罗斯蒙特PRO型雷达液位计操作维护规程

罗斯蒙特PRO型雷达液位计操作维护规程
罗斯蒙特PRO型雷达液位计操作维护规程

罗斯蒙特PRO型雷达液位计

操作维护规程

西部管道新疆输油分公司

2010年5月

签字职务日期编制人:

审核人:

批准人:

目录

1范围错误!未定义书签。

2规范性引用文件错误!未定义书签。3术语和定义错误!未定义书签。

4操作维护内容错误!未定义书签。

5风险提示错误!未定义书签。

6应急处置错误!未定义书签。

7附件错误!未定义书签。

范围

本规程适应于西部管道所有罗斯蒙特PRO型雷达液位计。

规范性引用文件

本规程根据技术规格书和设备技术资料,对罗斯蒙特PRO系列雷达液位计的安装环境、设备技术指标、操作和维护进行了说明。

术语和定义

操作维护内容

概述

罗斯蒙特PRO系列雷达液位变送器是一种功能强大的雷达液位变送器,适用于过程中间储罐、物料储罐和其他类型储罐的非接触液位测量。该变送器的设计可实现轻松安装和免维护运行。它可以通过特殊设计的Radar Master(雷达主机)软件包进行组态、维护和测量数据显示功能,或采用HART技术,通过手持通讯器或微机对测量数据进行组态和监控。

对于独立系统或作为微机或控制系统的补充部分,可根据特殊的硬件组态采用一个或两个模拟输出对液位数据进行监控。

罗斯蒙特PRO雷达液位变送器可配备易于使用的罗斯蒙特2210显示板。2210显示板所提供的功能与Radar Master(雷达主机)软件包的功能基本相同。四个功能强大的软键可向您提供组态程序访问、维护功能和液位监控。

测量原理

PRO系列雷达液位计通过从储罐顶部天线发射的雷达信号对储罐内产品的液位进行测量;变送器向产品表面发送频率连续变化的微波信号,在雷达信号被产品表面反射后,回波被天线接收。由于信号频率不断变化,与此时发射的信号相比,回波的频率稍微有所不同,从而产生与产品表面距离成比例的低频信号。变送器使用快速傅立叶变换(FFT)技术从而得到储罐内所有回波的频谱,从该频谱可求出表面液位,从而实现对储罐液位的的快速、可靠和精确测量。

基于频率连续变化的雷达扫描调频连续波图

该种测量方法被称为FMCW(调频连续波)并应用于所有高性能雷达变送器。

相关技术参数

电气安装

罗斯蒙特PRO系列变送器具有两个分开的接线盒X1和X2分别用来连接设备电源、输出和显示装置。采用DC或AC作为具有较宽输入范围的内置电源,变送器供电单元可自动将电压调整到指定电压极限范围内的适用电压。变送器输出为非本质安全HART/4-20mA主要模拟输出或非本质安全基金会现场总线。

罗斯蒙特PRO 变送器连接示意图

端子块X1接线

端子1-2:用于连接非本质安全HART/4-20 mA主要模拟输出或非本质安全基金会现场总线。端子3-4:用于连接电源输入。

端子A:电气安全接地端子。

变送器端子块X1 接线图

端子块X2接线

通过四根导线,将显示装置与接线盒内的X2端子块连接。

端子A:与显示装置接地端子连接。

端子5:与显示装置的电源线相连接。

端子6和7:与显示装置的信号线连接。

变送器端子块X2接线图

2210显示装置连接

罗斯蒙特2210显示装置可在工厂装配在PRO系列雷达液位变送器外壳上或在现场进行远程安装。显示装置可用于变送器组态或用于显示储罐数据。

2210显示装置电路板TP40 板概览

电源连接,在端子块X2 端子5和端子块X12 端子1之间接线。

通讯连接,在端子块X2端子6和端子块X12端子2之间接线并在端子块X2端子7与端子块X12端子3之间接线。

接地连接,在X2端子隔室的本质安全接地螺钉与端子块X12端子4之间接线。

运行及组态操作

为了充分发挥罗斯蒙特PRO雷达液位变送器的功能,必须对其正确组态。对变送器进行组态,可以使用罗斯蒙特Radar Master(雷达主机)软件,也可采用2210显示装置、HART通讯器或其他工具进行组态。

微机组态软件RADAR MASTER(雷达主机)

罗斯蒙特Radar Master(雷达主机)软件是交互式、功能强大的组态工具,可根据其安装的应用环境对罗斯蒙特PRO系列液位雷达变送器进行正确设置。

主要组态图标:

向导(Wizard)

向导的设置包括所有基本设置,如:HART标牌、天线类型、储罐几何尺寸、变量分配、容量等。通用设置(General)

对所用单位、HART标牌、描述、远程显示装置等进行设置。

储罐(Tank)

利用该图标,可组态天线类型、设置储罐的几何尺寸、设置环境及容量。

输出(Output)

该图标处理模拟输出和变量分配以及温度传感器组态。

回波调整(Echo Tuning)

该窗口打开储罐波谱图,用于干扰回波的回波调整、设置干扰噪阈值等

利用Radar Master进行储罐组态图

使用Radar Master进行回波调整图

手持通讯器

使用手持通讯器可以在雷达液位变送器安装之前或安装之后进行调试和检验组态数据。为进行调试,在通讯连接与电源之间串接一个至少250欧姆的电阻将变送器与通讯器连接。通讯器引线可从信号回路中的任一端接点引出。

严禁将基于电感的耐瞬变电压保护器与PRO系列雷达液位变送器配套使用。

在使用手持通讯器时,所做的所有组态更改必须通过采用“Send”(发送)键(F2)发送到变送器。

罗斯蒙特PRO雷达液位变送器HART通讯器菜单树

HART 快捷键

Antenna Type(天线类型)1,3,3,1 Basic Volume(基本容量)1,3,3,7 Device Information(装置信息)1,4,1 Diagnostics(诊断)1,2,1

罗斯蒙特2210 显示装置

罗斯蒙特2210显示装置可用于组态并可用于浏览储罐数据。使用四个软键,可以浏览不同的菜单并可选择各种服务和组态功能。

罗斯蒙特2210 显示装置菜单树

2210 显示装置操作

主菜单包含下列选项

主菜单

View(视图)选项,浏览液位数据和信号强度。

Service(服务)选项,浏览组态状态、编辑保存记录、将保存记录重置到工厂设置数值、进行软

件重置或启动表面回波搜索。

Setup(设置)选项,对变送器进行组态。

Display Panel(显示板)选项,设置测量值单位、设置语言并可更改用户口令。

调整液晶显示器对比度

同时按下右手侧的两个按钮可增加液晶显示器对比度。同时按下左手侧的两个按钮可降低液晶显示器的对比度。将显示板的对比度从最小调整至最大大约需要10 秒钟时间。

输入口令

某些窗口设置有口令保护。通过以某种顺序按下三个空白软键(最多12个字符)可输入口令。每个数字代表一个特定软键,如图所示。

默认情况下,口令为空白,即可通过只按下OK按钮应可打开口令保护的窗口。

口令显示屏

软键

软键的意义随打开窗口的不同而不同。使用箭头键上下移动光标(或侧向移动到某些窗口)。当要求输入数值时,也可用这些按钮更改数字。

显示测量数据

在浏览测量数据时,采用软键在不同视图间浏览,如下图所示。并且,状态指示器将向您显示所执行的测量以及这些测量是否有效。

视图显示

在不同的选项之间进行选择

在对PRO 系列雷达液位变送器进行组态时,利用软键可定义可选择的特定项目并保存当前设置。

当光标抵达最后一项时,按向下箭头按钮,可跳回到第一项。

输入数字型数值

使用向上箭头按钮输入所需的数值。每次点击将数字型数值从零至九递增一个步幅,并可逐步递减返回零。

Next(下一步)按钮将光标移动到下一个数字上。当光标抵达最后一个数字时,选择NEXT(下一步)按钮又将光标返回到第一个数字。

显示设置

显示设置用于设置显示单位、显示语言和设置仅用于2210 显示装置的口令。

1)用户定义视图

选择User Defined(用户定义)并按Next(下一步)。

上一步骤所所选择的项目数量决定下一步所选择的是类型还是模式。如果选择单个项目,应选择类型并按下Next(下一步)。如果选择两个或以上项目,应选择模式并按下Next(下一步)。对于切换模式,也可选择每个项目所要显示的时间并按下Next(下一步)。

