进电机四相八拍

一.方案设计 本设计采用电压为DC12V的四相八拍步进电机35BYJ46型电机,用ULN2803作为步进电动机驱动电路主芯片,以8255A作为8088并行输出接口,8088对步进电机的控制信号则通过8255A送到ULN2803. 关于转向与转速,通过查表的方式实现,以逐次递增方向查表,依次输出表中数据,则步进电机正转;以逐次递减方向查表,则步进电机反转,即通过一个表实现步进电机的正转与反转。转速则通过调用延时子程序,当调用延时较长的子程序时,则步进电机转速慢,当调用延时较短的子程序时,步进电机转速加快。 二、硬件系统的基本原理 在工业控制系统里步进电动机是主要的控制元件之一。步进电机具有快速启动停止,精确定位和能够使用数字信号进行控制,能够实现脉冲-角度转换的特点,因此得到广泛的应用。在使用步进电机的控制系统里,脉冲分配器产生周期的控制脉冲序列,步进电机驱动器每接收一个脉冲就控制步进电机沿给定方向步进一步。 实验使用型号为35BYJ46的四相步进电机,采用四相八拍控制方式工作。步进电机的转角和转动方向取决于各相中通电脉冲的个数和顺序。8088控制机控制步进电机的电路见图1-1。计算机将表1-1所示的各种通电方式转换成相应的状态控制字,通过计算机将各种状态字依次送到接口电路,并根据速度的要求作相应的延时处理。由接口电路输出所需的控制脉冲通过驱动电路路使步进电机按要求动作。驱动电路使用ULN2803A达林顿晶体管,反相驱动,驱动电流可以达到500mA。驱动电路的作用是对控制脉冲进行放大,产生步进电机工作所需要的激励电流。

图1-1 步进电机控制实验原理图 35BYJ46型步进电机使用DC12V 电压,采用四相八拍控制相序。励磁线圈和励磁顺序如图1-2,控制相序如表1-1。表中的PB10~PB13对应并行接口8055的B 口0~3位。如果使用8255B 口的其它位则相应的状态字也要改变。 表1-1 步进电机四相八拍相序表 步 序 相 序 通电相 对应PB 口的输出值 (状态字) PB13 PB12 PB11 PB10 1 0 0 0 1 A 01H 2 0 0 1 1 AB 03H 3 0 0 1 0 B 02H 4 0 1 1 0 BC 06H 5 0 1 0 0 C 04H 6 1 1 0 0 CD 0CH 7 1 0 0 0 D 08H 8 1 0 1 DA 09H 1 2 3 4 5 6 7 8 5 + + + + + + + + 4 - - - 3 - - - 5 (黑) 4 (黄) 3 (棕) 2 (蓝) 1 (红) +12V A ’ B ’ C ’ D ’ A B C D PB0 PB1 PB2 PB3 8255 驱动单元 步进电动机

2相四线-四相五线-四相六线步进电机接线及驱动方法

2相四线,四相五线,四相六线步进电机接线及驱动方法 步进电机工作原理: 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 按照常理来说,步进电机接线要根据线的颜色来区分接线。但是不同公司生产的步进电机,线的颜色不一样。特别是国外的步进电机。 那么,步进电机接线应该用万用表打表。 步进电机内部构造如下图:

通过上图可知,A,~A是联通的,B和~B是联通。那么,A和~A是一组a,B和~B是一组b。 不管是两相四相,四相五线,四相六线步进电机。内部构造都是如此。至于究竟是四线,五线,还是六线。就要看A和~A之间,B和B~之间有没有公共端com抽线。如果a组和b组各自有一个com端,则该步进电机六线,如果a和b组的公共端连在一起,则是5线的。 所以,要弄清步进电机如何接线,只需把a组和b组分开。用万用表打。 四线:由于四线没有com公共抽线,所以,a和b组是绝对绝缘的,不连通的。所以,用万用表测,不连通的是一组。

