高中数学 必修5 23.一元二次不等式的应用

高中数学 必修5  23.一元二次不等式的应用
高中数学 必修5  23.一元二次不等式的应用

23.一元二次不等式的应用

教学目标班级:_____ 姓名:____________

1.掌握运用一元二次不等式解决实际问题的方法.

2.掌握简单的数学建模思想.

教学过程

运用一元二次不等式解决实际问题的一般方法:

1.寻找已知条件,搞清量与量之间的关系.

2.挖掘不等关系,建立一元二次不等式.

3.解不等式,解决问题.

例1:要在长为800m,宽600m的一块长方形地面上进行绿化,其中四周中花卉(花卉带的宽度相同),中间种草坪(如图阴影部分所示),要求草坪的面积不少于总面积的一半,求花卉带宽度x的取值范围.

练1:某农贸公司按每担200元的价格收购某农产品,并每100元纳税10元(征税率10个百分点),计划可收购a万担.政策为了鼓励收购公司多收购这种农产品,决定将征税率降低x个百分点,预测收购量可增加x2个百分点.

x

)0

(

(1)写出降税后税收y(万元)与x的函数关系式;

(2)要使此项税收在税率调节后,不少于原计划税收的83.2%,试确定x的取值范围.

练2:汽车在行驶中,由于该惯性,刹车后还会继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.在一个限速为40km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事故现场勘查测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m ,又知甲、乙两车型的刹车距离s (m )与车速x (km/h )之间分别有如下关系:201.01.0x x s +=甲,2

005.005.0x x s +=乙.问:甲、乙两车有无超速现象?

作业:某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件,现在他采用提高售价,减少进货量的办法增加利润.已知该商品每件售价提高1元,销售量就要减少10件.问(1)售价每件定为多少元时,才能使得每天的利润最大?

(2)售价每件定为多少元时,才能保证每天的利润不少于300元?

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

新人教版高中数学必修5知识点总结(详细)

高中数学必修5知识点总结 第一章 解三角形 1、三角形三角关系:A+B+C=180°;C=180°-(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若 222a b c +<,则90C >. 注:正余弦定理的综合应用:如图所示:隔河看两目标

一元二次不等式的应用含答案(1)

课时作业17 一元二次不等式的应用 时间:45分钟 满分:100分 课堂训练 1.不等式(1-|x |)(1+x )>0的解集为( ) A .{x |x <1} B .{x |x <-1} C .{x |-10 , 或? ?? ?? x <0且x ≠-1 1+x 1+x >0 . 即0≤x <1或x <0且x ≠-1.∴x <1且x ≠-1,故选D. 2.如果方程x 2+(m -1)x +m 2-2=0的两个实根一个小于-1,另一个大于1,那么实数m 的取值范围是( ) A .(-2,2) B .(-2,0) C .(-2,1) D .(0,1) 【答案】 D 【解析】 令f (x )=x 2+(m -1)x +m 2-2, 则? ???? f 1<0 f -1<0 ,∴? ???? m 2 +m -2<0m 2 -m <0,∴00在R 上恒成立,则实数a 的取值范围是________.

【答案】 (0,8) 【解析】 不等式x 2-ax +2a >0在R 上恒成立,即Δ=(-a )2 -8a <0,∴0

如何解一元二次不等式

如何解一元二次不等式,例如:x?2+2x+3≥0. 请大家写出解题过程和思路 解:对于高中“解一元二次不等式”这一块, 通常有以下两种解决办法: ①运用“分类讨论”解题思想; ②运用“数形结合”解题思想。 以下分别详细探讨。 例1、解不等式x2 -- 2x -- 8 ≥ 0。 解法①:原不等式可化为: (x -- 4) (x + 2) ≥ 0。 两部分的乘积大于等于零, 等价于以下两个不等式组: (1)x -- 4 ≥ 0 或(2)x -- 4 ≤ 0 x + 2 ≥ 0 x + 2 ≤ 0 解不等式组(1)得:x ≥ 4(因为x ≥ 4 一定满足x ≥ -- 2,此为“同大取大”) 解不等式组(2)得:x ≤ -- 2(因为x ≤ --2 一定满足x ≤ 4,此为“同小取小”) ∴不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 其解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法②:原不等式可化为: [ (x2 -- 2x + 1) -- 1 ] -- 8 ≥ 0。 ∴(x -- 1)2 ≥ 9 ∴x -- 1 ≥ 3 或x -- 1 ≤ -- 3 ∴x ≥ 4 或x ≤ -- 2。 ∴原不等式的解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法③:如果不等式的左边不便于因式分解、不便于配方,