为所选项选择单位并按下Next(下一步)。

为显示设置以分钟计算的超时限制以使其返回默认视图并按下Save(保存)。

2)语言

选择Language(语言)并按下Next(下一步)。

移动光标至首选语言并按下Mark(标记)。

接下Save(保存)保存选择结果。显示器将返回到视图模式。

3)单位

选择Units(单位)菜单并按下Next(下一步)。

选择Length(长度)、Velocity(速度)、Volume(容量)或Temperature(温度)按下Next(下一步)。选择用于显示数据的测量单位并点击Save(保存)进行保存。

4)口令

为更换显示板口令,请选择Password(口令)选项并按下按钮。必须输入该口令才能更改变送器的组态。

安装设置罗斯蒙特PRO雷达液位变送器

从主菜单中选择Setup(设置)并任选一项进行变送器组态。

引导设置

Guided Setup(引导设置)包括启动变送器的基本设置。该选项引导您逐步浏览一系列组态窗口。这些窗口以预定义顺序自动打开。按照下列步骤,采用引导设置对新雷达变送器进行组态:

1)从Main Menu(主菜单)选择Setup(设置)。

2)输入口令并按下按钮。以特定顺序点击前三个软键可定义口令。按下的每个键以星号显示。

3)从Setup Menu(设置菜单)中选择“Guided...”(引导设置)并按下Next(下一步)。

4)设置天线类型。按Save(保存)移动光标至所需的天线,并点击Mark(标记)对其进行选择。Std = 标准;

P = PTFE 储罐密封;

Q = 石英密封;

HP = 仅限于工厂使用;

C = 仅限于工厂使用。

按Save(保存)结束。注意:必须使用箭头滚动清单以查找所有可用的天线类型。

5)设置Tank Type(储罐类型)。按箭头按钮移动光标至所需的储罐类型并点击Mark(标记)进行选择。

6)标定Tank Height(储罐高度)(R)。储罐高度(R)定义为上部参考点(距离漂移G 确定)与下部参考点(零液位)之间的距离。按Save(保存)结束。

7)如果在选择储罐类型时必须对储罐底部类型进行定义,按箭头按钮移动光标至所需的储罐类型。点击Mark(标记)对其进行选择。

8)选择Tank Environment(储罐环境)选项。选择合适的表面条件。通过选择Mark(标记)将符合储罐环境的选项做上标记。

自定义设置

按照下列步骤,使用Custom Setup(自定义设置)选项对雷达变送器进行组态:

1)从Main Menu(主菜单)中选择Setup(设置)。

2)输入口令并按OK 确认。

3)从Setup Menu(设置菜单)中选择Custom(自定义)并按下Next(下一步)。

4)从Custom Setup(自定义设置)菜单中选择Start Radar(启动雷达)选项。

a)从Start Radar(启动雷达)菜单中选择Antenna Type(天线类型)选项。可用的天线类型有:杆形、锥形、过程密封和抛物线形。

b)选择变送器已安装的天线的类型,并点击Save(保存)打开Start Radar(启动雷达)菜单。

c)选择Tank Environment(储罐环境)选项。选择合适的表面条件。通过选择Mark(标记)将符合储罐环境的选项做上标记。

d)按Save(保存)保存当前设置。

e)选择Product DC(产品介电常数)选项。产品介电常数决定产品反射微波的效果。

f)选择Start Code(启动代码)选项。通过选择Save(保存)确认您所选择的Start Code(启动代码)。变送器与启动代码配套供应,启动代码可激活订购的软件选项。

g)按Back(返回)返回到Custom Setup(自定义设置)菜单。通过Advanced(高级功能)选项,可对储罐环境数据库记录进行高级设置(仅适用于经过培训的人员)。

5)从Custom Setup(自定义设置)菜单中选择Geometry(几何尺寸)选项。

a)选择Tank Type(储罐类型)并按下Next(下一步)。选择Tank Shape(储罐形状)选项并按下Save(保存)。

b)选择Tank Height(储罐高度)并按下Next(下一步)。Tank Height(储罐高度)(R)定义为上部参考点与下部参考点(零液位)之间的距离。设置储罐高度按Save(保存)。

c)选择Bottom Type(底部类型)并按下Next(下一步)选择Tank Bottom (储罐底部)选项并按下Save(保存)。

d)Calibration Distance(标定距离)默认值设置为零。标定距离用于调整变送器,使测量液位与手工投尺测量的产品液位匹配。通常情况下,只需要进行微调。例如,在实际储罐高度与变送器数据库中存储的数值之间也许会存在偏差。Calibration Distance(标定距离)并按下Save(保存)。

e)选择Advanced(高级功能)菜单按下Next(下一步)。设置Distance Offset(距离漂移)(G)。距离漂移(G)定义为上部参考点与法兰(法兰被用作变送器参考点)之间的距离。可使用距离漂移指定自定义的储罐顶部参考点。如果想把法兰用作上部参考点,就将距离漂移的值设置为零。如果使用的上部参考点超出变送器参考点,将距离漂移设置为正值。当变送器的测量液位应符合手工投尺方式测量的液位值时,应使用距离漂移。

f)设置Minimum Level Offset(最小液位漂移)(C)。最小液位漂移(C)确定下部无效区,该下部无效区将量程延伸超出零液位参考点以下直达储罐底部。最小移位漂移定义为零液位(储罐液位参考点)和最小可接受液位即储罐底部之间的距离。如果使用储罐底部为零液位参考点,可将最小液位漂移设置为零。如果零液位未定义在储罐底部而是定义某标高点作为基准面,需要定义最小液位漂移。注意:最小液位漂移不能为负值。

g)设置Tank Connection Length(储罐连接长度)(TCL)。输入的储罐连接长度(TCL)参数仅适用于用户定义的天线类型。对于标准天线,可自动设置储罐连接长度(TCL)值。

6) 从Custom Setup(自定义设置)菜单(可选)中选择Analog Out 1(模拟输出1)选项。如果变送器配有模拟输出,输出范围将自动标定以实现与储罐标定(距离漂移和储罐高度)的匹配。要想更新该设置,请按下列步骤进行:

a)输入Source(源)。可用选项包括:液位、液面距离、液位速率、信号强度和容量(T1-T6 和平均液体温度为可选项)。

b)分别输入与4 mA 和20 mA 相对应的模拟输出值。

c)选择Alarm mode(报警模式):Low Current(低电流)、High Current(高电流)、Freeze(固定电流)、BinLow(二进制低)、BinHigh(二进制高)

d)D/A Trim(数/模转换微调)。使用该选项对数/模转换器进行标定以符合标称值4 mA 和20 mA。

按下列步骤可对数/模转换器进行标定:

选择D/A Trim(数/模转换微调)选项。

如果想继续,点击OK 确认,(或点击CNCL(取消)退出而不对数/摸转换器进行标定)。

输入与 4 mA 设置相符的测量值。

点击DONE(完成)按钮。

输入与20 mA 设置相符的测量值。

点击DONE(完成)按钮。结束数模转换标定并且不再让模拟输出处于固定电流模式。

7)从Custom Setup(自定义设置)菜单(可选)中选择Analog Out 2(模拟输出2)选项。如果变送配备有额外模拟输出,请按照与Analog Out 1(模拟输出1)相同的组态程序进行设置。额外模拟输出的组态与模拟输出 1 的组态相同。详见上述第 6 步。

8)从Custom Setup(自定义设置)菜单(可选)中选择False Echo(伪回波)选项。在正常运行情况下,变送器将检测的回波与记录的干扰回波清单进行对比以确定真实的表面回波。为浏览变送器已检测到的回波清单,可选择Tank Echoes(储罐回波)选项。

从该清单中选回波并添加到记录的回波清单。只记录被确认为储罐内的物体引起的干扰回波。按照下列步骤可记录干扰回波:

a)将光标移动到您想添加到清单的回波。

b)点击Edit(编辑)。

c)将光标移动到Add to list(添加到清单)并点击Mark(标记)。

d)点击Save(保存)将做标记的回波记录到清单中。

e)如果想记录更多的干扰回波,请重复步骤 a 至d 。使用Set as surface(设置为表面)选项,您可将回波定义为产品表面。如果想手工添加回波,可在Add new false (添加新伪回波)选项上做上标记。例如,在存在低于产品表面、在安装时不能被变送器检测的已知干扰时,该选项相当有用。

f)点击CNCL(取消)返回到False Echo(伪回波)菜单。为了浏览记录的当前干扰回波清单,可选择Reg. False Echoes(记录的干扰回波)。

按照下列步骤可清除记录的干扰回波:

