椭圆的讲义

椭圆的讲义
椭圆的讲义

海豚教育个性化简案

海豚教育个性化教案(真题演练)

海豚教育个性化教案

A .

45 B .23 C .22 D .2

1 例2:已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆12

2=+n

y m x 的离心率为 例3:在ABC △中,3,2||,300===∠?ABC S AB A .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率

e = .

【变式训练】

1. 椭圆的两个焦点把两条准线间距离三等分,则椭圆离心率为( ) A.

63 B.33 C.2

3 D. 不确定 2. 椭圆的一个顶点与两焦点构成等边三角形,则此椭圆的离心率是( )

3. 以椭圆两焦点为直径的圆交椭圆于四个不同点,顺次连结这四个点和两个焦点,恰好围成一个正六边形,则这个椭圆的离心率等于___________。 2:求离心率的取值范围

例1:已知椭圆12222=+b y a x (0>>b a ),F 1,F 2是两个焦点,若椭圆上存在一点P ,使3

221π

=∠PF F ,求

其离心率e 的取值范围。

例2:已知椭圆122

22=+b

y a x (0>>b a )与x 轴的正半轴交于A ,0是原点,若椭圆上存在一点M ,使MA ⊥MO ,

求椭圆离心率的取值范围。

例3:已知椭圆12222=+b

y a x (0>>b a ),以a ,b ,c 为系数的关于x 的方程02

=++c bx ax 无实根,求

其离心率e 的取值范围。

题型四:椭圆的其他几何性质的运用(范围、对称性等)

例1:已知实数y x ,满足12

42

2=+y x ,求x y x -+22的最大值与最小值

l与y轴交于点P(0,m),与椭圆C交于相异两点A、B,且PB

AP3

=.

(1)求椭圆方程;(2)求m的取值范围.

例2:设过点()y

x

P,的直线分别与x轴的正半轴和y轴的正半轴交于A、B两点,点Q与点P关于y轴对称,O为坐标原点,若PA

BP2

=,且1

=

?AB

OQ,则P点的轨迹方程是()

A. ()0

,0

1

3

2

3

2

2>

>

=

+y

x

y

x B. ()0

,0

1

3

2

3

2

2>

>

=

-y

x

y

x

C. ()0

,0

1

2

3

32

2>

>

=

-y

x

y

x D. ()0

,0

1

2

3

32

2>

>

=

+y

x

y

x

例3:如图,在Rt△ABC中,∠CAB=90°,AB=2,AC=

2

2

。一曲线E过点C,动点P在曲线E上运动,且保持|P A|+|PB|的值不变,直线l经过A与曲线E交于M、N两点。

(1)建立适当的坐标系,求曲线E的方程;

(2)设直线l的斜率为k,若∠MBN为钝角,求k的取值范围。

海豚教育错题汇编

海豚教育1对1出门考(_______年______月______日周_____)

1.若方程

x2

25-m

y2

m+9

=1表示焦点在y轴上的椭圆,则实数m的取值范围是()

A.-9<m<25B.8<m<25

C.16<m<25 D.m>8

2.已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的方程为()

A.

x2

4+

y2

3=1 B.

x2

4+y

2=1

C.

y2

4+

x2

3=1 D.

y2

4+x

2=1

3.已知(0,-4)是椭圆3kx2+ky2=1的一个焦点,则实数k的值是()

A.6 B.

1

6

C.24 D.

1

24

4.椭圆

x2

25+

y2

9=1的焦点为F1,F2,P为椭圆上的一点,且PF1

·PF2

=0,则△F1PF2的面积为()

A.12 B.10

C.9 D.8

5.椭圆

x2

9+

y2

2=1的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则|PF2|=________;∠F1PF2

的大小为________.

6. 已知椭圆的中心在原点,两焦点F1,F2在x轴上,且过点A(-4,3).若F1A⊥F2A,求椭圆的

标准方程.

评语:

5A练习:

练习要求在月日之前完成

高中椭圆讲义

椭圆 1.椭圆的概念 平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 集合P={M||MF1|+|MF2|=2a},|F1F2|=2c<2a,其中a>0,c>0,且a,c为常数. 2.椭圆的标准方程和几何性质 -a≤x≤a-b≤x≤b 概念方法微思考 1.在椭圆的定义中,若2a=|F1F2|或2a<|F1F2|,动点P的轨迹如何? 提示当2a=|F1F2|时动点P的轨迹是线段F1F2;当2a<|F1F2|时动点P的轨迹是不存在的.2.椭圆的离心率的大小与椭圆的扁平程度有怎样的关系?

