共聚焦原理和样品制备技术

样品制备
2005.7武汉 李 楠
1

.
1. 目的?
在成象前,要明确想达到什 么样的目标,这样可以节省 时间同时提高成功率
2

2. FLUOROCHROMES ?
对于荧光显微镜和CONFOCAL,选择荧光时应该考虑那 些因素? 激光光源 标记物 细胞器探针 量子产率 光漂白 毒性
3

棱镜分光
Longer wavelength = lower energy White light
} } }
Infrared
700 nm
Visible
400 nm
Ultraviolet
Shorter wavelength = higher energy
4

Absorption / emission
Emission is lower energy = longer wavelength
Heat
S1 Absorption
Emission
S0
5

Stokes' Law: fluorescence is always at longer wavelength
Absorption
Fluorescence
500
550
600
650
700
Wavelength (nm)
6

荧光探针的性质
激发波长λem和发射波长λex -----------λem总是小于 λex(Stockes) , 根据 λem 和λex 选择激光和滤片 E=h*m/ λ 荧光强度--------决定染料的检测灵敏度 荧光寿命--------分子在激发态的平均停留时间 光稳定性--------激发光的强度不可以无限提高 染料分子的相互作用-------浓度依赖式的自身荧光 淬灭现象
7

荧光探针的性质
染料分子对环境的敏感性 溶剂的极性 淬灭剂的浓度及其与染料的亲和性 水相的PH值
8

LP 550 DCLP 520
Epi-fluorescence
Beyond the dichroic mirror is a barrier filter to ensure that any residual excitation light is blocked. It can also be used to separate the light from different fluorochromes.
BP 480-490
9

Filter 的设置
10

Short Wave Pass Filter (SWP)
100 80 Transmission (%) 60 40 20
Passes short wavelength
Absorbs or reflects long wavelength
300
400
500 600 Wavelength
700
800
11

Long Wave Pass Filter (LWP)
100 80 Transmission (%) 60 40 20 0 300
Absorbs or reflects short wavelength
Passes long wavelength
400
500 600 Wavelength
700
800
12

Bandpass Filter
100 80 Transmission (%) 60 40 20
Transmits only this “band”of wavelengths
FWHM
300
400
500 600 Wavelength
700
800
13

Filter sets
Exciter: D470/40x Dichroic 500DCLP Emitter: OG515LP
Note that the dichroic also transmits at ~400nm!
14

Filter sets
Exciter: D360/40x Dichroic: 400DCLP Emitter: D460/50m
A bandpass barrier filter to exclude other fluorescence (but notice a little transmittance in the far red)
15

Filter sets
Exciter: 61000v2x Dichroic 61000v2bs Emitter 61000v2m
Some very cunning things are possible with interference filters, such as this triple dichroic set, which excites & detects at 3 wavelengths.
16

显微镜的荧光CUBES
Filter cube
Excitation range UV UV UV + violet blue violet + blue blue blue blue green green green FITC/TEXAS RED blue/green TEXAS RED/green UV/blue/green
Exitation
Dichroic Suppressi on LP 425 BP 470/40 LP 470 LP 470 LP 515 LP 515 LP 515 400 455
Filter cube
Excitation range CY3 green CY5 red CY7 red GFP-blue FITC/rhodamine blue/green blue green violet + blue UV blue violet + blue blue violet + blue blue green
Exitation BP545/30 BP 620/60 BP 710/75 BP 470/40 BP 490/15 BP 560/25 BP 500/20 BP 546/12 BP 436/20 BP 385/15 BP 485/20 BP 436/12 BP 500/20 BP 436/8 BP 495/12 BP 580/20
Dichroic Suppressi on 565 660 750 500 500 580 515 560 455 420 510 445 515 445 510 595 BP 610/75 BP 700/75 BP 810/90 BP 525/50 BP 525/20 BP 605/30 BP 535/30 BP 605/75 BP 480/40 BP 460/20 BP 437/45 BP 467/37 BP 545/45 BP 460/25 BP 535/35 BP 630/55
A A4 D E4 H3 I3 K3 L5 M2 N2.1 N3 G/R TX2 B/G/R
BP 340-380 400 BP 360/40 BP 436/7 BP 355-425 455 BP 420-490 510 BP 450-490 510 BP 470-490 510 BP 480/40 BP 546/14 BP 546/12 BP 490/20 BP 575/30 BP 560/40 BP 495/15 BP 570/20 505 580 565 505 600 595 415 510 590
Y3 Y5 Y7 GFP FI/RH
BP 515-560 580
YFP BP 527/30 RFP LP 590 CFP LP 590 BFP/GFP
BP 600/40 BP 525/20 BP 635/40 BP 645/75 BP 465/20 BP 530/30 BP 640/40
CFP/YFP C/Y/R
DAPI/FITC/TEXAS RED BP 420/30
17