将光标移动到您想清除的回波。

点击Edit(编辑)。

选择Remove echo(清除回波选项并点击MARK(标记)。

点击Save(保存)以清除选定的回波。

如果想手工添加回波到记录干扰回波清单,可将Add new false (添加新伪回波)选项做上标记。如果想清除整个干扰回波清单,将Clear list(清除清单)选项做上标记。如果您想创建一个全新的记录干扰回波清单,该选项相当有用。

9)从Custom Setup(自定义设置)菜单中选择Volume(容量)选项。使用Volume(容量)选项,您可对PRO 系列雷达液位变送器进行容量计算设置。您可在选用预定义的储罐形状如球形、卧式或立式圆筒型,或者将液位和容量值输入储罐容量表。

a)选择Shape(形状)并按下Edit(编辑)。为容量计算选择需要使用的储罐几何尺寸并按Save (保存)。

b)选择Diam(直径)并按下Edit(编辑)。设置储罐直径并按Save(保存)。

c)选择Zero Level Offset(零液位漂移)并按Edit(编辑)。设置从零液位至储罐底部的距离并按Save(保存)。

d)选择Volume Offset(容量漂移)并按Edit(编辑)。设置容量漂移并按Save(保存)。

e)选择Volume Control(容量控制)并按Edit(编辑)。在Neg VolDisabled(负容量禁用)选项做上标记并按Save(保存)。

维护和故障诊断

罗斯蒙Pro系列故障检修障现象采取措施

使用罗斯蒙特2210显示装置进行维护

通过Service Menu(维护菜单),可浏览组态状态、编辑保存记录、将保存记录重置到工厂值、进行软件重置或启动搜索表面回波。也可启动表面回波搜索功能并且将某些保存记录重置到工厂设置。

Config Report(组态报告):

显示有关天线类型、软件版本、软件和硬件组态、运行时间、出错状态和单位代码的信息。Echo Search(回波搜索):

启动表面回波搜索功能。

Factory Settings(工厂设置):

将选择的保存记录重置到工厂设置。

Software Reset (软件重置):

使用该选项触发软件启动程序。

Super Test(超级测试):

将所有软件选项运行一周时间。

Overfill Alarm(溢出报警):

利用该菜单可激活或取消溢出报警。

Advanced Service(高级服务):

使用该选项可浏览输入记录并且可浏览编辑保存记录。Advance Service(高级服务)窗口由只对该窗口有效的特殊密码保护。

风险提示

应急处置

附件

(参考)智能雷达液位计操作手册

873智能雷达液位计操作手册 (973智能雷达液位计的操作,与873智能雷达液位计完全相同,本手册可供973雷达液位计的用户使用) 前言: 873智能雷达液位计是一种用雷达技术进行液位测量的精密仪表。 以下内容涉及到对873智能雷达液位计基本功能的调试、使用和日常维护的指导。一些选项的功能比如液位报警、标定针补偿、温度测量、模拟输出和压力测量等会在其他的说明手册里进行描述。 法律问题 873智能雷达液位计的机械和电器安装必须由拥有在危险地区安装防爆设备知识和训练的人员来实施。 以下全部说明内容的版权属于荷兰恩拉福有限公司。荷兰恩拉福有限公司对于由下列内容所造成的人身伤害和设备损失不服责任: ●没有按照说明进行操作 ●进行了说明中没有提到的操作 ●没有按照规定实施个人安全保护措施,没有采用安全操作所需要的设备和工具。 电磁兼容性 873智能雷达液位计符合以下的电磁兼容性标准: EN 50081-2 Generic Emission Standard EN 50082-2 Generic Immunity Standard 如果您有任何的疑问,请随时和荷兰恩拉福有限公司联系,也可以和恩拉福在全球的任何代表处联系。

1. 简介 恩拉福873智能雷达液位计是一种使用雷达技术探测液位的精密液位计。这种仪表能够长时间保持很高的液位测量精度,同时非常的可靠,不受环境变化的影响。 873雷达液位计带有4个可编程的液位报警,同时还可以提供自诊断信息。 这些信息都可以显示在表头的显示器上,也可以显示在手操器上,或者远传到控制室在上位机上显示。 873雷达液位计可以安装MPU选项板,用于输出4~20mA模拟信号,这样873可以被连接到控制系统当中或者和模拟记录设备连接在一起。 873雷达液位计还可以通过配备TPU-2或者HSU选项板接入点温度计测量点温度。 873雷达液位计通过配备MPU, HPU或者OPU选项板连接多点温度计,通过多点温度计准确测量产品的平均温度和罐内气相的平均温度。 Honeywell ST3000系列压力变送器可以通过OPU选项板连接到液位计,通过HPU或者HSU 选项板,所有支持HART协议的压力变送器或者水探头都可以接入到液位计。 1.1. 测量原理 雷达液位计是通过发射频率高达10GHz的高频电磁波来检测液位的。 电磁波发射到罐中,被产品的表面反射回液位计。 众所周知,真空中电磁波的传播速度是光速,但是液位的准确测量不能依靠测量传播的时间差,我们测量的是反射波和发射波之间的相位差。电磁波在空中传播的距离可以通过对相位差的计算而获得。 这种测量的原理称为合成脉冲雷达(Synthesized Pulse Radar, SPR)。 873智能雷达液位计通过安装在罐顶的天线单元来产生电磁波。 电磁波通过罐分离器的引导,进入雷达天线。 雷达天线对电磁波进行整形,然后发射到罐中。从液面反射的回来的电磁波被同一个雷达天线接受到。天线单元内部的电子线路会同时测量发射合接受到的信号。 在经过处理之后,数字信号被传送到控制单元。控制单元把测量到的距离转换成实尺或者是空尺,并且上传到现场总线等通讯网络中去。

雷达液位计的测量原理、特点与应用

雷达液位计的测量原理、特点与应用 摘要:雷达液位计是一种非接触式无可动部件、真正免维护的液位测量仪表。该仪表经过多年的应用及技术改进,目前广泛应用于石化行业,并得到了用户的认可。本文简要介绍了雷达液位计的2种不同的测量原理,根据其特点与优点,指出了适合应用的场合及安装要求。 关键词:雷达液位计脉冲微波调频连续波应用 雷达液位计是20世纪60年代中期国外开始生产使用的新技术产品。它是一种采用微波测量技术、非接触式的液位测量仪表。在初期,它主要用于海船油槽液位测量。它克服了以前使用机械式接触型液位仪表的诸多缺点,比如清洗的困难和维修的不便等。随后,雷达液位计被用于在岸上储罐液位的测量以及炼油装置中液位的测量。随着石油化工行业的不断发展,雷达液位计的应用范围日益广泛,特别是高精度的特点得到了国际计量机构的认证,满足贸易交接的物料计量要求[1]。 一、雷达液位计的测量原理与特点 雷达液位计是利用超高频电磁波经天线向被测容器的液面发射,当电磁波到达液面后反射回来,被同一天线接收并检测出发射波及回波的时差,从而计算出液面高度[2]。 雷达液位计有2种工作模式,分别对应两种测量原理。 1.脉冲微波方式(PTOF) 这种方式是一种“俯视式”时间行程测量系统,测量系统经过天线以固定的带宽周期地发射某一固定频率的微波脉冲,在被测物料表而产生反射后由雷达系统所接收。天线接收反射的微波脉冲并将其传给电子线路,微处理器对此信号进行处理,识别出微波脉冲在物料表而所产生的回波,并据此计算液位(如图1所不),将被测液位距离成正比关系的时间再转换为电信号。 2.调频连续波方式(FMCW) 这种方式的雷达液位计的微波源是x波段的旅控振荡器,天线发射的微波是频率被线形调制的连续波,当回波被天线接收到时,微波发射频率已经改变。发射波与回波的频率差正比于天线到液面的距离,以此计算出液位高度。 二、PTOF法与FMCW法的比较 对于PTOF方法,脉冲的时间行程可以直接返回到不受温度影响的石英振荡器。对于FMCW方法,必须采用昂贵的振荡器温度稳定装置,或安装内部的参

浮筒液位计检修规程

浮筒液位计检修规程 1.总则 主题内容与使用范围 本规程适用于扭矩管式浮筒液位计的维护、检修、标定、投运时的具体要求和实施程序,以及各种作业时的安全注意事项。 基本工作原理 浮筒液位计基于阿基米德(浮力定律)等原理工作的,其测量当液(界)位在零位时,扭力管受到浮筒重量产生扭力矩(这时扭力最大)扭力管转角处于“零”度,当液位逐渐上升时,浮筒在液体浮力的作用下,也随着上升,扭力管产生的扭力矩逐渐减小,此时将其产生的转角由变送器转换成4—20mADC信号,这信号正比于被测量液(界)位。输出信号:标准型:4~, 二线制;供电智能型:4~20mA,叠加符合HART协议的数字信号。 浮筒液(界)位计测量原理图 1-截止阀 2-筒体 3-变送器 4-扭力管 5-浮筒 6-排污阀 7-放空堵头 构成与功能 截止阀: 被测贮水容器与液位计连接的导液开关阀。 筒体: 浮筒液位(界)计浮筒室外壳。 变送器:将传感器的输出信号进行转换为统一的电流信号远程传输的装置。