提示 由e =c a = 1-????b a 2知,当a 不变时,e 越大,b 越小,椭圆越扁;e 越小,b 越大, 椭圆越圆. 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)椭圆是轴对称图形,也是中心对称图形.( ) (2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( ) (3)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( ) (4)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2 b 2=1(a >b >0)的焦距相等.( ) 题组二 教材改编 2.椭圆x 210-m +y 2m -2=1的焦距为4,则m 等于( ) A .4 B .8 C .4或8 D .12 3.过点A (3,-2)且与椭圆x 29+y 2 4=1有相同焦点的椭圆的方程为( ) A.x 215+y 2 10=1 B.x 225+y 2 20=1 C.x 210+y 2 15=1 D.x 220+y 2 15 =1 4.已知点P 是椭圆x 25+y 2 4=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形 的面积等于1,则点P 的坐标为__________________. 题组三 易错自纠 5.若方程x 25-m +y 2 m +3=1表示椭圆,则m 的取值范围是( ) A .(-3,5) B .(-5,3) C .(-3,1)∪(1,5) D .(-5,1)∪(1,3) 6.已知椭圆x 25+y 2m =1(m >0)的离心率e =10 5 ,则m 的值为________.

高中数学椭圆讲义及例题

7.椭圆 1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:22 1x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是 以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对 称中心的中心对称图形,这个对称中心称为椭圆的中心。 (2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆1 22 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点, 坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=, b B B 221=。a 和b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值范围是)10(<

椭圆讲义(学生版)

椭圆讲义 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称 离心率 )2 2101c b e e a a ==-<< 准线方程 2 a x c =± 2 a y c =± 3、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则 12 12F F e d d M M ==. 四、常考类型 类型一:椭圆的基本量 1.指出椭圆36492 2 =+y x 的焦点坐标、准线方程和离心率. ? 举一反三:【变式1】椭圆 116 252 2=+y x 上一点P 到椭圆一个焦点的距离为3,则P到另一个焦点的距离=

________ 【变式2】椭圆 125162 2=+y x 的两个焦点分别为21F F 、,过2F 的直线交椭圆于A 、B 两点,则1ABF ?的周长1ABF C ?=___________. ? 【变式3】已知椭圆的方程为 1162 2 2=+m y x ,焦点在x 轴上,则m的取值范围是( )。? A .-4≤m ≤4且m ≠0 B .-4<m<4且m ≠0 C.m >4或m <-4 D .0<m <4 【变式4】已知椭圆mx 2 +3y2 -6m=0的一个焦点为(0,2),求m 的值。 类型二:椭圆的标准方程 2. 求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点距离的和是10; (2)两个焦点的坐标是(0,-2)、(0,2),并且椭圆经过点?? ? ??2523-,。? 举一反三:【变式1】两焦点的坐标分别为()()4-04,0,,,且椭圆经过点)(0,5。 【变式2】已知一椭圆的对称轴为坐标轴且与椭圆14 92 2=+y x 有相同的焦点,并且经过点(3,-2),求此椭圆的方程。 3.求经过点P (-3,0)、Q(0,2)的椭圆的标准方程。? 举一反三:【变式】已知椭圆经过点P (2,0)和点)2 3 3,1(Q ,求椭圆的标准方程。 4.求与椭圆4x 2 +9y 2 =36有相同的焦距,且离心率为 5 5 的椭圆的标准方程。? 【变式1】在椭圆的标准方程中,,则椭圆的标准方程是( ) A. 1353622=+y x B .135 362 2=+x y C.13622=+y x D .以上都不对 【变式2】椭圆过(3,0)点,离心率3 6 = e ,求椭圆的标准方程。? 【变式3】长轴长等于20,离心率等于5 3 ,求椭圆的标准方程。

【精品】高中数学选修1-1 椭圆及其标准方程 知识讲解 讲义+巩固练习

椭圆及其标准方程 【学习目标】 1. 知识与技能目标: 掌握椭圆的定义和标准方程;明确焦点、焦距的概念;理解椭圆标准方程的推导. 2. 过程与方法目标: 通过让学生积极参与、亲身经历椭圆定义和标准方程的获得过程;体验坐标法在处理几何问题中的优越性,从而进一步掌握求曲线方程的方法和数形结合的思想,提高运用坐标法解决几何问题的能力及运算能力. 3. 情感态度与价值观目标: 通过主动探究、合作学习,相互交流,感受探索的乐趣与成功的喜悦,养成实事求是的科学态度和契而不舍的钻研精神. 【要点梳理】 要点一:椭圆的定义 平面内到两个定点1F 、2F 的距离之和等于常数(大于12F F )的点的集合叫椭圆.这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离叫作椭圆的焦距. 要点诠释: (1)1F 、2F 是椭圆上不同的两个顶点; (2)若P 是椭圆上任意一点,则12PF PF +=常数; (3)当 常数12F F > 时,轨迹为椭圆; 当 常数=12F F ,则轨迹为线段12F F ; 当 常数12F F <,则轨迹不存在. 要点二:椭圆的标准方程 1. 椭圆的标准方程