那就用一元二次方程的求根公式进行左边因式分解, 如本题,用求根公式求得方程x2 -- 2x -- 8 = 0 的两根为x1 = 4,x2 = -- 2,则原不等式可化为:(x -- 4) (x + 2) ≥ 0。下同解法①。 体会:以上三种解法,都是死板板地去解; 至于“分类讨论”法,有时虽麻烦,但清晰明了。 下面看“数形结合”法。 解法④:在平面直角坐标系内,函数f(x) = x2 -- 2x -- 8 的图像 开口向上、与x 轴的两交点分别为(-- 2,0) 和(4,0), 显然,当自变量的取值范围为x ≥ 4 或x ≤ -- 2 时, 图像在x 轴的上方; 当自变量的取值范围为-- 2 ≤ x ≤ 4 时,图像在x 轴的下方。 ∴当x ≥ 4 或x ≤ -- 2 时,x2 -- 2x -- 8 ≥ 0, 即:不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 顺便说一下,当-- 2 ≤ x ≤ 4 时,图像在x 轴的下方,即:x2 -- 2x -- 8 ≤ 0,∴不等式x2 -- 2x -- 8 ≤ 0 的解为:-- 2 ≤ x ≤ 4 。其解集为:[ -- 2,4 ]。 领悟:对于ax2 + bx + c >0 型的二次不等式,其解为“大于大根或小于小根”; 对于ax2 + bx + c <0 型的二次不等式,其解为“大于小根且小于大根”。例2、解不等式x2 + 2x + 3 >0。 在实数范围内左边无法进行因式分解。 配方得:(x + 1)2 + 2 >0。 无论x 取任何实数,(x + 1)2 + 2 均大于零。 ∴该不等式的解集为x ∈R。 用“数形结合”考虑, ∵方程x2 + 2x + 3 = 0的根的判别式△<0, ∴函数f(x) = x2 + 2x + 3 的图像与x 轴无交点且开口向上。 即:无论自变量x取任意实数时,图像恒位于x 轴的上方。 ∴不等式x2 + 2x + 3 >0的解集为x ∈R。

高中数学必修五-不等式知识点精炼总结

高中数学必修五-不等式知识点精炼总结 4.公式: 3.解不等式 (1)一元一次不等式 3.基 本不等式定理 ? ?? ? ? ??????? ? ?????????????????-≤+?<≥+?>≥+ ??? ????+≤+≥+?? ?? ???????? ?+≤??? ??+≤+≥+≥+2a 1a 0a 2a 1a 0a b ,a (2b a a b )b a (2b a ab 2 b a 2b a ab 2b a ab )b a (2 1b a ab 2b a 2 22222 2 222倒数形式同号)分式形式根式形式整式形 式11 22a b a b --+≤≤≤+???? ? <<>> ≠>)0a (a b x )0a (a b x )0a (b ax 2.不等式的性质:8条性质.

(2)一元二次不等式: +bx+c x 1 x 2 x y O y x O x 1 y x O

一元二次不等式的求 解流程: 一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集. (3)解分式不等式: 高次不等式: (4)解含参数的不等式:(1) (x – 2)(ax – 2)>0 (2)x 2 – (a +a 2)x +a 3>0; (3)2x 2 +ax +2 > 0; 注:解形如ax 2+bx+c>0的不等式时分类讨 论的标准有: 1、讨论a 与0的大小; 2、讨论⊿与0的大小; 3、讨论两根的大小; 二、运用的数学思想: 1、分类讨论的思想; 2、数形结合的思想; 3、等与不等的化归思想 (4)含参不等式恒成立的问题: ??????????≠≤??≤>??>0)x (g 0)x (g )x (f 0) x (g )x (f 0)x (g )x (f 0)x (g ) x (f 0 )())((21>---n a x a x a x Λ