五线:由于五线中,a和b组的公共端是连接在一起的。用万用表测,当发现有一根线和其他几根线的电阻是相当的,那么,这根线就是公共com端。对于驱动五线步进电机,公共com端不连接也是可以驱动步进电机的。 六线:a和b组的公共抽线com端是不连通的。同样,用万用表测电阻,发现其中一根线和其他两根线阻止是一样的,那么这根线是com端,另2根线就属于一组。对于驱动四相六线步进电机,两根公共com端不接先也可以驱动该步进电机的。 步进电机相关概念: 相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。 拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即 A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半步)。 定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的) 静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。 步进电机驱动 驱动步进电机,无非是给电机a和b组先轮流给连续的脉冲,步进电机就可以驱动了。

四相步进电机原理图及程序

四相步进电机原理图 本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。 1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相 绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。

当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示: a. 单四拍 b. 双四拍 c八拍 图2.步进电机工作时序波形图 2.基于AT89C2051的步进电机驱动器系统电路原理 步进电机驱动器系统电路原理如图3:

图3 步进电机驱动器系统电路原理图 AT89C2051将控制脉冲从P1口的P1.4~P1.7输出,经74LS14反相后进入9014,经9014放大后控制光电开关,光电隔离后,由功率管TIP122将脉冲信号进行电压和电流放大,驱动步进电机的各相绕组。使步进电机随着不同的脉冲信号分别作正转、反转、加速、减速和停止等动作。图中L1为步进电机的一相绕组。AT89C2051选用频率22MHz的晶振,选用较高晶振的目的是为了在方式2下尽量减小AT89C2051对上位机脉冲信号周期的影响。 图3中的RL1~RL4为绕组内阻,50Ω电阻是一外接电阻,起限流作用,也是一个改善回路时间常数的元件。D1~D4为续流二极管,使电机绕组产生的反电动势通过续流二极管(D1~D4)而衰减掉,从而保护了功率管TIP122不受损坏。

2021年两相四线步进电机

两相四线励磁式步进电机工作原理 欧阳光明(2021.03.07) 本章将介绍在嵌入式平台UP-NETARM2410-S中步进电机的实现。步 进电机在各个领域诸如机器人、智能控制、工业控制等方面都有着广泛的应用 空间,本章着重介绍步进电机的工作原理及编程实现步进电机驱动的方法,主 要内容如下: l 步进电机的概述 l 步进电机的工作原理 l 和微处理器的总线连接方式 l 驱动程序的编程 l Linux 下用软件的方法实现步进电机的脉冲分配,用软件的方法代替硬件的脉 冲分配器 1.步进电机概述 步进电机是一种能够将电脉冲信号转换成角位移或线位移的机电元件,它 实际上是一种单相或多相同步电动机。单相步进电动机有单路电脉冲驱动,输 出功率一般很小,其用途为微小功率驱动。多相步进电动机有多相

方波脉冲驱 动,用途很广。 使用多相步进电动机时,单路电脉冲信号可先通过脉冲分配器转换为多相脉冲 信号,在经功率放大后分别送入步进电动机各相绕组。每输入一个脉冲到脉冲 分配器,电动机各相的通电状态就发生变化,转子会转过一定的角度(称为步距 角)。 正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一 定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受 电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所以 特别适合于微机控制。 1.1步进电机的特性 步进电机转动使用的是脉冲信号,而脉冲是数字信号,这恰是计算机所擅 长处理的数据类型。从20世纪80年代开始开发出了专用的IC驱动电路,今 天,在打印机、磁盘器等的OA装置的位置控制中,步进电机都是不可缺少的

四相步进电机驱动电路及驱动程序设计

四相步进电机驱动电路及驱动程序设计 我们用一个单片机控制多个步进电机指挥跳舞机器人的双肩、双肘和双脚伴着音乐做出各种协调舒缓充满感情的动作,荣获一等奖。电路采用74373锁存,74LS244和ULN2003作电压和电流驱动,单片机(Atc52)作脉冲序列信号发生器。程序设计基于中断服务和总线分时利用方式,实时更新各个电机的速度、方向。整个舞蹈由运动数据所决定的一截截动作无缝连接而成。本文主要介绍一下这个机器人的四相五线制步进电机驱动电路及程序设计. 1、步进电机简介 步进电机根据内部线圈个数不同分为二相制、三相制、四相制等。本文以四相制为例介绍其内部结构。图1为四相五线制步进电机内部结构示意图。