要点诠释: 1. 这里的“标准”指的是中心在坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; 2. 在椭圆的两种标准方程中,都有0a b >>和222c a b =-; 3. 椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为(,0)c ,(,0)c -;当焦点在y 轴上时,椭圆的焦点坐标为(0,)c ,(0,)c -; 4. 在两种标准方程中,∵a 2>b 2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上. 2. 标准方程的推导: 由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程. 如何建立椭圆的方程?根据求曲线方程的一般步骤:建系、设点、列式、化简. 以焦点在x 轴上的方程22 221x y a b +=(0)a b >>为例. (1)建系 建立坐标系应遵循简单和优化的原则,如使关键点的坐标、关键几何量(距离、直线斜率等)的表达式简单化,注意充分利用图形的对称性,使学生认识到下列选取方法是恰当的. 以两个定点1F ,2F 所在直线为x 轴,线段12F F 的垂直平分线为y 轴,建立平面直角坐标系(如图). (2)设点 设|F 1F 2|=2c(c >0),M(x ,y)为椭圆上任意一点,则有F 1(-1,0),F 2(c ,0).

高中数学 椭圆 板块一 椭圆的方程完整讲义(学生版)

学而思高中完整讲义:椭圆.板块一.椭圆的方程.学生版 【例1】 已知椭圆的焦点在x 轴上,焦距为8,焦点到相应的长轴顶点的距离为1,则椭圆 的标准方程为( ) A .221259x y += B .221259y x += C .22179y x += D .22 179 x y += 【例2】 已知椭圆22 15x y m +=的离心率10e 5= ,则m 的值为( ) A .3 B .5153或15 C .5 D .25 3 或3 【例3】 设定点12(03)(03)F F -,,,,动点P 满足条件)0(921>+=+a a a PF PF ,则点P 的 轨迹是( ) A .椭圆 B .线段 C .不存在 D .椭圆或线段 【例4】 已知椭圆的中心在原点,离心率1 2 e = ,且它的一个焦点与抛物线24y x =-的焦点重合, 则此椭圆方程为( ) A .22143x y += B .22186x y += C .2 212 x y += D .2 214 x y += 【例5】 设椭圆22221(0)x y a b a b +=>>的离心率为1 e 2 =,右焦点为(0)F c ,,方程 20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x , ( ) A .必在圆222x y +=内 B .必在圆222x y +=上 C .必在圆222x y +=外 D .以上三种情形都有可能 【例6】 已知22 212x y m m +=+表示焦点在x 轴上的椭圆,则m 的取值范围是( ) A .2m >或1m <- B .2m >- C .12m -<< D .2m >或21m -<<- 【例7】 经过点(30)P -,,(02)Q -,的椭圆的标准方程是 ; 典例分析

椭圆的讲义

海豚教育个性化简案 海豚教育个性化教案(真题演练)

海豚教育个性化教案

A . 45 B .23 C .22 D .2 1 例2:已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆12 2=+n y m x 的离心率为 例3:在ABC △中,3,2||,300===∠?ABC S AB A .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率 e = . 【变式训练】 1. 椭圆的两个焦点把两条准线间距离三等分,则椭圆离心率为( ) A. 63 B.33 C.2 3 D. 不确定 2. 椭圆的一个顶点与两焦点构成等边三角形,则此椭圆的离心率是( ) 3. 以椭圆两焦点为直径的圆交椭圆于四个不同点,顺次连结这四个点和两个焦点,恰好围成一个正六边形,则这个椭圆的离心率等于___________。 2:求离心率的取值范围 例1:已知椭圆12222=+b y a x (0>>b a ),F 1,F 2是两个焦点,若椭圆上存在一点P ,使3 221π =∠PF F ,求 其离心率e 的取值范围。 例2:已知椭圆122 22=+b y a x (0>>b a )与x 轴的正半轴交于A ,0是原点,若椭圆上存在一点M ,使MA ⊥MO , 求椭圆离心率的取值范围。 例3:已知椭圆12222=+b y a x (0>>b a ),以a ,b ,c 为系数的关于x 的方程02 =++c bx ax 无实根,求 其离心率e 的取值范围。 题型四:椭圆的其他几何性质的运用(范围、对称性等) 例1:已知实数y x ,满足12 42 2=+y x ,求x y x -+22的最大值与最小值

椭圆讲义

椭圆讲义 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a = 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c 焦距 ()222122F F c c a b ==- 对称性 关于x 轴、y 轴、原点对称 离心率 )2 2101c b e e a a ==-<< 准线方程 2 a x c =± 2 a y c =± 3、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则 12 12F F e d d M M ==. 四、常考类型 类型一:椭圆的基本量 1.指出椭圆36492 2 =+y x 的焦点坐标、准线方程和离心率.