扭力管:将浮筒测得的直线位移转换成扭管心轴的转角位移,并将被测容器内的高压部分和外界的低压部分隔开。 浮筒: 浸没在浮筒室内的液体中,与电动系统刚性连接,受浮力作用控制通过扭力管传递到传感器。 显示装置(测量终端): 向观察者显示被测参数的数值和量值的装置排污阀:排出浮筒室内的污水杂质和校验标定时连接透明软管便于观看水位。 放空堵头: 筒体上部放空口的封盖。 主要技术性能及规格 技术指标 测量范围:~6m (特殊尺寸) 输出信号; 4~20mADC二线制,可带Hart协议 精度等级±%±%(特殊型) 使用环境温度﹣40―85℃相对湿度10%—95%(液晶不会损坏)工作压力; 4MPa 16MPa 32MPa 电源;标准型:24VDC二线制4-20mA(12VDC-32VDC) 介质密度;液位―∕cm3,界位―∕cm3 工作温度;常温型﹣40―150℃高温型150―350℃ 防爆等级;本安型ibⅡCT1―6 隔爆型dⅡBT5 规格 浮筒液位计:FST-3000系列 ZUT 系列 LC3010系列 安全栅:NPQEX31 NPEXA-C31 NPEXA-C311 对维修人员的基本要求 熟悉本规程及相应仪表说明书等技术资料。

雷达液位计常见故障及其处理方法.doc

雷达液位计常见故障及其处理方法 雷达液位计常见故障及其处理 近年来,雷达液位计以其液位测量死区小、连续测量精度高、受介质特性影响小、测量范围大、耐高温高压能力强和采用非接触式测量方式等优点,在化工行业得到广泛的推广和应用。 由于被测对象比较复杂,受高温高压高腐蚀,还有泡沫、搅拌、蒸汽等诸多原因的严重破坏,雷达液位计频繁出现故障,仪表维护量大,严重影响了生产装置。因此,了解雷达液位计日常故障问题及其处理方法,就变得很有必要。下面,仪控君就为大家整理了雷达液位计的故障问题处理方法,希望能对大家有所帮助。 雷达液位计常见故障之检查供电是否正常 如果生产现场发现雷达液位计在液位升到一定值后变化非常缓慢,应该立即检查雷达液位计的供电情况是否正常,相关工作人员也要在日常的维护中,详细检查雷达液位计的通电情况,通电后有无正常输出。液位变化缓慢或者根本没有变化,需要在第一时间检查设备的保险丝是否烧坏,如果并无电流输出,则基本可以判断是仪表出现问题,应视情况更换或者维修。此外,应该在仪表安装调试的环节加强管理,防止仪表参数设置不准确而影响生产。相关工作人员也需要加强日常的维护工作,定期的进行停运检修,从而保证雷达液位计仪表的正常运行。 雷达液位计常见故障之检查通讯设备是否正常 一旦发现通讯设备不正常,可以通过安装雷达调试软件,读取雷达的组态数据,监控雷达传感器的状态。主要检查雷达传感器能够准确的判断反射回波与假回波的区别,反射波的强度是否达到预定的标准,如果上述测试没有问题,则需要检查其他的电子元件,如果判断出雷达液位计的通讯单元出现损坏,则需要视情况更换元件,从而保证雷达液位计的通讯正常。相关工作人员在日常的维护工作中,也应该加强对雷达液位计的通讯情况的

雷达液位计的工作原理

雷达液位计的工作原理 雷达液位计的工作原理 发射—反射—接收是雷达液位计的基本工作原理。 雷达传感器的天线以波束的形式发射电磁波信号,发射波在被测物料表面产生反射,反射回来的回波信号仍由天线接收。发射及反射波束中的每一点都采用超声采样的方法进行采集。信号经智能处理器处理后得出介质与探头之间的距离,送终端显示器进行显示、报警、操作等。微波测距示意图如图1所示。 图中,E-空槽(罐)的高度;F—满槽(罐)的高度; D—探头至介质表面的距离;L—实际物位 雷达脉冲信号从发射到接收的运行时间与探头到介质表面的距离D成正比,即: D=v×t/2 式中,t—脉冲从发射到接收的时间间隔 v—波形传播速度 因空槽距离E已知,故实际物位的距离L为: L=E-D 式中,E的基准点是过程连接的底部 在发射的时间间隔里,天线系统作为接收装置使用。仪表分析、处理运行

时间小于十亿分之一秒的回波信号,并在极短的一瞬间分析处理回波。 雷达传感器利用特殊的时间间隔调整技术将每秒的回波信号进行放大、定位,然后进行分析处理。因此雷达传感器可以在0.1s内精确细致地分析处理这些被放大的回波信号,无须花费很多时间来分析频率。 雷达液位计的特点 雷达液位计最大的特点是在恶劣条件下功效显著。无论是有毒介质,还是腐蚀性介质,也无论是固体、液体还是粉尘性、浆状介质,它都可以进行测量。在测量方面,具有以下特点: 1、连续准确地测量 由于电磁波的特点,不受环境的影响。故其测量的应用场合比较广。雷达液位计的探头与介质表面无接触,属非接触测量,能够准确、快速地测量不同的介质。探头几乎不受温度、压力、气体等的影响(500℃时影响仅为0.018%,50bar时为0.8%)。 2、对干扰回波具有抑制功能 比如,波束范围内接头引起的干扰回波和进料或出料的噪声引起的干扰回波等可由内部的模糊逻辑控制自动进行抑制。 3、准确安全节省能源 雷达液位计在真空、受压状态下都可进行测量,而且准确安全,可*性强。可以不受任何限制,适用于各种场合。雷达液位计采用材料的化学性、机械性都相当稳定,且材料可以循环利用,极具环保功效。 4、无须维修且可*性强 微波几乎不受干扰,与测量介质不直接接触,几乎可以被应用于各种场合,如真空测量、液位测量或料位测量等。由于高级材料的使用,对情况极其复杂的化

浮子(筒)液位计校准规程

浮子(筒)液位计校准规程 本校准规程适用于工艺过程中使用的二线制标准电流信号(4-20mA)输出的翻柱式浮子液位计、翻球式浮子液位计、翻板式浮子液位计及外浮筒液位计(以下均简称液位计)的校准。 1 技术内容 1.1标准仪器 1.1.1直流稳压电源:24V,允许误差±1%; 1.1.2直流电流表:准确度等级: 0.2级; 1.1.3其它:玻璃管,三通接头,钢卷尺。 1.2技术要求 1.2.1外观:液位计上铭牌完整、清晰、液位计零部件应完整无损。紧固件不得有松动和损伤,可动部件应灵活可靠。 1.2.2密封性:液位计在额定工作压力时不能有泄漏和损坏现象。 1.2.3基本误差:基本误差的绝对值不超过液位计的允许基本误差。 1.2.4回程误差:回程误差不大于液位计允许基本误差的绝对值。 2 校准步骤 2.1外观检查 目测检查液位计应达到本校准规程第1.2.1的要求。 2.2密封性检查 液位计在工作压力下检查不出现泄漏现象。 2.3校准接线 将被校准液位计、玻璃管、三通接头等连接成U型管,按照连通器原理开展校准。 注:校准用介质可以是工作介质,也可以是水。若是水必须进行密度换算。 2.4现场指示和远传变送装置,零位校准 连好校准接线,通电预热15分钟,当输入测量液位为0%时,液位计的输出指示应为零,(输出电流信号为4mA),如偏差大于允许值,应调整指示和变送器零点螺钮。2.5量程校准 当输出测量液位为100%时,液位计输出指示应为20mA,如偏差大于允许值,应调整指示和变送器量程螺钮至合格为止。反复调整零位和量程,直至合格为止。 2.6线性校准 线性校准取液位计满量程的5个等分点进行,即取0%,25%,50%,75%,100%的满量程液位,其输出值偏差不应大于允许基本误差,反之应调整合格。 3 校准结果处理和校准周期 3.1液位计经校准合格的张贴合格证。液位计校准不合格的停止使用。 3.2液位计校准周期为一年。