人教新课标版数学高一必修5人教A版 第三章3.2第3课时一元二次不等式解法

第三章 不等式 3.2 一元二次不等式及其解法 第3课时 一元二次不等式解法(习题课) A 级 基础巩固 一、选择题 1.不等式(x -1)x +2≥0的解集是( ) A .{x |x >1} B .{x |x ≥1} C .{x |x ≥1或x =-2} D .{x |x ≤-2或x =1} 解析:(x -1)x +2≥0, 所以???x -1≥0,x +2≥0 或x =-2, ?x ≥1或x =-2,故选C. 答案:C 2.若集合A ={x |ax 2-ax +1<0}=?,则实数a 的值的集合是 ( ) A .{a |00,Δ≤0????a >0,a 2-4a ≤0 ?0≤a ≤4. 综上知,0≤a ≤4.选D. 答案:D

3.已知集合M =???? ??x ???x +3x -1<0,N ={x |x ≤-3},则集合{x |x ≥1}等于( ) A .M ∩N B .M ∪N C .?R(M ∩N ) D .?R(M ∪N ) 解析:因为M ={x |-33 C .12 解析:f (x )=x 2+(a -4)x +4-2a >0,a ∈[-1,1]恒成立?(x -2)a +x 2-4x +4>0,a ∈[-1,1]恒成立.

人教版高中数学必修五教案1

第一章解三角形 1.1正弦定理和余弦定理 1.1.1正弦定理 知识结构梳理 几何法证明 正弦定理的证明 向量法证明 已知两角和任意一边 正弦定理正弦定理 正弦定理的两种应用 已知两边和其中一角的对角 解三角形 知识点1 正弦定理及其证明 1正弦定理: 2.正弦定理的证明: (1)向量法证明 (2)平面几何法证明 3.正弦定理的变形 知识点2 正弦定理的应用 1.利用正弦定理可以解决以下两类有关三角形的问题: (1)已知两角和任意一边,求其他两边和另一角; (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角。 2.应用正弦定理要注意以下三点: (1) (2) (3) 知识点3 解三角形

1.1.2余弦定理 知识点1 余弦定理 1. 余弦定理的概念 2. 余弦定理的推论 3. 余弦定理能解决的一些问题: 4. 理解应用余弦定理应注意以下四点: (1) (2) (3) (4) 知识点2 余弦定理的的证明 证法1: 证法2: 知识点3 余弦定理的简单应用 利用余弦定理可以解决以下两类解三角的问题: (1)已知三边求三角; (2)已知两边和它们的夹角,可以求第三边,进而求出其他角。 例1(山东高考)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,tanC=73. (1) 求C cos ; (2) 若 =2 5 ,且a+b=9,求c.

1.2应用举例 知识点1 有关名词、术语 (1)仰角和俯角: (2)方位角: 知识点2 解三角形应用题的一般思路 (1)读懂题意,理解问题的实际背景,明确已知和所求,准确理解应用题中的有关术语、名称,如仰角、俯角、视角、方位角等,理清量与量之间的关系; (2)根据题意画出示意图,将实际问题抽象成解三角形模型; (3)合理选择正弦定理和余弦定理求解; (4)将三角形的解还原为实际问题,注意实际问题中的单位、结果要求近似等。 1.3实习作业 实习作业的方法步骤 (1)首先要准备皮尺、测角仪器,然后选定测量的现场(或模拟现场),再收集测量数据,最后解决问题,完成实习报告。要注意测量的数据应尽量做到准确,为此可多测量几次,取平均值。要有创新意识,创造性地设计实施方案,用不同的方法收集数据,整理信息。 (2)实习作业中的选取问题,一般有:○1距离问题,如从一个可到达点到一个不可到达点之间的距离,或两个不可到达点之间的距离;②高度问题,如求有关底部不可到达的建筑物的高度问题。一般的解决方法就是运用正弦定理、余弦定理解三角形。