举一反三:【变式1】椭圆 116 252 2=+y x 上一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离=________ 【变式2】椭圆 125 162 2=+y x 的两个焦点分别为21F F 、,过2F 的直线交椭圆于A 、B 两点,则1ABF ?的周长1ABF C ?=___________. 【变式3】已知椭圆的方程为11622 2=+m y x ,焦点在x 轴上,则m 的取值范围是( )。 A .-4≤m ≤4且m ≠0 B .-4<m <4且m ≠0 C .m >4或m <-4 D .0<m <4 【变式4】已知椭圆mx 2 +3y 2 -6m=0的一个焦点为(0,2),求m 的值。 类型二:椭圆的标准方程 2. 求适合下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点距离的和是10; (2)两个焦点的坐标是(0,-2)、(0,2),并且椭圆经过点??? ? ?2523-,。 举一反三:【变式1】两焦点的坐标分别为()()4-04,0,,,且椭圆经过点)(0,5。 【变式2】已知一椭圆的对称轴为坐标轴且与椭圆14 92 2=+y x 有相同的焦点,并且经过点(3,-2),求此椭圆的方程。

第十三讲椭圆精品讲义

第十三讲椭圆 [知识能否忆起] 1 ?椭圆的定义 平面内到两个定点 F i , F 2的距离之和等于常数(大于|F I F 2|)的点的轨迹叫做椭圆,这两 个定点叫做椭圆的焦点,两焦点 F i ,F 2间的距离叫做椭圆的焦 __________ [小题能否全取] x 2 y 2 1. (教材 习题改编)设P 是椭圆~4 + 9 = 1的点,右F i , F 2是椭圆的两个焦点,贝U |PF i | + |PF 2| 等于( ) A . 4 B . 8 C . 6 D . 18 解析:选C 依定义知|PF 11+ |PF 2|= 2a = 6. C . (— 3,1) U (1,5) D . (— 5,1)U (1,3) 5 — m > 0, 解析:选C 由方程表示椭圆知 m + 3>0, 5 — m ^ m + 3, X 2 2.(教材习题改编)方程53m + m + 3 =1表示椭圆, m 的范围是( A . (-3,5) B . (— 5,3)

解得一3 v m v 5 且 m ^ 1. 2 2 3. (2012淮南五校联考)椭圆X9 + 4^= 1的离心率为5,则k 的值为( 解析:选 C 若 a 2= 9, b 2 = 4+ k ,贝V c = 5 — k , 若 a 2= 4 + k , b 2= 9,则 c = 'k — 5, c 4 k — 5 4 由C =4,即 =4,解得k = 21. a 5 、4+k 5 4. (教材习题改编)已知椭圆的中心在原点,焦点在 8?则该椭圆的方程是 _________ 5. 已知F 1, F 2是椭圆C 的左,右焦点,点P 在椭圆上,且满足|PF 1|= 2|PF 2|,/ PF 1F 2 =30°则椭圆的离心率为 ___________ . 解析:在三角形PF 1F 2中,由正弦定理得 sin Z PF 2F 1= 1,即Z PF 2F 1=扌,设 |PF 2|= 1,贝U |PF 1|= 2, |F 2F 1| = V 3, 所以离心率e = ?c = 3 . 2a 3 1. 椭圆的定义中应注意常 数大于 |F 1F 2|.因为当平面内的动点与定点 F 1, F 2的距离之和等 于|F 1F 2|时,其动点轨迹就是线段 F 1F 2;当平面内的动点与定点 F 1,F 2的距离之和小于|F 1F 2| 时,其轨迹不存在. 2 ?已知椭圆离心率求待定系数时要注意椭圆焦点位置的判断,当焦点位置不明确时, 要分两种 情形讨论. [考点通关把握] 1典题导入 解 析: c 4 1 丄, ???2c = 8,「.c = 4,「.e = a = a = 2,故 a = ???椭圆的方程为64+4x8= 1. A . - 21 B . 21 19 C .-亦或21 D.25或 21 1 y 轴上,若其离心率为2,焦距为 又'/b 2= a 2— c 2= 48, 4 /曰. 19 5,得 k = — 25;