Double label
Abs 1 Fluor 1
Abs 2
Fluor 2
400
500
600
700
800
Wavelength (nm)
18

Double label
Abs 1 Excitation of A1 & A2 Abs 2 Fluor 1
Fluor 2
400
500
600
700
800
Wavelength (nm)
19

Double label
Abs 1 Fluor 1 2 dichroics to separate F1 & F2 Fluor 2
Abs 2
400
500
600
700
800
Wavelength (nm)
20

激光扫描共聚焦显微镜的原理和应用

激光扫描共聚焦显微镜的原理和应用 一、激光扫描共聚焦显微镜的原理 传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共焦显微镜(Laser Scanning Confocal Microscope,LSCM)采用点光源照射样本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜搜集,并沿原照射光路回送到由双色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点被挡在探测针孔之外不能成像,这样得到的共聚焦图像是标本的光学切面,避免了非焦平面上杂散光线的干扰,克服了普通显微镜图像模糊的缺点,因此能得到整个焦平面上清晰的共聚焦图像。 原理图 二、激光扫描共聚焦显微镜组成特点 LSCM由显微镜光学系统,激光光源,扫描装置和检测系统构成,整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地

进行。显微镜是LSCM的主要组件,它关系到系统的成像质量。通常有倒置和正置两种形式,前者在切片、活细胞检测等生物医学应用中使用更广泛。 三、激光扫描共聚焦显微镜的应用 (一)细胞的三维重建 普通荧光显微镜分辨率低,显示的图像结构为多层面的图像叠加,结构不够清晰。LSCM能以0.1μm的步距沿轴向对细胞进行分层扫描,得到一组光学切片,经A/D转换后作为二维数组贮存。这些数组通过计算机进行不同的三维重建算法,可作单色或双色图像处理,组合成细胞真实的三维结构。旋转不同角度可观察各侧面的表面形态,也可从不同的断面观察细胞内部结构,测量细胞的长宽高、体积和断层面积等形态学参数。通过模拟荧光处理算法,可以产生在不同照明角度形成的阴影效果,突出立体感。通过角度旋转和细胞位置变化可产生三维动画效果。LSCM的三维重建广泛用于各类细胞骨架和形态学分析、染色体分析、细胞程序化死亡的观察、细胞内细胞质和细胞器的结构变化的分析和探测等方面。(二)静态结构检测 1.细胞原位检测核酸 用于细胞核定位及其形态学观察、检测细胞内DNA的复制及断裂情况以及染色体定位观察。 2.原位检测蛋白质、抗体及其他分子 原位检测蛋白质、抗体及其他分子 免疫荧光标记技术 检测荧光蛋白 3.检测细胞凋亡 检测细胞凋亡不同时期细胞形态、细胞凋亡相关蛋白

玻璃检验标准

批准:审核:编制:日期:日期:日期:

1.范围 本标准由广州南盾通讯设备有限公司研发部发布实施,适用于本公司玻璃的检验。本标准由质量控制中心遵照执行。 2.术语和定义 2.1 正视:指检查者站立于被检查表面的正面、视线与被检表面呈45-90°而进行的观察 (如图1)。 图1:“正视”位置示意图 2.2 花斑:腐蚀、或者玻璃中的杂质、或者玻璃微孔等原因所造成的、与周围玻璃表面不同 光泽或粗糙度的斑块状花纹外观。 2.3 浅划痕:目测不明显、手指甲触摸无凹凸感、未伤及玻璃本体的伤痕。 2.4 深划痕:目测明显、手指甲触摸有凹凸感、伤及玻璃本体的伤痕。 2.5 凹坑:由于基体材料缺陷、或在加工过程中操作不当等原因而在材料表面留下的小坑状 痕迹。 2.6 凹凸痕:明显变形、凹凸不平整的现象,手摸时有不平感觉。 2.7 烧伤:表面过热而留下的烧蚀痕迹。 2.8 水印:清洗水未及时干燥或干燥不彻底所形成的斑纹、印迹。 2.9 水纹:熔体流动产生的可见条纹。 2.10 气泡:因工艺原因内部出现的可见空气泡。 2.11 砂眼:表面的疏松针孔。 2.12 雾状:表面或透明表面上的模糊、不清晰、不光亮的现象。 2.13 异物:由材料、环境或机器设备中的灰尘、夹杂物、污物等影响而形成的与表面不同 色的斑点。