罗斯蒙特PRO型雷达液位计操作维护规程

罗斯蒙特PRO型雷达液位计 操作维护规程 西部管道新疆输油分公司 2010年5月

签字职务日期编制人: 审核人: 批准人: 目录

1范围错误!未定义书签。 2规范性引用文件错误!未定义书签。3术语和定义错误!未定义书签。 4操作维护内容错误!未定义书签。 5风险提示错误!未定义书签。 6应急处置错误!未定义书签。 7附件错误!未定义书签。

范围 本规程适应于西部管道所有罗斯蒙特PRO型雷达液位计。 规范性引用文件 本规程根据技术规格书和设备技术资料,对罗斯蒙特PRO系列雷达液位计的安装环境、设备技术指标、操作和维护进行了说明。 术语和定义 操作维护内容 概述 罗斯蒙特PRO系列雷达液位变送器是一种功能强大的雷达液位变送器,适用于过程中间储罐、物料储罐和其他类型储罐的非接触液位测量。该变送器的设计可实现轻松安装和免维护运行。它可以通过特殊设计的Radar Master(雷达主机)软件包进行组态、维护和测量数据显示功能,或采用HART技术,通过手持通讯器或微机对测量数据进行组态和监控。 对于独立系统或作为微机或控制系统的补充部分,可根据特殊的硬件组态采用一个或两个模拟输出对液位数据进行监控。 罗斯蒙特PRO雷达液位变送器可配备易于使用的罗斯蒙特2210显示板。2210显示板所提供的功能与Radar Master(雷达主机)软件包的功能基本相同。四个功能强大的软键可向您提供组态程序访问、维护功能和液位监控。 测量原理 PRO系列雷达液位计通过从储罐顶部天线发射的雷达信号对储罐内产品的液位进行测量;变送器向产品表面发送频率连续变化的微波信号,在雷达信号被产品表面反射后,回波被天线接收。由于信号频率不断变化,与此时发射的信号相比,回波的频率稍微有所不同,从而产生与产品表面距离成比例的低频信号。变送器使用快速傅立叶变换(FFT)技术从而得到储罐内所有回波的频谱,从该频谱可求出表面液位,从而实现对储罐液位的的快速、可靠和精确测量。 基于频率连续变化的雷达扫描调频连续波图 该种测量方法被称为FMCW(调频连续波)并应用于所有高性能雷达变送器。

导波雷达液位计的原理及应用

导波雷达料位计的原理及应用 导波雷达料位计的原理及应用 一、导波雷达料位计概述 料位是工业生产中的一个重要参数。料位测量的方法很多,针对不同的工况和介质可以使用不同测量原理的料位计,吹气法、静压式、浮球式、重锤式、超声波等几种常用的料位测量仪表,都有各自的特点和应用范围。导波雷达料位计运用先进的雷达测量技术,以其优良的性能,尤其是在槽罐中有搅拌、温度高、蒸汽大、介质腐蚀性强、易结疤等恶劣的测量条件下,显示出其卓越的性能,在工业生产中发挥着越来越重要的作用。 二、原理及技术性能 雷达波是一种特殊形式的电磁波,导波雷达料位计利用了电磁波的特殊性能来进行料位检测。电磁波的物理特性与可见光相似,传播速度相当于光速。其频率为300MHz-3000GHz。电磁波可以穿透空间蒸汽、粉尘等干扰源,遇到障碍物易于被反射,被测介质导电性越好或介电常数越大,回波信号的反射效果越好。 雷达波的频率越高,发射角越小,单位面积上能量(磁通量或场强)越大,波的衰减越小,导波雷达料位计的测量效果越好。 1.导波雷达料位计的基本原理 导波雷达料位计组成:它主要由发射和接收装置、信号处理器、天线、操作面板、显示、故障报警等几部分组成。 发射-反射-接收是导波雷达料位计工作的基本原理。雷达传感器的天线以波束的形式发射最小5.8GHz的雷达信号。反射回来的信号仍由天线接收,雷达脉冲信号从发射到接收的运行时间与传感器到介质表面的距离以及物位成比例。

即:h=?H–vt/2? 式中?h为料位;H为槽高;?v为雷达波速度;t为雷达波发射到接收的间隔时间;2.导波雷达料位计测量料位的先进技术: (1)回波处理新技术的应用 从导波雷达料位计的测量原理可以知道,导波雷达料位计是通过处理雷达波从探头发射到介质表面然后返回到探头的时间来测量料位的,在反射信号中混合有许多干扰信号,所以,对真实回波的处理和对各种虚假回波的识别技术就成为导波雷达料位计能够准确测量的关键因素。 (2)测量数据处理: 由于液面波动和随机噪声等因素的影响,检测信号中必然混有大量噪声。为了提高检测的准确度,必须对检测信号进行处理,尽可能消除噪声。 经过大量的实验验证,采用数据平滑方法可以达到满意的效果。此方法也可有效的克服罐内搅拌器对测量的影响。 (3)导波雷达料位计的特点: 由于导波雷达料位计采用了上述先进的回波处理和数据处理技术,加上雷达波本身频率高,穿透性能好的特点,所以,导波雷达料位计具有比接触式料位计和同类非接触料位计更加优良的性能。 ①可在恶劣条件下连续准确地测量。 ②操作简单,调试方便。 ③准确安全且节省能源。 ④无需维修且可靠性强。 ⑤几乎可以测量所有介质。

雷达液位计检修维护规程

雷达液位计检修维护规程 8.1概述 雷达液位计是利用超高频电磁波经天线向被测容器的液面发射,当电磁波碰到液面后又反射回来,仪表检测出发射波和回波的时差,从而计算出液面的高度。雷达液位计可用于易燃、易爆、强腐蚀等介质的液位测量,特别适用于大型立罐和球罐等。一般分为工业级和计量级。 本节规程以APEX雷达液位计为例说明,其他,同类仪表可参照执行。 8.2技术特点 APEX雷达液位计采用24GHz的频率和先进的电子线路,天线很小,其雷达波的射角也非常窄。体积小重量轻的天线简化了安装过程。同时很窄的雷达波射角减少了由容器内部障碍产生的回波,像搅拌器、热交换器、进料口、挡板、热电阻套管、伴热蒸汽管和其他障碍物。非常窄的雷达波的射角也提高了安装的灵活性,因为雷达可安装在原有的距罐壁。17m雷达液位计测量距离可达APEX很近的法兰上。. APEX雷达液位计的基本输出为4~20mA DC模拟信号,其上叠加了HART数字信号。APEX也接受一路RTD(热电阻)信号。应用HART手操器,可将输出信号组态为显示液位或标准体积。

8.3主要技术指标 8.3.1测量介质:流体。悬浮液或浆液。 8.3.2测量范围:0.5~17m。 8.3.3供电:4线制,18~36VDC(或90~250V AC,50Hz),功耗9W。 8.3.4输出信号:4~20mA DC(叠加了HART数字信号,可接收1路RTD信号)。 8.3.5电子部分/外壳温度范围操作温度为:-40~70℃;带一体化表头的操作温度为-20~55℃。 8.3.6工作压力:0~6.8MPa。 8.3.7工作温度范围:5~100%(外壳拧紧条件下)。 8.3.8防爆等级:本安型ibⅡCT1~6。 校验8.4. 可通过计算机、二次表或HART手操器进行调试。调试时应检查罐高、静空、量程等参数是否设定正确。 8.4.1待测液位在零位时,调整仪表零位,使其输出信号为4mA。 8.4.2罐内充入待测液体,液面升高到满量程时,调整仪表量程,使其输出为20mA。改变液位高度,待液面稳定后,用钢尺测量液面高度,所得数值与仪表指示应相符,否则继续检查校验。 8.5使用维护