椭圆专题复习讲义

题型1:椭圆定义的运用 [例1 ] (湖北部分重点中学2009届高三联考)椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 A .4a B .2(a -c) C .2(a+c) D .以上答案均有可能 [解析]按小球的运行路径分三种情况: (1)A C A --,此时小球经过的路程为2(a -c); (2)A B D B A ----, 此时小球经过的路程为2(a+c); (3)A Q B P A ----此时小球经过的路程为4a,故选D 【名师指引】考虑小球的运行路径要全面 【新题导练】 1.短轴长为5,离心率3 2 = e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A.3 B.6 C.12 D.24 [解析]C. 长半轴a=3,△ABF 2的周长为4a=12 2.已知P 为椭圆22 12516 x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆 22(3)4x y -+=上的点,则PM PN +的最小值为( ) A . 5 B . 7 C .13 D . 15 [解析]B. 两圆心C 、D 恰为椭圆的焦点,10||||=+∴PD PC ,PM PN +的最小值为10-1-2=7 题型2 求椭圆的标准方程 [例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程. 【解题思路】将题中所给条件用关于参数c b a ,,的式子“描述”出来 [解析]设椭圆的方程为122 22=+b y a x 或)0(12222>>=+b a a y b x , 则?? ? ??+=-=-=222)12(4c b a c a c b , 解之得:24=a ,b =c =4.则所求的椭圆的方程为 116322 2=+y x 或132 1622=+y x . 【名师指引】准确把握图形特征,正确转化出参数c b a ,,的数量关系.

椭圆(讲义)

椭圆(讲义) 知识点睛 一、曲线与方程 1. 曲线C 上的点与二元方程()0f x y =,的对应关系: (1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点. 那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 2. 求曲线的方程的一般步骤: (1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合 {|()}P M p M =; (3)用坐标表示条件p (M ),列出方程()0f x y =,; (4)化方程()0f x y =,为最简形式; (5)说明以化简后的方程的解为坐标的点都在曲线上. 二、椭圆及其标准方程 我们把平面内与两个定点1F ,2F 的距离的和等于常数(大于12||F F )的点的轨迹叫做椭圆. 这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 如图,设( )M x y ,是椭圆上任意一点,椭圆的焦距为2(0)c c >, 那么焦点1F ,2F 的坐标分别为( 0)c -,,( 0)c ,. 又设M 与1F ,2F 的距离的和等于2(0)a a >. 由椭圆的定义,椭圆就是集合 12{|||||2}P M MF MF a =+=. 因为12|| ||MF MF = = 所以 2a =.

为化简这个方程,将左边的一个根式移到右边,得 2a = 将这个方程两边平方,得 22222()44()x c y a x c y ++=--+, 整理得 2a cx -= 上式两边再平方,得 4222222222222a a cx c x a x a cx a c a y -+=-++, 整理得 22222222()()a c x a y a a c -+=-, 两边同除以222()a a c -,得 22 2221x y a a c +=-. ① 由椭圆的定义可知,22220a c a c a c >>->,即,所以. 由图可知,1212|||| |||| ||PF PF a OF OF c PO =====,, 令||b PO ==那么①式就是22221(0)x y a b a b +=>>. 椭圆的标准方程:22 221(0)x y a b a b +=>>. 三、椭圆的几何性质

椭圆高考题目汇总教师版含答案

椭圆高考题目汇总教师版含答案

考点11 椭圆 1.(2010·广东高考文科·T7)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A . 45 B .35 C .2 5 D .15 【思路点拨】由椭圆长轴的长度、短轴的长度和焦距成等差数列,列出a 、b 、c 的关系,再转化为a 、c 间的关系,从而求出e . 【规范解答】选B . 椭圆长轴的长度、短轴的长度和焦距成等差数列,∴ 2b a c =+, ∴ 2 2 4()b a c =+,即: 2 22 42b a ac c =++,又 2 22 a b c =+, ∴ 2 24()a c -=22 2a ac c ++,即 2 23250 a ac c --=,()(35)0a c a c +-=, ∴ 0a c +=(舍去)或 350a c -=,∴ 35 c e a ==,故选B . 2.(2010·福建高考文科·T11)若点O 和点 F 分别为椭圆 22 143 x y +=的中心和左焦点,点P 为 椭圆上的任意一点,则OP FP ?的最大值为( ) A.2 B.3 C.6 D.8 【命题立意】本题考查椭圆的基本概念、平面向量的内积、利用二次函数求最值. 【思路点拨】先求出椭圆的左焦点,设P 为动点,