2、四相五线制步进电机的驱动电路 电路主要由单片机工作外围电路、信号锁存和放大电路组成。我们利用了单片机的I/O端口,通过74373锁存,由74LS244驱动,ULN2003对信号进行放大。8个电机共用4bit I/O端口作为数据总线,向电机传送步进脉冲。每个电机分配1bit的I/O端口用作74373锁存信号,锁存步进电机四相脉冲,经ULN2003放大到12V驱动电机运转。 电路原理图(部分)如图2所示。 (1)Intel 8051系列单片机是一种8位的嵌入式控制器,可寻址64K字节,共有32个可编程双向I/O口,分别称为P0~P3。该系列单片机上集成8K的ROM,128字节RAM可供使用。 (2)74LS244为三态控制芯片,目的是使单片机足以驱动ULN2003。

ULN2003是常用的达林顿管阵列,工作电压是12V,可以提供足够的电流以驱动步进电机。关于这些芯片的详细介绍可参见它们各自的数据手册。 (3)74373是电平控制锁存器,它可使多个步进电机共用一组数据总线。我们用P1.0~P1.7作为8个电机的锁存信号输出端,见表1。 这是一种基于总线分时复用的方式,以动态扫描的方式来发送控制信号,这和高级操作系统里的多任务进程调度的思想一致。这种方法明显的好处是节省I/O口,使系统可以控制更多的步进电机。本电路设计为控制8个。 3 、程序设计 传统的步进电机驱动程序利用简单的条件循环来发送脉冲序列,但当电机数目发生变化时,编程繁杂,冗余代码较多,难以做到信号占空比一致,进而产生“抖动” 现象。下面提出一种基于中断服务方式,面向舞蹈动作,可实时改变各个电机速度和方向(每200ms可改变一次)的程序设计方法。 3.1 速度归一化和线性关系 我们将速度量化成一个-128~127内可变的数,正号代表正转,负号代表返转,称之归一化速度(-128~127为一个字节)。给每个电机分

四相六线步进电机驱动

交直流电机控制课程设计 任务书 (09级) 步进电机控制 学生姓名沈滨彬 学号09143416 院系工学院机电系 专业自动化 指导教师叶军 填写日期2012-10-17

目录 1. 设计任务与要求 (3) 2.总体方案设计 (3) 2.1设计思路 (3) 2.2方案论证与比较 (3) 2.2.1驱动电路选择方案 (3) 2.2.2 显示模块选择方案 (3) 3 硬件设计 (4) 3.1 步进电机控制系统设计 (4) 3.2 5V稳压电路 (4) 3.3 电机驱动电路 (5) 3.4 人机交互界面 (6) 4 实物图 (7) 5.参考文献 (7) 6.致谢 (8) 7.元器件清单: (8) 附录一: (9)

1. 设计任务与要求 1.1、设计题目 步进电机控制 1.2、内容与要求 设计一步进电机控制系统,实现对电机的正转,反转和速度控制。 1.3、设计任务 1)画出系统原理图。 2)硬件电路设计及描述。 3)任选一种语言编写程序。 4)仿真实验。 5)编写设计说明书一份。 2.总体方案设计 2.1设计思路 本系统设计的步进电机控制系统,以单片机STC12C5A60S2为主控芯片,包括主控器、驱动电路以及人机交互界面。本设计主要通过单片机进行相序输出,经过ULN2803进行电流放大后驱动电机运行。。 2.2方案论证与比较 2.2.1驱动电路选择方案 方案一:采用mc3479,此芯片控制简单,可输出整步/半步相序,省去软件方面的很多麻烦,由于实验室暂无此元件,因此不选此方案。 方案二:采用ULN2803,此芯片主要是用来放大电流的,相对mc3479控制,比较麻烦,但价格便宜,身边正好有此元件因此采用此方案。 2.2.2 显示模块选择方案 方案一:采用SMS0801,驱动方便,但是无法显示中文,外观欠佳,因此不采用。 方案二:采用12864,可以显示中文文字、数字、英文字母等等,功能强大,故选择方案二。