一元二次不等式解法以及应用专题

一元二次不等式 一元二次不等式:含有一个未知数,且未知数的最高次数是2的整式不等式 题型一、解一元二次不等式 1.一元二次不等式的解法(大于取两边,小于取中间) (1)通过对不等式的变形,使不等式右边为0,左边二次项系数为正 (2)对不等式的左边进行因式分解,若不易分解,则计算对应方程的判别式; (3)求出相应一元二次方程的根或根据判别式说明方程有无实数根; (4)画出对应的二次函数的简图 (5)根据图象写出不等式的解集 例1. ; 例2. 2532<--x x 263-2≤+x x 091242>+-x x 01062>-+-x x 02322>--x x 0532>+-x x 题型二、含参数的一元二次不等式及其解法

| 1.解含参数的不等式时,应对参数进行讨论 (1)以二次项系数是否为0进行讨论,以确定不等式是否为元二次不等式 (2)转化为标准形式(即右边为0,左边二次项的系数为正数)后,再对判别式与0的大小作为分类标准进行讨论; (3)如果判别式大于0,但对应方程的两实根的大小还不能确定,此时,再以两实数根大小为分类标准进行讨论 2.含参数的不等式的解题步骤 (1)将二次项系数转化为正数 (2)判断对应的二次方程是否有根(如果可以直接分解因式,此步可省去) (3)根据根的情况写出相应的解集(若方程有相异实根,要分析两根的大小) 注意 1.当二次项含有参数时,应先讨论二次项系数是否为0这决定了不等式是否为二次不等式 ¥ 2.含参数的一元二次不等式的讨论顺序为:(1)二次项系数;(2)判别式;(3)若有实数根,两实数根的大小顺序 3.对参数的讨论还应注意以下几个方面:(1)对参数分类时,要目标明确,讨论时要不重不漏;(2)最后结果要分类回答,切不可取并集,解集为空集时,也是其中一类,不要随便丢掉 4.并不是所有含有参数的不等式都要进行分类讨论

人教版高中数学必修5不等式练习题及答案

第三章 不等式 一、选择题 1.若a =20.5,b =log π3,c =log πsin 5 2π ,则( ). A .a >b >c B .b >a >c C .c >a >b D .b >c >a 2.设a ,b 是非零实数,且a <b ,则下列不等式成立的是( ). A .a 2<b 2 B .ab 2<a 2b C . 21ab <b a 21 D . a b <b a 3.若对任意实数x ∈R ,不等式|x |≥ax 恒成立,则实数a 的取值范围是( ). A .a <-1 B .|a |≤1 C .|a |<1 D .a ≥1 4.不等式x 3-x ≥0的解集为( ). A .(1,+∞) B .[1,+∞) C .[0,1)∪(1,+∞) D .[-1,0]∪[1,+∞) 5.已知f (x )在R 上是减函数,则满足f (11 -x )>f (1)的实数取值范围是( ). A .(-∞,1) B .(2,+∞) C .(-∞,1)∪(2,+∞) D .(1,2) 6.已知不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的图象为图中( ). A B C D 7.设变量x ,y 满足约束条件?? ? ??y x y x y x 2++- 则目标函数z =5x +y 的最大值是( ). A .2 B .3 C .4 D .5 8.设变量x ,y 满足?? ? ??5 --31+-3-+y x y x y x 设y =kx ,则k 的取值范围是( ). A .[ 21,3 4 ] B .[ 3 4 ,2] C .[ 2 1 ,2] D .[ 2 1 ,+∞) ≥0 ≤1 ≥1 ≥0 ≥1 ≤ 1 (第6题)