依题意写出OP FP ?的表达式,进而转化为求解条件最值的问题,利用二次函数的方法求解. 【规范解答】选C ,设()0 P x ,y ,则 2222 0000x y 3x 1y 3434 +==-即, 又因为()F 1,0- ()2000OP FP x x 1y ∴?=?++2001x x 34 = ++()2 01x 22 4=++,又[]0 x 2,2∈-, () [] OP FP 2,6∴?∈,所以 ()max 6OP FP ?=. 3.(2010·海南高考理科·T20)设1 2 ,F F 分别是椭 圆E: 22 22 1x y a b +=(a>b>0)的左、右焦点,过1 F 斜率 为1的直线l 与E 相交于,A B 两点,且2 AF ,AB ,2 BF 成等差数列. (Ⅰ)求E 的离心率; (Ⅱ)设点P (0,-1)满足PA PB =,求E 的方程. 【命题立意】本题综合考查了椭圆的定义、等差数列的概念以及直线与椭圆的关系等等.解决本题时,一定要灵活运用韦达定理以及弦长公式等知识. 【思路点拨】利用等差数列的定义,得出 2 AF ,AB ,2 BF 满足的一个关系,然后再利用椭圆的 定义进行计算. 【规范解答】(Ⅰ)由椭圆的定义知,

高三椭圆专题复习讲义理

椭圆专题复习 1. 椭圆定义: 平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点. 当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在; 当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段 题型1:椭圆定义的运用 [例1 ] 椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是( ) A .4a B .2(a -c) C .2(a+c) D .以上答案均有可能 【变式训练】 1.短轴长为5,离心率32= e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为 A.3 B.6 C.12 D.24 ( ) 2.已知P 为椭圆22 12516 x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆22(3)4x y -+=上的点,则PM PN +的最小值为 A . 5 B . 7 C .13 D . 15 ( ) 题型2 求椭圆的标准方程 [例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程. 【变式训练】 3. 如果方程x 2+ky 2=2表示焦点在y 轴的椭圆,那么实数k 的取值范围是____________. 4. 椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离

高二数学椭圆的定义及其标准方程(供参考)

高二 年级 数学 科辅导讲义(第 讲) 学生姓名: 授课教师: 授课时间: 12.21 椭圆及其标准方程 第一部分:基础知识梳理 知识点一 椭圆的定义 平面内到两个定点21F F ,的距离之和等于常数(大于21F F )的点的集合叫做椭圆。两个定点21F F ,叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。 根据椭圆的定义可知:椭圆上的点M 满足集合2a}MF MF {M 21=+=P ,c F F 221=,0,0>>c a 且c a 、都为常数。 当c a >即c a 22>时,集合P 为椭圆。 当c a =即c a 22=时,集合P 为线段21F F 。 当c a <即c a 22<时,集合P 为空集。 知识点二 椭圆的标准方程 (1))0(122 22>>=+b a b y a x ,焦点在x 轴上时,焦点为)0,(c F ±,焦点c F F 221=。 (2))0(122 22>>=+b a b x a y ,焦点在y 轴上时,焦点为),0(c F ±,焦点c F F 221=。 知识点三 椭圆方程的一般式 这种形式的方程在课本中虽然没有明确给出,但在应用中有时比较方便,在此提供出来,作为参考: C By Ax =+22(其中C B A 、、为同号且不为零的常数,B A ≠),它包含焦点在x 轴或y 轴上两种情形。方程可变形为12 2=+B C y A C x 。 当B C A C >时,椭圆的焦点在x 轴上;当B C A C <时,椭圆的焦点在y 轴上。

一般式,通常也设为12 2=+By Ax ,应特别注意B A 、均大于0,标准方程为11 12 2=+B y A x 。 知识点四 椭圆标准方程的求法 1. 定义法 椭圆标准方程可由定义直接求得,这是求椭圆方程中很重要的方法之一,当问题是以实际问题给出时,一定要注意使实际问题有意义,因此要恰当地表示椭圆的范围。 例1、 在△ABC 中,A 、B 、C 所对三边分别为c b a 、、,且B (-1,0)C (1,0),求满足c a b >>,且c a b 、、成等差数列时,顶点A 的曲线方程。 变式练习 1.在△ABC 中,点B (-6,0)、C (0,8),且C A B sin sin sin 、、成等差数列。 (1)求证:顶点A 在一个椭圆上运动。 (2)指出这个椭圆的焦点坐标以及焦距。 2. 待定系数法 首先确定标准方程的类型,并将其用有关参数b a 、表示出来,然后结合问题的条件,建立参数b a 、满足的等式,求得b a 、的值,再代入所设方程,即一定性,二定量,最后写方程。 例2、 已知椭圆的中心在原点,且经过点P (3,0),a =3b ,求椭圆的标准方程。 例3、 已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点)2,3()1,6(21--P P 、,求椭圆方程。 变式练习 2.求适合下列条件的椭圆的方程; (1)两个焦点分别是(-3,0),(3,0)且经过点(5,0). (2)两焦点在坐标轴上,两焦点的中点为坐标原点,焦距为8,椭圆上一点到两焦点的距离之和为12. 3.已知椭圆经过点),(336和点),(13 22,求椭圆的标准方程。 4.求中心在原点,焦点在坐标轴上,且经过两点) ,(),,(2 1-03131Q P 的椭圆标准方程。 知识点五 共焦点的椭圆方程的求解 一般地,与椭圆)0(12222>>=+b a b y a x 共焦点的椭圆可设其方程为)(1222 22b k k b y k a x ->=+++。 例4、 过点(-3,2)且与14 92 2=+y x 有相同焦点的椭圆的方程为( ) A. 1101522=+y x B.110022522=+y x C.1151022=+y x D. 1225 1002 2=+y x 变式练习 5.求经过点(2,-3)且椭圆36492 2=+y x 有共同焦点的椭圆方程。 知识点六 与椭圆有关的轨迹问题的求解方法 与椭圆有关的轨迹方程的求解是一种很重要的题型,教材中的例题就是利用代入求球轨。迹,其基本思路是设出轨迹上一点),(y x P 和已知曲线上一点),(00y x M ,建立其关系,再代入。