2相四线,四相五线,四相六线步进电机接线及驱动方法

2相四线,四相五线,四相六线步进电机接线及驱动方法 步进电机原理 按照常理来说,步进电机接线要根据线的颜色来区分接线 的步进电机, 线的颜色不一样。特别是国外的步进电机 那么,步进电机接线应该用万用表打表。 ~B 是一组b o 不管是两相四相,四相五线,四相六线步进电机。内部构造都是如此。至于究 竟是四线,五线,还是六线。就要看 A 和~A 之间,B 和B~之间有没有公共端com 抽 线。如果a 组和b 组各自有一个com 端,则该步进电机六线,如果 a 和b 组的公 共端 连在一起,则是 5 线的。 但是不同公司生产 B 和~B 是联通。那么, A 和~A 是一组a , B 和 通过上图可知,A, ~A 是联通的, 步进电机内部构造如下图

所以,要弄清步进电机如何接线,只需把 a 组和 b 组分开。用万用表打。 四线:由于四线没有com公共抽线,所以,a和b组是绝对绝缘的,不连通的。所以,用万用表测,不连通的是一组。 五线:由于五线中,a和b组的公共端是连接在一起的。用万用表测,当发现有一根线和其他几根线的电阻是相当的,那么,这根线就是公共com端。对于驱动五线步进电机,公共com端不连接也是可以驱动步进电机的。 六线:a和b组的公共抽线com端是不连通的。同样,用万用表测电阻,发现其中一根线和其他两根线阻止是一样的,那么这根线是com端,另2根线就属于一组。对于驱动四相六线步进电机,两根公共com端不接先也可以驱动该步进电机的。 步进电机相关概念: 相数:产生不同对极N S磁场的激磁线圈对数。常用m表示。 拍数: 完成一个磁场周期性变化所需脉冲数或导电状态用n 表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD- DA-AB四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用9表示。B =360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为9 =360度(/50*4)=1.8 度(俗称整步),八拍运行时步距角为9 =360度/ (50*8)=0.9 度(俗称半步)。定位转矩: 电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的) 静转矩: 电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。

三相混合式步进电机驱动器的设计原理和控制详解

上海昀研自动化科技有限公司自2004年起致力于三相混合式步进电机及驱动器的开发,42系列低压三相混合式步进电机,57系列低压、高压三相混合式步进电机,86系列低压、高压三相混合式步进电机,110、130系列高压三相混合式步进电机,YK3605MA,TK3411MA,YK3822MA,YKA3722MA等多款产品已成功应用于市场。 上海昀研自动化科技有限公司生产的三相混合式步进电机采用交流伺服原理工作,转子和定子的直径比高达50%,高速时工作扭矩大,低速时运行极其平稳,几乎无共振区。其配套驱动器YK3822MA具有单相220V/50Hz输入,三相正弦输出,输出电流可设置,具有十细分和半流额定值60%功能;控制方式灵活,有“脉冲+方向控制”,也有“正转脉冲+反转脉冲”控制方式;有过热保护功能,因此使用起来十分的方便。 1.前言 步进电机是一种开环伺服运动系统执行元件,以脉冲方式进行控制,输出角位移。与交流伺服电机及直流伺服电机相比,其突出优点就是价格低廉,并且无积累误差。但是,步进电机运行存在许多不足之处,如低频振荡、噪声大、分辨率不高等,又严重制约了步进电机的应用范围。步进电机的运行性能与它的驱动器有密切的联系,可以通过驱动技术的改进来克服步进电机的缺点。相对于其他的驱动方式,细分驱动方式不仅可以减小步进电机的步距角,提高分辨率,而且可以减少或消除低频振动,使电机运行更加平稳均匀。总体来说,细分驱动的控制效果最好。因为常用低端步进电机伺服系统没有编码器反馈,所以随着电机速度的升高其内部控制电流相应减小,从而造成丢步现象。所以在速度和精度要求不高的领域,其应用非常广泛。 因为三相混合式步进电机比二相步进电机有更好的低速平稳性及输出力矩,所以三相混合式步进电机比二相步进电机有更好应用前景。传统的三相混合式步进电机控制方法都是以硬件比较器完成,本文主要讲述使用DSP及空间矢量算法SVPWM来实现三相混合式步进电机控制。 2.细分原理 步进电机的细分控制从本质上讲是通过对步进电机的定子绕组中电流的控制,使步进电机内部的合成磁场按某种要求变化,从而实现步进电机步距角的细分。最佳的细分方式是恒转矩等步距角的细分。一般情况下,合成磁场矢量的幅值决定了电机旋转力矩的大小,相邻两合成磁场矢量的之间的夹角大小决定了步距角的大小。在电机内产生接近均匀的圆形旋转磁场,各相绕组的合成磁场矢量,即各相绕组电流的合成矢量应在空间作幅值恒定的旋转运动,这就需要在各相绕相中通以正弦电流。 三相混合式步进电机的工作原理十分类似于交流永磁同步伺服电机。其转子上所用永磁磁铁同样是具有高磁密特性的稀土永磁材料,所以在转子上产生的感应电流对转子磁场的影响可忽略不计。在结构上,它相当于一种多极对数的交流永磁同步电机。由于输入是三相正弦电流,因此产生的空间磁场呈圆形分布,而且可以用永磁式同步电机的结构模型(图1)分析三相混合式步进电机的转矩特性。为便于分析,可做如下假设: a.电机定子三相绕组完全对称; b.磁饱和、涡流及铁心损耗忽略不计; c.激磁电流无动态响应过程。