人教版高中数学必修5期末测试题

期末测试题 考试时间:90分钟 试卷满分:100分 一、选择题:本大题共14小题,每小题4分,共56分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.在等差数列3,7,11…中,第5项为( ). A .15 B .18 C .19 D .23 2.数列{}n a 中,如果n a =3n (n =1,2,3,…) ,那么这个数列是( ). A .公差为2的等差数列 B .公差为3的等差数列 C .首项为3的等比数列 D .首项为1的等比数列 3.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ). A .4 B .5 C .6 D .7 4.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°, 则c 的值等于( ). A .5 B .13 C .13 D .37 5.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 6.△ABC 中,如果A a tan =B b tan =C c tan ,那么△ABC 是( ). A .直角三角形 B .等边三角形 C .等腰直角三角形 D .钝角三角形 7.如果a >b >0,t >0,设M =b a ,N =t b t a ++,那么( ). A .M >N B .M <N C .M =N D .M 与N 的大小关系随t 的变化而变化 8.如果{a n }为递增数列,则{a n }的通项公式可以为( ). A .a n =-2n +3 B .a n =-n 2-3n +1 C .a n = n 21 D .a n =1+log 2n

高中数学必修五基本不等式题型(精编)

高中数学必修五基本不等式题型(精编) 变 2.下列结论正确的是 ( ) A .若a b >,则ac bc > B .若a b >,则22a b > C .若a c b c +<+,0c <,则a b > D >a b > 3. 若m =(2a -1)(a +2),n =(a +2)(a -3),则m ,n 的大小关系正确的是 例2、解下列不等式 (1)2230x x --≥ (2)2280x x -++> (3) 405x x ->- (4)405 x x -≥- (5)112x ≥ (6)已知R a ∈,解关于x 的不等式()()01<--x x a .

变、若不等式02<--b ax x 的解集为{} 32<

例5、 1. 积为定值 (1)函数1y x x =+ (x >0)的最小值是 . (2)设2a >,12 p a a =+-的最大值是 . (3)函数1y x x =+ (x <0)的最小值是 . (4) 变、 (1 )2y = 的最小值是 . (2) . 2. 和为定值 (1) ,y=x(4-x) 的最大值是 . (2), 的最大值是 . 例6、“1”的妙用 1. 2.已知正数,x y 满足21x y +=,则 y x 11+的最小值为______

必修5一元二次不等式解法

一元二次不等式及其解法 [考点梳理] 1.解不等式的有关理论 (1)若两个不等式的解集相同,则称它们是; (2)一个不等式变形为另一个不等式时,若两个不等式是同解不等式,这种变形称为不等式的; (3)解不等式变形时应进行同解变形;解不等式的结果,一般用集合表示. 2.一元一次不等式解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax >b (a ≠0)的形式.当a >0时,解集为_______;当a <0时,解集为.若关于x 的不等式ax >b 的解集是R ,则实数a ,b 满足的条件是_______. 3.一元二次不等式及其解法 (1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式. (2)使某个一元二次不等式成立的x 的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________. (3)若一元二次不等式经过同解变形后,化为一元二次不等式ax 2+bx +c >0(或ax 2+bx +c <0)(其中a >0)的形式,其对应的方程ax 2+bx +c =0有两个不相等的实根x 1,x 2,且x 1<x 2(此时Δ=b 2-4ac >0),则可根据“大于号取,小于号取”求解集. (4)一元二次不等式的解: 函数与不等式 Δ>0 Δ=0 Δ<0 二次函数y =ax 2+bx +c (a >0)的图象 一元二次方程ax 2+bx +c =0 (a >0)的根 有两相异实根 x 1,x 2(x 1<x 2) 有两相等实根 x 1=x 2=-b 2a 无实根 ax 2+bx +c >0(a >0)的解集 ① ② R ax 2+bx +c <0(a >0)的解集 {x |x 1<x <x 2} ? ③ (1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为 f (x ) g (x ) 的形式. (2)将分式不等式转化为整式不等式求解,如: f (x ) g (x )>0 ? f (x )g (x )>0;f (x ) g (x ) <0 ? f (x )g (x )<0; f (x ) g (x )≥0 ? ???f (x )g (x )≥0,g (x )≠0;f (x )g (x )≤0 ? ???f (x )g (x )≤0,g (x )≠0.