椭圆讲义资料

椭圆讲义 1、平面内与两个定点F1,F 2的距离之和等于常数(大于为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置焦点在x轴上 图形 标准方程 范围-a_x_a 且-b_y_b 顶点 ---1 -a,0、二2 a,0 已0,-b、三2 0,b 轴长短轴的长=2b 焦占 八'、八、、 F1 -c,0、F2 c,0 焦距F1F2 =2c t 对称性关于x轴、y 离心率 2 准线方程 3、设□是椭圆上任一点,点 |M F j M F2I e. d i d2 四、常考类型 类型一:椭圆的基本量 F1 F2)的点的轨迹称为椭圆?这两个定点称 焦点在y轴上 2 2 y x 2 2 =1 a b 0 a b --■-i 0, 一 a、 _-;i :; —b,0、 长轴的长=2a F i 0, -c、 c2 = a2 _ b2 轴、原点对称 ---2 0,a 二 2 b,0 F2 0,c 2 + a y 二 c M到F i对应准线的距离为d i,点切到F2对应准线的距离为d2,则1 ?指出椭圆9x2 4y2 =36的焦点坐标、准线方程和离心率

2 2 举一反三:【变式1】椭圆 — 1 1上一点P 到椭圆一个焦点的距离为 3,贝U P 到另一个焦点的距离 25 16 2 2 【变式2】椭圆 X =1的两个焦点分别为 16 25 的周长C ABF 1 = ___________ ■ 2 2 —=1,焦点在x 轴上,则m 的取值范围是( 16 m 2 .. 2 2 【变式4】已知椭圆mx+3y — 6m=0的一个焦点为(0, 2),求m 的值。 类型二:椭圆的标准方程 2.求适合下列条件的椭圆的标准方程: (1 )两个焦点的坐标分别是(一 4, 0)、(4, 0),椭圆上一点P 到两焦点距离的和是 10; (2)两 个焦点的坐标是(0, 举一反三: 【变式1】两焦点的坐标分别为 0,4 ,0,-4,且椭圆经过点(5,0)。 2 2 - —=1有相同的焦点,并且经过点 9 4 2),求此椭圆的方程。 R 、F 2,过F 2的直线交椭圆于 A 、B 两点」V .IABF 1 【变式3】已知椭圆的方程为 A . — 4W me 4 且 m ^ 0 B.— 4v m < 4 且 m ^ 0 C. m > 4 或 m <— 4 D . 0< m < 4 【变式2】已知一椭圆的对称轴为坐标轴且与椭圆 3 ,一 2)、( 0, 2),并且椭圆经过 点

椭圆曲线知识点与讲义

圆锥曲线 一、知识点讲解 一、椭圆:(1)椭圆的定义:平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹。 其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。 注意:||221F F a >表示椭圆;||221F F a =表示线段21F F ;||221F F a <没有轨迹; (2)椭圆的标准方程、图象及几何性质: 中心在原点,焦点在x 轴上 中心在原点,焦点在 y 轴上 标准方程 )0(122 22>>=+b a b y a x )0(12 2 22>>=+b a b x a y 图 形 顶 点 ),0(),,0()0,(),0,(2121b B b B a A a A -- ),0(),,0()0,(),0,(2121a B a B b A b A -- 对称轴 x 轴,y 轴;短轴为b 2,长轴为a 2 焦 点 )0,(),0,(21c F c F - ),0(),,0(21c F c F - 焦 距 )0(2||21>=c c F F 222b a c -= 离心率 )10(<<= e a c e (离心率越大,椭圆越扁) 通 径 22b a (过焦点且垂直于对称轴的直线夹在椭圆内的线段) 3.常用结论:(1)椭圆)0(12 222>>=+b a b y a x 的两个焦点为21,F F ,过1F 的直线交椭圆于B A ,两点,则2ABF ?的周长= (2)设椭圆 )0(122 2 2>>=+b a b y a x 左、右两个焦点为21,F F ,过1F 且垂直于对称轴的直线交椭圆于Q P ,两点,则Q P ,的坐标分别是 =||PQ 二、例题讲解。 例1、 已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程. 分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法, 求出参数a 和b (或2 a 和2 b )的值,即可求得椭圆的标准方程. x O F 1 F 2 P y A 2 B 2 B 1 x O F 1 F 2 P y A 2 A 1 B 1 B 2 A 1