2.14 颗粒:因材料杂质或外来物的影响而在表面形成的、颜色与正常表面一致的凸起现象。 2.15 色差:颜色与标准色板样品片/件不兼容所产生的颜色不一致,不均匀。 3.外观检验条件 3.1 目视检测条件为:在自然光或光照度在300-600LX 的近似自然光下(如40W 日光灯、 距离500mm 处),相距为500-600 mm,观测时间为 5 秒,且检查者位于被检查表面的正面、视线与被检表面呈45-90°进行正常检验(参见图1)。要求检验者的校正视力不低于1.2 。 3.2检查时,每一表面按其面积或该表面最大外形尺寸划分为不同大小类别,当有两个条 件满足时、以大的一类为准。表面大小划分标准如表1。当缺陷所在的检测面尺寸超过表2 中对应的最大一类时,则将该面划分为几个这样的最大面对待,且划分方法应保持同一种方式(即始终按面积分,或始终按外形尺寸分)。 表1:表面大小类别划分 表2:产品外观缺陷的可接受范围(注①;注②)

实验一透射电子显微镜样品制备

第二篇材料电子显微分析 实验一透射电子显微镜样品制备 一、实验目的 1.掌握塑料—碳二级复型样品的制备方法。 2.掌握材料薄膜样品的制备方法—双喷电解减薄法和离子薄化法。 二、塑料—碳二级复型的制备原理与方法 (一) AC 纸的制作 所谓AC 纸就是醋酸纤维素薄膜。它的制作方法是:首先按重量比配制6%醋酸纤维素丙酮溶液。为了使AC 纸质地柔软、渗透性强并具有蓝色,在配制溶液中再加入2%磷酸三苯脂和几粒甲基紫。 待上述物质全部溶入丙酮中且形成蓝色半透明的液体,再将它调制均匀并等气泡逸尽后,适量地倒在干净、平滑的玻璃板上,倾斜转动玻璃板,使液体大面积展平。用一个玻璃钟罩扣上,让钟罩下边与玻璃板间留有一定间隙,以便保护AC 纸的清洁和控制干燥速度。醋酸纤维素丙酮溶液蒸发过慢,AC 纸易吸水变白,干燥过快AC 纸会产生龟裂。所以,要根据室温、湿度确定钟罩下边和玻璃间的间隙大小。经过24 小时后,把贴在玻璃板上已干透的AC 纸边沿用薄刀片划开,小心地揭下AC 纸,将它夹在书本中即可备用。 ( 二) 塑料—碳二级复型的制备方法 (1) 在腐蚀好的金相样品表面上滴上一滴丙酮,贴上一张稍大于金相样品表面的AC 纸( 厚30~80 μm)如图1-2(a)所示。注意不要留有气泡和皱折。若金相样品表面浮雕大,可在丙酮完全蒸发前适当加压。静置片刻后,最好在灯泡下烘烤一刻钟左右使之干燥。 (2) 小心地揭下已经干透的AC 纸复型(即第一级复型),将复型复制面朝上平整地贴在衬 有纸片的胶纸上,如图1-2(b)所示。 (3) 把滴上一滴扩散泵油的白瓷片和贴有复型的载玻片置于镀膜机真空室中。按镀膜机的 操作规程,先以倾斜方向投影”铬,再以垂直方向喷碳,如图1-2(C)所示。其膜厚度以无油 处白色瓷片变成浅褐色为宜。 (4) 打开真空室,从载玻片上取下复合复型,将要分析的部位小心地剪成2mn× 2mm的小 方片,置于盛有丙酮的磨口培养皿中,如图1-2(d)所示。 (5) AC 纸从碳复型上全部被溶解掉后,第二级复型(即碳复型)将漂浮在丙酮液面上,用铜 网布制成的小勺把碳复型捞到清洁的丙酮中洗涤,再移到蒸馏水中,依靠水的表面张力使卷曲的碳复型展平并漂浮在水面上。最后用摄子夹持支撑铜网把它捞起,如图1-2 (e)所示,放