2相四线,四相五线,四相六线步进电机接线及驱动方法

步进电机原理 按照常理来说,步进电机接线要根据线的颜色来区分接线。但是不同公司生产的步进电机,线的颜色不一样。特别是国外的步进电机。 那么,步进电机接线应该用万用表打表。 步进电机内部构造如下图:

通过上图可知,A,~A是联通的,B和~B是联通。那么,A和~A是一组a,B和~B是一组b。 不管是两相四相,四相五线,四相六线步进电机。内部构造都是如此。至于究竟是四线,五线,还是六线。就要看A和~A之间,B和B~之间有没有公共端com抽线。如果a组和b 组各自有一个com端,则该步进电机六线,如果a和b组的公共端连在一起,则是5线的。 所以,要弄清步进电机如何接线,只需把a组和b组分开。用万用表打。 四线:由于四线没有com公共抽线,所以,a和b组是绝对绝缘的,不连通的。所以,用万用表测,不连通的是一组。 五线:由于五线中,a和b组的公共端是连接在一起的。用万用表测,当发现有一根线和其他几根线的电阻是相当的,那么,这根线就是公共com端。对于驱动五线步进电机,公共com端不连接也是可以驱动步进电机的。 六线:a和b组的公共抽线com端是不连通的。同样,用万用表测电阻,发现其中一根线和其他两根线阻止是一样的,那么这根线是com端,另2根线就属于一组。对于驱动四相六线步进电机,两根公共com端不接先也可以驱动该步进电机的。

步进电机相关概念: 相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。 拍数:完成一个磁场周期性变化所需脉冲数或导电状态用n表示,或指电机转过一个齿距角所需脉冲数,以四相电机为例,有四相四拍运行方式即AB-BC-CD-DA-AB,四相八拍运行方式即A-AB-B-BC-C-CD-D-DA-A. 步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。θ=360度(转子齿数J*运行拍数),以常规二、四相,转子齿为50齿电机为例。四拍运行时步距角为θ=360度/(50*4)=1.8度(俗称整步),八拍运行时步距角为θ=360度/(50*8)=0.9度(俗称半步)。 定位转矩:电机在不通电状态下,电机转子自身的锁定力矩(由磁场齿形的谐波以及机械误差造成的) 静转矩:电机在额定静态电作用下,电机不作旋转运动时,电机转轴的锁定力矩。此力矩是衡量电机体积(几何尺寸)的标准,与驱动电压及驱动电源等无关。 步进电机驱动 驱动步进电机,无非是给电机a和b组先轮流给连续的脉冲,步进电机就可以驱动了。 步进电机驱动码:

四相步进电机全教程

四相步进电机全教程——盖尔@袁(4、21) 前段时间就有玩过步进电机了,但是后来因为硬盘坏了,资料全没了,之后想再玩的时间都不知道该怎么弄了,这时候觉得假如当时有留点资料发到网上的话,那现在也就不会那么纠结了,所以,昨晚又再一次拿起那步进电机,再一次玩一下,大概把之前那些东西回想起来了,现在写一份小教程(之所以叫全教程,是因为看了这份资料之后,对应地也就大概能用起来,对步进电机也有一个大概的了解了),以共大家学习,希望高手拍砖!(里面有些是直接引用网上的资料,如有原作者看到的话,我在这里跟他说声谢谢,因为您写得太好了!) 驱动电路 我用的是L298N这款很经典的电机驱动芯片,这芯片可以驱动直流电机,步进电机等,功能相当强大,很好用,虽然贵了点(下面再介绍一种比较好的,价格比较低的驱动电路,也相当好用),但是还是用了,毕竟是经典之作嘛!呵呵! 电路如下: 大家可以看到,上面这电机驱动芯片L298N有四个输入(IN1,IN2,IN3,IN4)和四个输出(M1,M2),对了,就是对应单片机(或者其它主控芯片,比如说M3,我用的就是这个)的输入控制端,然后这四个控制端通过L298N间接地控制了步进电机(也就是图里的M1,M2),因为步进电机转动的时候需要比较大的电流,单片机IO引脚没法提供,只有通过这驱动芯片才能够带动起来!

电路里面还有PWMA和PWMB,这是使能端,用于使能M1和M2是否被输入控制的,高电平有效!一般我们假如需要控制的话,这个就接单片机的IO引脚上,假如不需要独立控制的话那直接接高电平就行了!另外,大家可以看到电路里面还有一个5V的输入,具体这个是做什么的我也不是很清楚,不过照给就是了,没问题的! 好,首先先把这电路焊出来,记得,因为L298N工作的时候电流比较大,所以 要求必需加上一个散热片,这样有利于保护电路不会因为过热而烧了!这里有一个小知识跟大家说一下,焊电路最好是加上一个电源指示灯,这样的好处多多,可以防止电源接反而完全不知!OK,这个方案介绍完了,下面介绍另一种成本 比较低的驱动方案! 假如手头上有ULN2003的话,也可以用来当成驱动电路用,我们只要知道驱动电路的作用就是放大那个电流,那任何一种能够放大电流的方法都可以拿过来用,包括你用三极管都行!下面提供一个三极管的驱动电路!至于ULN2003,具体电路我就不说了!很简单的,看下芯片的PDF就知道了。对了,这里顺便介绍一个找PDF比较全的网站——ICPDF,当然IC37也很全!

两相步进电机驱动器工作原理

两相步进电机驱动器工作原理 1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示:图2.步进电机工作时序波形图 2.基于AT89C2051的步进电机驱动器系统电路原理 图3 步进电机驱动器系统电路原理图 A T89C2051将控制脉冲从P1口的P1.4~P1.7输出,经74LS14反相后进入9014,经9014放大后控制光电开关,光电隔离后,由功率管TIP122将脉冲信号进行电压和电流放大,驱动步进电机的各相绕组。使步进电机随着不同的脉冲信号分别作正转、反转、加速、减速和停止等动作。图中L1为步进电机的一相绕组。A T89C2051选用频率22MHz的晶振,选用较高晶振的目的是为了在方式2下尽量减小AT89C2051对上位机脉冲信号周期的影响。 图3中的RL1~RL4为绕组内阻,50Ω电阻是一外接电阻,起限流作用,也是一个改善回路时间常数的元件。D1~D4为续流二极管,使电机绕组产生的反电动势通过续流二极管(D1~D4)而衰减掉,从而保护了功率管TIP122不受损坏。 在50Ω外接电阻上并联一个200μF电容,可以改善注入步进电机绕组的电流脉冲前沿,提高了步进电机的高频性能。与续流二极管串联的200Ω电阻可减小回路的放电时间常数,使绕组中电流脉冲的后沿变陡,电流下降时间变小,也起到提高高频工作性能的作用。 3.软件设计 该驱动器根据拨码开关KX、KY的不同组合有三种工作方式供选择: 方式1为中断方式:P3.5(INT1)为步进脉冲输入端,P3.7为正反转脉冲输入端。上位机(PC机或单片机)与驱动器仅以2条线相连。 方式2为串行通讯方式:上位机(PC机或单片机)将控制命令发送给驱动器,驱动器根据控制命令自行完成有关控制过程。