高中数学全套讲义 选修1-1 椭圆初步基础教师版

目录 第三讲:椭圆初步................................................................................................. 错误!未定义书签。 考点一:椭圆的定义及其应用 (2) 题型一:利用定义判断轨迹 (2) 考点二:椭圆的标准方程及其几何性质 (3) 题型二:椭圆的标准方程相应问题 (3) 题型三:椭圆简单性质问题 (5) 课后综合巩固练习 (6)

考点一:椭圆的定义及其应用 椭圆的定义:平面内与两个定点12F F , 的距离之和等于常数(大于12||F F )的点的轨迹(或集合)叫做椭圆. 这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距. 依椭圆的定义,设P 是椭圆上一点,则有122PF PF a +=,(a 为常数且22)a c > 题型一:利用定义判断轨迹 1.(2017?天心区校级学业考试)设1F ,2F 为定点,12||6F F =,动点M 满足12||||6MF MF +=,则动点M 的轨迹是( ) A .椭圆 B .直线 C .圆 D .线段 【分析】对选项进行分析:在平面内,若动点M 到1F 、2F 两点的距离之和等于6,而6正好等于两定点1F 、2F 的距离,则动点M 的轨迹是以1F ,2F 为端点的线段. 【解答】解:对于在平面内,若动点M 到1F 、2F 两点的距离之和等于6,而6正好等于两定点1F 、2F 的距离,则动点M 的轨迹是以1F ,2F 为端点的线段. 故选:D . 【点评】本小题主要考查椭圆的定义、轨迹方程等基础知识,属于基础题. 2.(2016秋?兴庆区校级期末)点(,)M x y 与定点(4,0)F 的距离和它到直线25 :4 l x =的距离的比是常数 4 5 ,求M 的轨迹. 后即可求得其方程. 分) 所以,点M 的轨迹是长轴、短轴长分别为10、6的椭圆.(12分) 【点评】本题考查了椭圆的定义,及求椭圆标准方程的方法,是个基础题.

(完整版)人教版文科数学椭圆讲义

2.1椭圆 第1课时椭圆及其标准方程 1.归纳总结,核心必记 (1)椭圆的定义 平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. (2)椭圆的标准方程 (-c,0),(c,0)(0,-c),(0,c) 例题1(椭圆定义理解) 已知椭圆x2 a2+y2 b2=1(a>b>0),F1,F2是它的焦点.过F1的直线AB与椭圆交于A、B两点, 求△ABF2的周长. 解:∵|AF1|+|AF2|=2a,|BF1|+|BF2|=2a, 又∵△ABF2的周长=|AB|+|BF2|+|AF2|=|AF1|+|BF1|+|AF2|+|BF2|=4a, ∴△ABF2的周长为4a. 由椭圆的定义可知,点的集合P={M||MF1|+|MF2|=2a}(其中|F1F2|=2c)表示的轨迹有三种情况:当a>c时,集合P为椭圆;当a=c时,集合P为线段F1F2;当a

命题乙:P 点轨迹是椭圆,则命题甲是命题乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 解析:选B 若点P 的轨迹是椭圆,则一定有|P A |+|PB |=2a (a >0,为常数). 所以甲是乙的必要条件. 反过来,若|P A |+|PB |=2a (a >0,为常数),当2a >|AB |时,点P 的轨迹是椭圆;当2a =|AB |时,点P 的轨迹是线段AB ;当2a <|AB |时,点P 的轨迹不存在,所以甲不是乙的充分条件.综上可知,甲是乙的必要不充分条件. 2.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段 解析:选D 因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2. 例题2(求椭圆的标准方程) (1)已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点????52,-3 2,求它的标准方程; (2)若椭圆经过两点(2,0)和(0,1),求椭圆的标准方程. 解:(1) ∵椭圆的焦点在x 轴上,∴设它的标准方程为x 2a 2+y 2 b 2=1(a >b >0). 由椭圆的定义知 2a = ????52+22+??? ?-322 + ????52-22+??? ?-322 =210, ∴a =10.又∵c =2,∴b 2=a 2-c 2=10-4=6. ∴所求椭圆的标准方程为x 210+y 2 6 =1. (2) 设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). ∵椭圆过(2,0)和(0,1)两点, ∴? ????4m =1,n =1, ∴?????m =14,n =1.

相关文档
最新文档