激光扫描共聚焦显微镜

激光共聚焦显微镜的原理与应用范围 激光扫描共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。把光学成像的分辨率提高了30%~40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代的研究工具。 1激光扫描共聚焦显微镜(LSCM)的原理 从基本原理上讲,共聚焦显微镜是一种现代化的光学显微镜,它对普通光镜从技术上作了以下几点改进: 1.1用激光做光源因为激光的单色性非常好,光源波束的波长相同,从根本上消除了色差。1.2采用共聚焦技术在物镜的焦平面上放置了一个当中带有小孔的挡板,将焦平面以外的杂散光挡住,消除了球差;并进一步消除了色差 1.3采用点扫描技术将样品分解成二维或三维空间上的无数点,用十分细小的激光束(点光源)逐点逐行扫描成像,再通过微机组合成一个整体平面的或立体的像。而传统的光镜是在场光源下一次成像的,标本上每一点的图像都会受到相邻点的衍射光和散射光的干扰。这两种图像的清晰度和精密度是无法相比的。 1.4用计算机采集和处理光信号,并利用光电倍增管放大信号图 在共聚焦显微镜中,计算机代替了人眼或照相机进行观察、摄像,得到的图像是数字化的,可以在电脑中进行处理,再一次提高图像的清晰度。而且利用了光电倍增管,可以将很微弱的信号放大,灵敏度大大提高。由于综合利用了以上技术。可以说LSCM是显微镜制作技术、光电技术、计算机技术的完美结合,是现代技术发展的必然产物。 2LSCM在生物医学研究中的应用 目前,一台配置完备的LSCM在功能上已经完全能够取代以往的任何一种光学显微镜,它相当于多种制作精良的常用光学显微镜的有机组合,如倒置光学显微镜、紫外线显微镜、荧光显微镜、暗视野显微镜、相差显微镜(PH)、微分干涉差显微镜(DIC)等,因此被称为万能显微镜,通过它所得到的精细图像可使其他的显微镜图像无比逊色。

适用于共聚焦显微镜的玻片结构的制作技术

本技术公开了一种适用于共聚焦显微镜的玻片结构,包括:中间玻片,所述中间玻片上设有若干第一通孔;盖玻片和载玻片,所述盖玻片、所述中间玻片和所述载玻片依次层叠设置;弹性材料制成的密封圈,设于所述第一通孔内且厚度略大于所述中间玻片的厚度,使得所述盖玻片、所述中间玻片和所述载玻片依次贴合时所述密封圈的上、下侧分别与所述盖玻片、所述载玻片抵接。通过设置密封圈,使用时先把中间玻片放在载玻片上,然后把密封圈放在第一通孔内,然后把观察物置于密封圈内,然后盖上盖玻片,再使用外置的夹紧件夹紧盖玻片、中间玻片和载玻片,由于密封圈的上、下侧分别与所述盖玻片、所述载玻片抵接,透明剂和荧光染料不容易溢出。 权利要求书 1.一种适用于共聚焦显微镜的玻片结构,其特征在于:包括: 中间玻片,设有若干第一通孔; 盖玻片和载玻片,所述盖玻片、所述中间玻片和所述载玻片依次层叠设置; 弹性材料制成的密封圈,设于所述第一通孔内且厚度略大于所述中间玻片的厚度,使得所述盖玻片、所述中间玻片和所述载玻片依次贴合时所述密封圈的上、下侧分别与所述盖玻片、所述载玻片抵接。 2.根据权利要求1所述的适用于共聚焦显微镜的玻片结构,其特征在于:所述第一通孔的内