步进电机驱动器的工作原理

步进电机驱动器的工作原理 步进电机在控制系统中具有广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。 有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。 1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图

开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产 生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极 产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向 转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示: 图2.步进电机工作时序波形图 2.基于AT89C2051的步进电机驱动器系统电路原理 图3 步进电机驱动器系统电路原理图

最新四相步进电机使用

四相步进电机使用

1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相 绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示:

a. 单四拍 b. 双四拍 c八 拍 图2.步进电机工作时序波形图 2.基于AT89C2051的步进电机驱动器系统电路原理 步进电机驱动器系统电路原理如图3: 图3 步进电机驱动器系统电路原理图 AT89C2051将控制脉冲从P1口的P1.4~P1.7输出,经74LS14反相后进入9014,经9014放大后控制光电开关,光电隔离后,由功率管TIP122将脉冲信号进行电压和电流放大,驱动步进电机的各相绕组。使步进电机随着不同的脉冲信号分别作正转、反转、加速、减速和停止等动作。图中L1为步进电机的一相绕组。AT89C2051选用频率22MHz的晶振,选用较高晶振的目的是为了在方式2下尽量减小AT89C2051对上位机脉冲信号周期的影响。 图3中的RL1~RL4为绕组内阻,50Ω电阻是一外接电阻,起限流作用,也是一个改善回路时间常数的元件。D1~D4为续流二极管,使电机绕组产生的反电动势通过续流二极管(D1~D4)而衰减掉,从而保护了功率管TIP122不受损坏。 在50Ω外接电阻上并联一个200μF电容,可以改善注入步进电机绕组的电流脉冲前沿,提高了步进电机的高频性能。与续流二极管串联的200Ω电阻

四相步进电机驱动器

四相步进电机驱动器使用说明 1、本驱动器使用RS232串口控制,操作简单且通用。图(1)为模块的硬件电路说明。 图1:模块的内部结构框图 2、输入电源说明:单电源5V和步进电机电源5~24V,驱动电流最大3安培。单电源和步进电机可以公地也可以不公地。 3、控制说明:只需要三个控制字节连续的从串口发送出来。 (a)串口的配置为:串口设置为8位,2400bps,无奇偶校验位,一位停止位。和电脑连接的调试设置如图(2)。 图2:串口配置 (b)串口的通信协议为:连续data3 data2 data1 (c)当data1为0x00时,步进电机停止转动。Data2 data3不起作用。 (d)当data1为0x01时,步进电机正转。步进电机使用4相8拍:->A→AB→B→BC→C→CD→D→DA→A->循环。其中data2 data3为signed int格式,data2为高8位,data3为低8位,转动次数为data2data3所表示的数;为保证电机不会丢步,电机的速度从20步/秒起跳,平顶转速默认为400步/秒,最高设置为500步/秒。 (e)当data1为02H时,步进电机反转,其他同0x01。 (f)当data1为03H时,步进电机正转。步进电机使用4相4拍:->A→B→C→D→A->循环。其中data2 data3为int格式,data2为高8位,data3为低8位,转动步数为data2data3所表示的数;为保证电机不会丢步,电机的速度从20步/秒起跳,平顶转速默认为400步/秒,最高设置为500步/秒,最低为20步/秒。 (g)当data1为04H时,步进电机反转,其他同0x03。 (h)当data1为05H时,步进电机正转,电机以设定的最快速度正转,这个工作模式没有加速和减速阶段。拍子为A-AB-B-BC-C-CD-D-DA- , data2 data3不起作用。他在转完3万步左右后,会自动停止,如果要求更长时间的转动,需要在电机未停止时继续送数。 (i)当data1为06H时,步进电机反转,电机以设定的最快速度反转,这个工作模式没有