雷达液位计

雷达液位计 概述 雷达液位计是利用超高频电磁波经天线向被测容器的液面进行发射,当电磁波碰到液面后反射回来,仪表检测出发射波和回波的时差,从而计算出液面高度。雷达液位计可用于易燃、易爆、强腐蚀等介质的液位测量,特别适用于大型立罐和球罐等。一般分为工业测量级和计量级。 本节规程以APEX雷达液位计为例说明,其他同类仪表可参照执行。 技术特点 APEX雷达液位计采用24GHz的频率和先进的电子线路,天线很小,其雷达波的射角也非常窄。体积小重量轻的天线简化了安装过程。同时很窄的雷达波射角减少了由容器内部障碍产生的回波,像搅拌器、热交换器、进料口、挡板、热电阻套管、伴热蒸汽管和其他障碍物。非常窄的雷达波的射角也提高了安装的灵活性,因为雷达可安装在原有的距罐壁很近的法兰上。APEX雷达液位计测量距离可达17m。 APEX雷达液计的基本输出为4~20mA DC模拟信号,其上叠加了HART数字信号。APEX也接受一路RTD(热电阻)信号。应用HART手操器,可将输出信号组态为显示液位或标准体积。 主要技术指标 测量介质:液体,悬浊液和浆液。 测量范围:~17m。 供电:4线制操作,18~36V DC(或90~250V AC,50Hz),功耗9W。 输出信号:4~20mA DC(叠加了HART数字信号,可以接收1路RTD信号)。 电子部分/外壳温度范围操作温度为:- 40~70℃;带一体化表头的操作温度为- 20~55℃。 工作压力:0~。 工作湿度范围:5%~100%(外壳拧紧条件下)。 防爆等级:本安型ibⅡCT1~6。 校验 可通过计算机、二次表或HART手操器进行调试。调试时应检查罐高、静空、量程等参数是否设定正确。 待测液体液位在零位时,调整仪表零位,使其输出信号为4mA。 罐内充入待测液体,液面升高到满量程时,调整仪表量程,使其输出为20mA。 改变液位高度,待液面稳定后,用钢尺测量液面高度,所得数值与仪表指示应相符,否则继续检查校验。 使用维护 雷达液位计的日常检查维护主要是查看电源电压和输出电流是否正常。通电后,大约需要30~60min仪表才能正常工作。如果投运后仪表没有输出,则应检查电源是否真正供上,并检查保险丝是否烧坏。 雷达液位计使用时是和设备连成一体的,整个系统是密封的,所以平时还应检查各部件连接处的密封情况是否良好。 检修 拆装检修各防爆结合面时,不得有划痕碰伤。才可涂油漆,可涂少量润滑油和少量防锈油。

电动浮筒液位计检修作业指导书

电动浮筒液位计检修作业指导书

电动浮筒液位计 检修作业指导书 —状态卡 02-03页 —动作卡 04-07页 计算机编码:07-001 工程验收确认 检修负责人: 装置设备负责人: 机动工程部主管工程师:

状态卡 000 检修前准备; 010 办理施工作业票; 020 确认电动浮筒液位计已经具备安全拆卸的条件。 100拆除保温; 200 拆卸螺栓; 210 拆卸浮筒变送器、浮筒。 310 清洗、除垢; 320 检查浮筒变送器外观有无损坏,变形,各部件是否灵活好用 330 螺栓检查、修复 400 缺陷修复。 401 B-[ ] 检查内筒,扭力管,杠杆、传感器、密封膜片等零部件有无腐蚀磨损,变形和渗漏,视情况修复,严重应更换。 500 密封面及垫片检查;安装仪表

520 检查连接管路及密封点有无渗漏接线要正确;530 螺栓紧固。 600 挂重和灌液两种方法 700 恢复保温及验收 动作卡

000 检修前准备; 001 B-()检修施工的时间安排已经确定。 002 B-()检修所需的零配件和相应材料已备齐。 003 B-()检修专业工具和经检验合格的量具、器具已备齐。 签字() 004 B-()准备好最新版本的检修作业规程。 010 办理施工作业票; 011 B-()施工作业票已按规定程序办理审批好。 B- < > 确认施工作业票规定的内容已经全部落实。 签字() 020 确认电动浮筒液位计已经具备安全拆卸的条件。 021 B < >-C < > 确认电动浮筒液位计中介质已退净置换后分析合格。 签字()() 100 拆除保温; 101 B-[ ] 按规定搭设脚手架。 102 B-[ ] 拆除防雨罩。 103 B-[ ] 保温拆除,并妥善保管,以利旧 签字() 200 201 B-[ ] 用专用扳手对称拆卸螺栓。 202 B-[ ] 第一轮松开紧固螺栓。 203 B-[ ] 第二轮拆至剩2条螺栓为止,即法兰对角各一,其他螺栓须抽出。210 取下浮筒 211 B-[ ] 要两人和作取下浮筒变送器,及内筒 212 B-[ ] 拆出的部件整齐摆放

恩拉福伺服液位计导向管安装要求

. 854XTG伺服液位计 1. 安装前准备 1.1. 拱顶罐安装 在拱顶罐上安装854XTG伺服液位计无需使用稳液管。854XTG伺服液位计的过程连接为2”法兰连接,罐上过程连接可以是6”或者8”法兰,用户可以通过标定接头(Calibration Chamber)实施转接。如下图: 854 XTG 伺服液位计 标定接头 图1 注:所有图纸和仅供参考,实际安装请严格根据设计院的图纸进行!恩拉福液位产品安装及使用手册Page 5

1.2. 内浮顶罐安装 在内浮顶罐的应用当中,由于浮盘存在移动和转动的可能,为了保护测量钢丝不受浮盘的影响,我们建议用户安装稳液管。稳液管的安装可以参考下图,对于不希望安装稳液管的内浮顶应用,请询问厂家。 稳液管安装要求: 1.稳液管必须竖 直,从稳液管顶 部吊挂重锤到稳 液管底,锤心距 离中心偏差不超 过3mm。否则液 位计可能无法正 常工作。 2.稳液管必须准 直,如果是用多 节钢管焊接构 成,则不得存在 变径和弯曲。焊 接必须使用套 焊。 3.稳液管内部必须 光滑没有毛刺, 焊缝必须清除干 净;开孔后必须 将毛刺清除干 净。 Page 6恩拉福液位产品安装及使用手册

. 恩拉福液位产品安装及使用手册 Page 7 导向管底部安装结构,底部的喇叭口可以确保液位计 在测量油水分界面后,浮子可以安全回到导向管内。 导向管底部安装结构,如果用户需要在导向管内进行 人工投尺,则可以在导向管底部安装投尺板,喇叭口 的功能是为了防止浮子卡在缺口内。 导向管垂直度调整和密封结构 垂直度调整螺丝 耐油橡胶密封环 法兰 导向管开孔间距:300mm ,孔径:25mm 果现场条件允上下的结构可用一整体短管结构代替,省略法兰连接!

雷达物位计工作原理

雷达物位计工作原理 美国AMETEK DE公司生产的非接触式雷达物位计,采用世界先进的FMCW (调频连续波)技术,对比较复杂的场合能进行比较准确地物位测量。 FMCW:调频连续波 FMCW雷达技术采用高频扫描信号,通常频率为8.5到9.9GHz。雷达信号从天线的一端发射,经时间t后被接收器接收。通过付氏变换分析将发射和接收的频率差△f转换为所测介质的物位。 FMCW雷达系统一般利用线性调频信号,发射频率随一定的时间(扫描频率)线性增加。由于微波发射频率是随着信号传播的时间而变化的,所以与反射体距离成比例的低频信号的频率f是从前发射频率和接收频率之间的差异获取的。这样介质的液位可以由储罐的高度和距离计算出来。 频率扫描线性度 FMCW雷达系统的精度取决于频率扫描的线性度和重复性,线性校正是通过对振荡器的参考测量来实现的。 非线性可校正到98%。 FMCW优势 与脉冲雷达技术相比,FMCW雷达技术具有以下优点: ?较高波段,较宽范围的微波信号,从而反射强度高,不受测量环境干扰; ?较高的发射频率,较小的反射角,较小的干扰反射; ?对于同样的应用场合,较小直径的天线就可满足测量要求。 容器底部跟踪 如果容器中的介质(大多数石油化工产品)对微波的反射性较差,则微波穿过介质传播。微波传播至容器底部然后返回,这样介质对波变成“透明”。由于微波在介质中的传播速度比在大气中的传播速度小,容器底部似乎下移动了。对这种应用场合,“容器底部跟踪”方法就能适用,其物位计能自动分析和评价这种移位。