高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总 第一章 解三角形 一、知识点总结 正弦定理: 1.正弦定理:2sin sin sin a b c R A B C === (R 为三角形外接圆的半径). 步骤1. 证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA 得到b b a a s i n s i n = 同理,在△ABC 中, b b c c sin sin = 步骤2. 证明:2sin sin sin a b c R A B C === 如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90° 因为同弧所对的圆周角相等,所以∠D 等于∠C. 所以C R c D sin 2sin == 故2sin sin sin a b c R A B C === 2.正弦定理的一些变式: ()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a b ii A B C R R ==2c R =; ()2sin ,2sin ,2sin iii a R A b R B b R C ===; (4)R C B A c b a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题: (1)已知两角和任意一边,求其他的两边及一角. (2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ?中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算 解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:

高中数学 必修5 23.一元二次不等式的应用

23.一元二次不等式的应用 教学目标班级:_____ 姓名:____________ 1.掌握运用一元二次不等式解决实际问题的方法. 2.掌握简单的数学建模思想. 教学过程 运用一元二次不等式解决实际问题的一般方法: 1.寻找已知条件,搞清量与量之间的关系. 2.挖掘不等关系,建立一元二次不等式. 3.解不等式,解决问题. 例1:要在长为800m,宽600m的一块长方形地面上进行绿化,其中四周中花卉(花卉带的宽度相同),中间种草坪(如图阴影部分所示),要求草坪的面积不少于总面积的一半,求花卉带宽度x的取值范围. 练1:某农贸公司按每担200元的价格收购某农产品,并每100元纳税10元(征税率10个百分点),计划可收购a万担.政策为了鼓励收购公司多收购这种农产品,决定将征税率降低x个百分点,预测收购量可增加x2个百分点. x )0 ( (1)写出降税后税收y(万元)与x的函数关系式; (2)要使此项税收在税率调节后,不少于原计划税收的83.2%,试确定x的取值范围.

练2:汽车在行驶中,由于该惯性,刹车后还会继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.在一个限速为40km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相撞了.事故现场勘查测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m ,又知甲、乙两车型的刹车距离s (m )与车速x (km/h )之间分别有如下关系:201.01.0x x s +=甲,2 005.005.0x x s +=乙.问:甲、乙两车有无超速现象? 作业:某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件,现在他采用提高售价,减少进货量的办法增加利润.已知该商品每件售价提高1元,销售量就要减少10件.问(1)售价每件定为多少元时,才能使得每天的利润最大? (2)售价每件定为多少元时,才能保证每天的利润不少于300元?

高中数学必修五教案-基本不等式

第一课时 3.4基本不等式 2a b +≤(一) 教学要求:通推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等; 教学重点: 2 a b +≤的证明过程; 教学难点:理解“当且仅当a=b 时取等号”的数学内涵 教学过程: 一、复习准备: 1. 回顾:二元一次不等式(组)与简单的线形规划问题。 2. 提问:如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。你能在这个图案中找出一些相等关系或不等关系吗? 二、讲授新课: 1. 教学:基本不等式 2a b +≤ ①探究:图形中的不等关系,将图中的“风车”抽象成如图,在 正方形ABCD 中右个全等的直角三角形。设直角三角形的两条直角边长为a,b 那么正方形的 4个直角三角形的面积的和是2ab ,正方形的面积为22a b +。由于4个直角三角形的面积小于正方形的面积,我们就得到了一个不等式:222a b ab +≥。当直角三角形变为等腰直角三角形,即a=b 时,正方形EFGH 缩为一个点,这时有222a b ab +=。(教师提问→学生思考→师生总结) ②思考:证明一般的,如果)""(2R,,2 2号时取当且仅当那么==≥+∈b a ab b a b a ③基本不等式:如果a>0,b>0,我们用分别代替a 、b ,可得a b +≥, (a>0,b>0)2a b +≤ 2 a b +≤ : 用分析法证明:要证 2a b +≥, 只要证 a+b ≥ (2), 要证(2),只要证 a+b- ≥0(3)要证(3), 只要证( - )2(4), 显然,(4)是成立的。当且仅当a=b 时,(4)中的等号成立。 ⑤练习:已知x 、y 都是正数,求证:(1)y x x y +≥2;(2)(x +y )(x 2+y 2)(x 3+y 3)≥8 x 3y 3.