51单片机控制两相四线步进电机

源程序如下: ENA EQU P1.0 ENB EQU P1.1 IN1 EQU P1.2 IN2 EQU P1.3 IN3 EQU P1.4 IN4 EQU P1.5 SWITCH EQU P3.3 FAST EQU P3.6 SLOW EQU P3.5

CYCLENUM EQU 50H ;存放对应定时循环次数 TEMP EQU 53H ;存放按键次数。初值为5,每按加速叠加1,按减速递减MARK EQU 56H ;启动停止标识 LEDBUF EQU 57H ORG 0 AJMP START ;*****************检测是否开启启动电机键*************************** START: MOV P0,#0 ;清显示 SETB MARK ;预启动电机工作,标识为1 MOV TEMP,#5 ;开始工作于5Hz MOV CYCLENUM,#01H ;循环1次 JNB SWITCH,NEXT ;按键按下? SJMP START ;没有返回继续检测 NEXT: CALL DELAY ;消抖确认 JNB SWITCH,MAIN ;再次确认按键,不为1说明按键按下 SJMP START ;没有按下,继续检测 ;*****************开始运行电机*************************************** MAIN: MOV A,TEMP MOV DPTR,#TAB4 MOVC A,@A+DPTR MOV LEDBUF,A ;送显示 CALL DISPLAY LOOP: JB MARK,WORK ;检测运行标识是否为1,为1则继续运行,为0则停止运行NOTWORK: CLR ENA CLR ENB SJMP START WORK: MOV P1,#000010111B ;步进电机运行方式为两相四拍 CALL TIMER CALL TESTSTOP

四相步进电机原理与程序

步进电机在控制系统中具有广泛的应用。它可以把脉冲信号转换成角位移,并且可用作电磁制动轮、电磁差分器、或角位移发生器等。 有时从一些旧设备上拆下的步进电机(这种电机一般没有损坏)要改作它用,一般需自己设计驱动器。本文介绍的就是为从一日本产旧式打印机上拆下的步进电机而设计的驱动器。 本文先介绍该步进电机的工作原理,然后介绍了其驱动器的软、硬件设计。 1. 步进电机的工作原理 该步进电机为一四相步进电机,采用单极性直流电源供电。只要对步进电机的各相绕组按合适的时序通电,就能使步进电机步进转动。图1是该四相反应式步进电机工作原理示意图。 图1 四相步进电机步进示意图 开始时,开关SB接通电源,SA、SC、SD断开,B相磁极和转子0、3号齿对齐,同时,转子的1、4号齿就和C、D相绕组磁极产生错齿,2、5号齿就和D、A相绕组磁极产生错齿。 当开关SC接通电源,SB、SA、SD断开时,由于C相绕组的磁力线和1、4号齿之间磁力线的作用,使转子转动,1、4号齿和C相绕组的磁极对齐。而0、3号齿和A、B相绕

组产生错齿,2、5号齿就和A、D相绕组磁极产生错齿。依次类推,A、B、C、D四相绕组轮流供电,则转子会沿着A、B、C、D方向转动。 四相步进电机按照通电顺序的不同,可分为单四拍、双四拍、八拍三种工作方式。单四拍与双四拍的步距角相等,但单四拍的转动力矩小。八拍工作方式的步距角是单四拍与双四拍的一半,因此,八拍工作方式既可以保持较高的转动力矩又可以提高控制精度。 单四拍、双四拍与八拍工作方式的电源通电时序与波形分别如图2.a、b、c所示: a. 单四拍 b. 双四拍c八拍 图2.步进电机工作时序波形图 2.基于AT89C2051的步进电机驱动器系统电路原理 步进电机驱动器系统电路原理如图3: 图3 步进电机驱动器系统电路原理图

相关文档
最新文档