射频导纳液位计工作原理 射频导纳是一种从电容式发展起来的、防挂料、更可靠、更准确、适用性更广得了为控制技术,射频导纳中导纳的含义为电学中阻抗的倒数,它由电阻性成分、电容性成分、感性成分综合而成,而射频即高频无线电波谱,所以射频导纳可以理解为高频无线电波测量导纳。 1、电容式物位测量原理 实验室中,平行板电容器是一个理想型的电容器,其电容量为:C=ε╳S/D,其中ε为两电容极板间介质的介质常数,S为两极板间面积,D为两极板间距离。对于一个料仓,安装一个测量系统,形成一个同轴电容器。仓内存在一个电容 C= ε 0╳S╳H0/D+ε╳S╳ (H-H ),其中ε 为两极间空气的介电常数, ε0=1.0006,近似=1;ε为两电极间介质的介电常数,S为两极板间等效面积,D 为两极板间距离,Ho为空气段探头长度,H为探头长度。对于一个固定的料仓来说,物料的ε是固定的,S、D也是固定的,所以,推导上式可知,测量电容与物料的高度成正比。图2是测量原理框图。 利用检测桥路上的可调电容可以平衡掉初始电容,包括安装电容和线缆电容等,只剩下探头物料电容,该电容信号放大后,输出一个与料位成正比的信号。这种电容式原理存在一个严重弱点:即物位升高淹没探头后又落下去时,探头可能会留有附着物即挂料。这会导致被测电容加大,如果是导电液体情况会更严重,产生很大的误差。另一个缺点是探头到电路单元之间的连接电缆,在这相当于一个较大的电容,而且随温度变化。这个变化的电缆电容与物位电容叠加在一起会引起很大的误差,尤其在物料介电常数较低的场合,信号较小,这些误差将是很严重的。而射频导纳技术就能克服上述缺点。 2、点位射频导纳原理 点位射频导纳技术与电容几乎的重要区别是采用了三端技术,如图3。在电路单元测量信号上引出一根线,经同相放大器放大,其输出与同轴电缆屏蔽层相连,然后又连到滩头的屏蔽层相连(Cote-shield元件)。该放大器是一个同相放大器,其增益为“1”,输出信号与输入信号等电位、同相位、同频率但互相隔离。地线是电缆中另一条独立的导线。由于同轴电缆的中心线与外层屏蔽存在上述关系,所以二者之间没有电位差,也就没有电流流过,即没有电流从中心线漏出来,相当于二者之间没有电容或电容等于零。因此电缆的温度效应,安装电容等也就不会产生影响。对于探头上的挂料问题采用一种新的探头结构,五层同心结构:最里层是中心测杆,中间是Cote-shield屏蔽层,最外面是接地的安装螺纹,用绝缘层将其分别给起来。图4给出了探头上挂料的等效电路。与同轴电缆的情况时一样的,中心测杆与屏蔽层之间没有电势差,即使传感元件上挂料阻抗很小,也不会有电流流过,电子仪器测量的仅仅是从探头中心到主要是到对面罐壁(地)的电流,因为Cote-shield元件能阻碍电流沿探头向上流向容器壁,因而对地电流只有经探头末端通过被测物料到对面容器壁。即 U A =U B I AB =(U A -U B )/R=0由于屏蔽层与容器壁之间存在电势差,两者之间虽有电流通 过,但该电流不被测量,不影响测量结果。这样就将测量段保护起来,中心测杆与地之间形成被测电流。 3、连续射频导纳原理

凯孚高频雷达液位计-说明书

高频雷达液(物)位计 型号:KFL622X系列

目录 1、产品概述 (1) 2、仪表介绍 (2) 3、安装要求 (3) 4、电气连接 (5) 5、仪表调试 (10) 6、结构尺寸 (12) 7、技术参数 (14) 8、仪表线性 (16)

高频雷达液(物)位计 1、产品概述 KFL622X系列是26G高频雷达式物位测量仪表,测量最大距离可达70米。天线被进一步优化处理,新型快速的微处理器可以进行更高速率的信号分析处理,使得仪表可以用于各种强腐蚀性液体的测量。 原理 雷达物位天线发射较窄的微波脉冲,经天线向下传输。微波接触到被测介质表面后被反射回来再次被天线系统接收,将信号传输给电子线路部分自动转换成物位信号(因为微波传播速度极快,电磁波到达目标并经反射返回接收器这一来回所用的时间几乎是瞬间的)。 A 量程设定 B 低位调整 C 高位调整 D 盲区范围 测量的基准面是:螺纹底面或法兰的密封面。 注:使用雷达物位计时,务必保证最高料位不能进入测量盲区(图中D所示区域)。 高频雷达液(物)位计特点: ●天线尺寸小,便于安装;非接触雷达,无磨损,无污染。 ●几乎不受腐蚀、泡沫影响;几乎不受大气中水蒸气、温度和压力变化影响。 ●严重粉尘环境对高频物位计工作影响不大。 ●波长更短,对在倾斜的固体表面有更好的反射。 ●波束角小,能量集中,增强了回波能力的同时又有利于避开干扰物。 ●测量盲区更小,对于小罐测量也会取得良好的效果。 ●高信噪比,即使在波动的情况下也能获得更优的性能。 ●高频率,是测量固体和低介电常数介质的最佳选择。

2、仪表介绍 225 应用:各种腐蚀的液体 测量范围: 10米 过程连接:螺纹、法兰 过程温度: -40~130℃ 过程压力: -0.1~0.3 MPa 精度: ±5mm 防护等级: IP67 频率范围: 26GHz 电源:两线制(DC24V)/四线制(DC24V/AC220V ) 防爆等级:Exia ⅡC T6 Ga / Exd IIC T6 Gb 外壳:铝单腔 /铝双腔 / 塑料/ 不锈钢单腔 信号输出:4...20mA/HART(两线/四线)/ RS485 Mod bus 226 应用:耐温、耐压、轻微腐蚀的液体 测量范围: 20米 过程连接:螺纹、法兰 过程温度: -40~130℃( 标准型 ) / -60~250℃( 高温型 ) 过程压力: -0.1~4.0MPa 精度: ±3mm 防护等级: IP67 频率范围: 26GHz 电源:两线制(DC24V)/四线制(DC24V/AC220V ) 防爆等级:Exia ⅡC T6 Ga / Exd IIC T6 Gb 外壳:铝单腔 / 铝双腔 / 塑料/ 不锈钢单腔 信号输出:4...20mA/HART( 两线/四线 ) / RS485 Mod bus 227 应用:卫生型液体存储容器、强腐蚀性容器 测量范围: 20米 过程连接:法兰 过程温度: -40~150℃ 过程压力: -0.1~0.5MPa 精度:±3mm 防护等级: IP67 频率范围: 26GHz 电源:两线制(DC24V)/四线制(DC24V/AC220V ) 防爆等级: Exia ⅡC T6 Ga / Exd IIC T6 Gb 外壳:铝单腔 / 铝双腔 / 塑料/ 不锈钢单腔 信号输出:4...20mA/HART( 两线/四线 ) / RS485 Mod bus

常见几种液位计工作原理

常见几种液位计工作原理 关键字:液位计 一、磁翻板液位计 主要原理 磁翻板液位计也称为磁翻柱液位计,结构主要基于浮力和磁力原理设计生产的带有磁体的浮子(简称磁性浮子)被测介质中的位置受浮力作用影响。液位的变化导致磁性浮子位置的变化、磁性浮子和磁翻柱(也成为磁翻板)静磁力耦合作用导致磁翻柱翻转一定角度(磁翻柱外表涂敷不同的颜色)进而反映容器内液位的情况。 配合传感器(磁簧开关)和精密电子元器件等构成的电子模块和变送器模块,可以变送输出电阻值信号、电流值(420mA 信号、开关信号以及其他电学信号。从而实现现场观测和远程控制的完美结合。 适用范围及特点 磁翻板液位计采用优质磁体和进口电子元件,使产品具有:设计合理、结构简单、使用方便、性能稳定、使用寿命长、便于装置维护等优点。 磁翻板液位计输出信号多样,实现远距离的液位指示、检测、控制和记录。 磁翻板液位计几乎可以适用于各种工业自动化过程控制中的液位丈量与控制。可以广泛运用于石油加工、食品加工、化工、水处理、制药、电力、造纸、冶金、船舶和锅炉等领域中的液位测量、控制与监测。

二、磁浮球液位计(液位开关) 主要原理 磁浮球液位计(液位开关)结构主要基于浮力和静磁场原理设计生产的带有磁体的浮球(简称浮球)被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,使串联入电路的元件(如定值电阻)数量发生变化,进而使仪表电路系统的电学量发生改变。也就是使磁性浮子位置的变化引起电学量的变化。通过检测电学量的变化来反映容器内液位的情况。 该液位计可以直接输出电阻值信号,也可以配合使用变送模块,输出电流值(420mA 信号;同时配合其他转换器,输出电压信号或者开关信号(也可以依照客户需求转换器由公司配送)从而实现电学信号的远程传输、分析与控制。 适用范围及特点 本产品采用优质磁体和进口电子元件,使产品具有:结构简单、使用方便、性能稳定、使用寿命长、便于装置维护等优点。 本产品几乎可以适用与各种工业自动化过程控制中的液位丈量与控制,可以广泛运用于石油加工、食品加工、化工、水处理、制药、电力、造纸、冶金、船舶和锅炉等领域中的液位测量、控制与监测。