【数学】3.2《一元二次不等式及其解法》教案(新人教A版必修5)(2课时)

课题: §3.2一元二次不等式及其解法 第1课时 授课类型:新授课 【教学目标】 1.知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力; 2.过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法; 3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。 【教学重点】 从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。 【教学难点】 理解二次函数、一元二次方程与一元二次不等式解集的关系。 【教学过程】 1.课题导入 从实际情境中抽象出一元二次不等式模型: 教材P84互联网的收费问题 教师引导学生分析问题、解决问题,最后得到一元二次不等式模型: 2 50x x -< (1) 2.讲授新课 1)一元二次不等式的定义 象250x x -<这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式 2)探究一元二次不等式250x x -<的解集 怎样求不等式(1)的解集呢? 探究: (1)二次方程的根与二次函数的零点的关系 容易知道:二次方程的有两个实数根:120,5x x == 二次函数有两个零点:120,5x x == 于是,我们得到:二次方程的根就是二次函数的零点。 (2)观察图象,获得解集 画出二次函数2 5y x x =-的图象,如图,观察函数图象,可知: 当 x<0,或x>5时,函数图象位于x 轴上方,此时,y>0,即2 50x x ->; 当0

人教版高二数学必修五学案(全套)

加油吧,少年,拼一次,无怨无悔! 高二数学必修五全套学案 §1.1.1 正弦定理 学习目标 1. 掌握正弦定理的内容; 2. 掌握正弦定理的证明方法; 3. 会运用正弦定理解斜三角形的两类基本问题. 学习过程 一、课前准备 试验:固定?ABC的边CB及∠B,使边AC绕着顶点C转动. 思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系? 显然,边AB的长度随着其对角∠C的大小的增大而.能否用一个等式把这种关系精确地表示出来? 二、新课导学 ※学习探究 探究1:在初中,我们已学过如何解直角三角形,下面就首先来探讨直 角三角形中,角与边的等式关系. 如图,在Rt?ABC中,设BC=a, AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,

有 sin a A c =,sin b B c =,又sin 1c C c ==, 从而在直角三角形ABC 中,sin sin sin a b c A B C == . ( 探究2:那么对于任意的三角形,以上关系式是否仍然成立? 可分为锐角三角形和钝角三角形两种情况: 当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义, 有CD =sin sin a B b A =,则sin sin a b A B = , 同理可得sin sin c b C B = , 从而sin sin a b A B = sin c C =. 类似可推出,当?ABC 是钝角三角形时,以上关系式仍然成立.请你试试导. 新知:正弦定理 在一个三角形中,各边和它所对角的 的比相等,即 sin sin a b A B = sin c C =. 试试: (1)在ABC ?中,一定成立的等式是( ). A .sin sin a A b B = B .cos cos a A b B =

一元二次不等式的应用(-)

一元二次不等式的应用(一) 【学习目标】 巩固一元二次方程、一元二次不等式与二次函数的关系,掌握掌握简单的分式不等式和特殊的高次不等式的解法. 【学习重点】 简单的分式不等式和特殊的高次不等式的解法 【学习难点】 正确串根(根轴法的使用). 【课前预习案】 1.解不等式:. 2. 解不等式031 ≥-+x x 3解不等式. 4.解不等式:(x-1)(x+2)(x-3)>0; 【课堂探究案】 探究一:分式不等式的解法 例1.解下列不等式 (1)23 +-x x <0 (2)11 2-+x x ≤1. (3)x x 1-≥2 变式1. (1)22-1<+x x (2)02 6 2≥--+x x x 探究二:一元高次不等式的解法 例2.解下列不等式 073 <+-x x 253 >+-x x

(1)(x+1)(x-3)(x-5)0≥ (2)()()()01313<++-x x x 变式2.解下列不等式 (1)()032<-+x x x (2)()032≥-+x x x 总结:一元高次不等式的解法:“穿针引线法”,具体步骤如下: ①将f(x)的最高次项的系数化为正数; ②将f(x)分解为若干个一次因式的积或二次不可分因式之积; ③将每一个一次因式的根标在数轴上,从右上方依次通过每一点画曲线(注意重根情况,偶次方根穿而不过,奇次方根既穿又过,即“奇穿偶不穿”); ④根据曲线显现出的f(x)值的符号变化规律,写出不等式的解集。 【课后检测案】 1.函数y = 261x x --的定义域是 2.不等式 21+-x x >1的解集是 . 3.解不等式: 112-+x x ≤1. 4.不等式21+-x x >1的解集是 . 3.解不等式 (1)(x +1)(1-x )(x -2)>0; (2)x (x -1) 2(x +1) 3(x +2)≥0. (3)(x -3)(x +2)(x -1) 2(x -4)<0.

一元二次不等式的解法

一元二次不等式的解法(一) 学习目标: 1.会从实际情境中抽象出一元二次不等式模型; 2.掌握求解一元二次不等式的基本方法,并能解决一些实际问题。 3.培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力 知识点一:一元二次不等式的定义 只含有一个未知数,并且未知数的最高次数是2 的不等式,称为一元二次不等式。比如: . 任意的一元二次不等式,总可以化为一般形式:)0(02>>++a c bx ax 或 )0(02><++a c bx ax . 知识点二:一般的一元二次不等式的解法 ( (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程)0(02 >=++a c bx ax ,计算判别式?; ①0>?时,求出两根21x x 、,且21x x <(注意灵活运用因式分解和配方法); ②0=?时,求根a b x x 221-==; ③0--x x ; (3)0652 >--x x (4)0442 >+-x x ; (5)0542 >-+-x x ; (6)23262x x x -++<- 举一反三: 【变式1】解下列不等式 (1)02322 >--x x ; (2)02232 >+--x x (3)01442 ≤+-x x ; (4)0322 >-+-x x . (5)()()() 221332x x x +->+ 【变式2】解不等式:(1)6662<--≤-x x (2)18342 <-≤x x 类型二:已知一元二次不等式的解集求待定系数 例2 不等式02 <-+n mx x 的解集为)5,4(∈x ,求关于x 的不等式012 >-+mx nx 的解集 举一反三: 【变式1】不等式0122 >++bx ax 的解集为{} 23<<-x x ,则a =_______, b =________ 【变式2】已知关于x 的不等式02<++b ax x 的解集为)2,1(,求关于x 的不等式0 12 >++ax bx 的解集. 类型三:二次项系数含有字母的不等式恒成立恒不成立问题 例3 已知关于x 的不等式03)1(4)54(2 2 >+---+x m x m m 对一切实数x 恒成立,求实数m 的取值范围。 举一反三: 【变式1】 若关于x 的不等式01)12(2≥-++-m x m mx 的解集为空集,求m 的取值范围. 【变式2】若关于x 的不等式01)12(2≥-++-m x m mx 的解为一切实数,求m 的取值范围. 【变式3】若关于x 的不等式01)12(2≥-++-m x m mx 的解集为非空集,求m 的取值范围.

必修5数学不等式典型例题解析(整理)

不等式 一.不等式的性质: 1.同向不等式可以相加;异向不等式可以相减:若,a bc d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-), 但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若 0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则 a b c d >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >> 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11 a b >。如 (1)对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 11,0<<<则若; ⑤b a a b b a ><<则 若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c ->->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ (答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ (答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则 a c 的取值范围是______ (答:12,2??-- ??? ) 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。其中比较法(作差、作商)是最基本的方法。如 (1)设0,10>≠>t a a 且,比较 2 1log log 21+t t a a 和的大小 (答:当1a >时,11log log 22a a t t +≤(1t =时取等号);当01a <<时,11 log log 22 a a t t +≥(1t =时取等号)); (2)设2a >,12 p a a =+-,2 422-+-=a a q ,试比较q p ,的大小 (答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小 (答:当01x <<或43x >时,1+3log x >2log 2x ;当413x <<时,1+3log x <2log 2x ;当4 3 x =时,1+3 log x =2log 2x ) 三.利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。如

相关文档
最新文档