浮筒液位计标定标准方法

浮筒液位计标定方法 一.工作原理 1、组成 1)扭力杆:扭力杆、角度传感器、电路板、浮筒组成。 2)杠杆:杠杆、力传感器、弹簧、电路板、浮筒组成。 2、工作原理 将浮力经过扭力杆,转换为角位移、在转换为4-20ma电流信号 将浮力经过杠杆转换为力矩力,再由力传感器转换为4-20ma信号 号输出 二、适用过程中常见故障及解决措施 在液位计的运行过程中可能会遇到下列问题; 1、故障现象 现场仪表无显示,变送器输出为一固定电流值或不稳定,电压正常。 原因:变送器的显示板或放大板损坏。 解决措施:更换变送器的显示板或放大板,按照要求重新输入参数,并进行线性调整。 2、故障现象 现场仪表显示与变送器输出一致,但仪表线性不好,零点量程波动大,且输出不稳定。 原因: (1)仪表的扭力管工作性能不稳定。 (2)仪表的浮子挂钩损坏。 解决措施: (1)检查确认扭力管损坏后,更换扭力管,按照要求重新输入参数,并作线性调整。 (2)浮子挂钩严重弯曲变形,重新校正浮子。 3、故障现象 仪表不能正确指示液位,仪表输出随液位变化比较缓慢。 原因: 浮子上有附着物或浮子与舱室有摩擦现象。

解决措施: 在通风口加蒸汽管线,定时用蒸汽吹扫;在仪表外壳增加伴热。 4、故障现象 现场仪表无显示,变送器输出低或显示与输出不吻合。 原因: (1)仪表的显示板损坏。 (2)仪表打放大板损坏 (3)仪表的显示、放大板损坏。 解决措施: (1)更换显示板,进行运作确认。 (2)更换放大板,更换后,若故障消失,重新输入参数,进行线性调整。 (3)更换显示和放大板,重新输入参数进行线性调整。 三、仪表设计参数修改及线性调整 1、工器具准备 24VDC电源、万用表、秤(±1g)、水桶等。 2、计算对应于0%、10%、20%、…90%、100%液位时挂钩所受的重量 测量液位时: :对应于0%液位时的重量即浮子的重量; :对应于100%液位时的重量; 其中D为浮子的直径 h 为测量范围(浮子长度);为测量介质密度。 n =0、25、50、75、100 计算并记录:O%;25%;50%;75%;100%值 测量界面时:则液位对浮筒产生的浮力应为轻组分产生的浮力 与重组分产生的浮力之和,应挂重力为: 依次计算并记录 四、校验方法 1、挂重法 当仪表周期运行或对测量准确度有质疑时,可按下述方法对仪表进行校验(其它型号的浮筒液位计也可按此方法进行校验)。 测量液位时: 被校刻度为0%,应挂重力:

OPTIWAVE7300C雷达液位计操作说明130921

OPTIWAVE7300C雷达液位计参数设置 前言:雷达菜单设计,一切设置在管理员菜单中进行,管理员菜单下有三个并列的菜单:快速设置、高级设置、服务菜单。快速设置是从高级设置中提取出来的部分常用菜单,类似于手机通讯录中的快捷拨号通讯录。你只要选择快速设置---完全设置,按照中文提示一步一步往下走,这台雷达就设置完成了。其它高级设置中的内容仅用于你希望单独做空频谱,或单独修改罐高或单独设置输出电流时或一些特殊功能时用。按>键—进入菜单选项—按▼键或者▲键切换至“操作员”—按>键输入密码—▼▲—按▼键或者▲键进入基本参数菜单设置—进行相应参数修改—当有参数需要修改时按确认并返回,退出时出现:保存YES/NO 时按YES—按确认并退出返回。雷达罐高、死区设置

说明:雷达直接测量的量为距离,即雷达基准至液面的距离,物位=罐高-距离,距离测量非常准确,因此物位测量是否准确完全取决于罐高是否设置准确。以实际罐高1800mm,短脖高度300mm为例,设置参数如下: 1.1罐高=实际罐高+短脖高度=1800mm+300mm=2100mm 1.2上部死区(即盲区)=短脖高度+100mm=300+100=400mm 死区设置特别说明:死区的含义为死区以内的雷达反射波不参与运算,这些反射波来自于死区以内的阻挡物如短脖比较细会产生反射导致雷达误判断,如果液位进入不了死区,死区可相应设大一些,无需用尺子量,用肉眼观察短脖高度,只需要比短脖

大一些即可。 1.3输出设置:4mm设置罐底0mm; 20mm设置实际罐高1800mm。 1.其它参数设置 2.1无论任何材质的容器,均设置为金属罐; 2.2 带搅拌或无搅拌的容器,均设置为处理罐; 2.3 敞口罐或闭口罐,均设置为插座; 2.4 遇到体积计算时,全部回车带过,这一部分计算是通过测量到的液位高度和输入的罐体直径来计算物料体积甚至重量。我们只要求测量液位高度,因此这些参数千万不要改动,因为它们会参与运算,如果设置的不合适,雷达会出现计算错误而提醒无法保存的故障。 2.空频谱设置 空频谱的含义:空频谱指给罐体拍照,即将液位以上罐体内的所有干扰物全部拍一张照片储存起来,在正常测量时减去。在快速设置\完全设置进入空频谱设置菜单时,询问容器是否已完全充满,选未充满(无论空罐或未充满均选择未充满,不选空),询问所有运动部件是否已全部开启,选是,询问选择距离编辑,这时候需要特别注意,手动输入距离时,这个输入的距离必须小于雷达基准到达实际液面的距离,如果大于或等于雷达基准到实际液面的距离的话,雷达会将实际液面也拍成照片当做干扰信号了。例如:现在的实际距离是1m,则手动输入空频谱距离时必须小于

浮筒式液位计

浮筒式液位计原理及应用 空分净化班:易鹏 一、物位的基本概念 物位-----指容器中的液体介质的液位、固体的料位或颗粒物的料位和两种不同液体介质分界面的总称。 1、液位----容器中液体介质的高低。 2、料位----容器中固体或颗粒状物质的堆积高度。 3、界位-----两种不溶液体介质的分界的高低c 二、物位检测方法的分类 1、按测量方式可分为连续测量和定点测量 2、按其工作原理可分为: 1)直读式-------它根据流体的联通性原理来测量液位 2)浮子式-------它根据浮子高度随液位高度而改变或液体对浸原理沉在液体中的浮筒(或沉 筒)的浮力随液位高度变化而变化来测量液位的,前者称恒浮式,后者称变浮式。 3)差压(静压)式------它根据液柱或物料堆积高度变化对某点上产生静(差)压的变化的原 理测量物位。 4)电气式-----它根据把物位变化转换为各种电量变化的原理来测量物位。 5)核辐射式-----它根据同位素射线的核辐射透过物料时,其强度随物质厚度变化而变化的原 理来测量液位。 6)声光式-----它根据物位变化引起声阻抗和反射的距离变化来测量物位。 三、浮筒式液位计的工作原理及结构组成 1、工作原理 浮筒液位计的原理利用浮筒沉浸在液体里,根据浮筒被浸的程度不同,则浮筒所受的浮力不同,

只要检测出浮筒所浮力的变化,就可以知道液位的高低。浮筒所受浮力的大小是根据阿基米德 原理浸在液体里的物体受到向上浮力的作用,浮力的大小等于该物体排开液体的重力。计算公 式如下: F浮=p液gV排 2、结构组成 浮筒液位计的结构是由测量部分和转换部分组成,测量部分由浮筒及吊链 四、浮筒液位计安装在现场罐体上如图所示 浮筒液式位计是基于变浮力原理工作的,按浮筒装在设备上的位置来分,装在设备内的,即将浮筒直接置人被测容器内部的称内浮筒,装在设备外的称外浮筒,它的外壳通过法兰盘接到被测液体的容器.浮筒一般是由不锈钢制成的空心长圆柱体,垂直地悬挂在被测介质中,质量大于同体积的液体重量,重心低于几何中心,使浮筒总是保直立而不受液体高度的影响。它在测量过程中位移极小,也不会漂浮在液面上,故也称沉筒,浮筒悬挂在杠杆的一端,杠杆的另一端与扭力管芯轴的一端垂直地连接在一起,扭力管的另一端固定在仪表外壳上。扭力管是一种密封式的输出轴,它一方面能将被测介质与外部空间隔开;另一方面又能利用扭力管的弹性扭转变形把作用于扭力管一端的力矩变成芯轴的角位移(转动)。浮筒式液位计不用轴套、填料等进行密封,故它能测量最高压容

相关文档
最新文档