侧壁与所述密封圈之间设有第一间隙。 3.根据权利要求1所述的适用于共聚焦显微镜的玻片结构,其特征在于:所述密封圈的颜色为黑色。 4.根据权利要求1所述的适用于共聚焦显微镜的玻片结构,其特征在于:所述第一通孔有两个。 5.根据权利要求1所述的适用于共聚焦显微镜的玻片结构,其特征在于:还包括若干夹紧件,所述夹紧件具有上夹持部和下夹持部,所述盖玻片、所述中间玻片和所述载玻片均设于所述上夹持部和所述下夹持部之间,所述上夹持部与所述盖玻片抵接,所述下夹持部与所述载玻片抵接,使得所述盖玻片、所述中间玻片和所述载玻片依次紧贴。 6.根据权利要求5所述的适用于共聚焦显微镜的玻片结构,其特征在于:所述盖玻片呈横向设置的矩形板状,所述夹紧件有两个,两个夹紧件分别设于所述盖玻片的左端、右端。 7.根据权利要求5所述的适用于共聚焦显微镜的玻片结构,其特征在于:所述夹紧件为回形针。 技术说明书 适用于共聚焦显微镜的玻片结构 技术领域 本技术涉及实验器材领域,特别是涉及一种适用于共聚焦显微镜的玻片结构。

激光扫描共聚焦显微镜的原理和应用-17954讲解

激光扫描共聚焦显微镜的原理和应用 Tina(2007-10-23 09:40:17 一、激光扫描共聚焦显微镜的原理 传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共焦显微镜(Laser Scanning Confocal Microscope,LSCM采用点光源照射样本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜搜集,并沿原照射光路回送到由双色镜构成的分光器。分光器将荧光直接送到探测器。光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点被挡在探测针孔之外不能成像,这样得到的共聚焦图像是标本的光学切面,避免了非焦平面上杂散光线的干扰,克服了普通显微镜图像模糊的缺点,因此能得到整个焦平面上清晰的共聚焦图像。 原理图

二、激光扫描共聚焦显微镜组成特点 LSCM由显微镜光学系统,激光光源,扫描装置和检测系统构成,整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。显微镜是LSCM的主要组件,它关系到系统的成像质量。通常有倒置和正置两种形式,前者在切片、活细胞检测等生物医学应用中使用更广泛。 三、激光扫描共聚焦显微镜的应用 一)细胞的三维重建

普通荧光显微镜分辨率低,显示的图像结构为多层面的图像叠加,结构不够清晰。LSCM 能以0.1μm的步距沿轴向对细胞进行分层扫描,得到一组光学切片,经A/D转换后作为二维数组贮存。这些数组通过计算机进行不同的三维重建算法,可作单色或双色图像处理,组合成细胞真实的三维结构。旋转不同角度可观察各侧面的表面形态,也可从不同的断面观察细胞内部结构,测量细胞的长宽高、体积和断层面积等形态学参数。通过模拟荧光处理算法,可以产生在不同照明角度形成的阴影效果,突出立体感。通过角度旋转和细胞位置变化可产生三维动画效果。LSCM 的三维重建广泛用于各类细胞骨架和形态学分析、染色体分析、细胞程序化死亡的观察、细胞内细胞质和细胞器的结构变化的分析和探测等方面。 二)静态结构检测:原位鉴定细胞或组织内生物大分子、观察细胞及亚细胞形态结构 1.细胞原位检测核酸 用于细胞核定位及其形态学观察、检测细胞内DNA的复制及断裂情况以及染色体定位观察。 2.原位检测蛋白质、抗体及其他分子 原位检测蛋白质、抗体及其他分子 免疫荧光标记技术 检测荧光蛋白 3.检测细胞凋亡

透射电子显微镜

透射电子显微镜 Ⅰ. 实验目的 (1)掌握透射电镜的基本构成 (2)掌握透射电镜的成像原理 (3)了解透射电镜的操作过程 (4)了解生物样品的制备过程 (5)利用透射电镜观察纳米材料和生物样品 Ⅱ. 仪器及技术指标 (1)型号:Hitachi(日立)-7650型透射电镜 (2)加速电压:40kV ~ 120kV (3)放大倍数:200 ~ 60万倍 图1Hitachi-7650型透射电镜 Ⅲ. 透射电镜的基本构成 透射电子显微镜(Transmission Electron Microscope,TEM),简称透射电镜,是以波长很短的电子束做照明源,用电磁透镜聚焦成像的一种具有高分辨本领、高放大倍数的电子光学仪器。

图2透射电镜剖面结构示意图 1. 电子光学系统:又称镜筒,是TEM的核心。 发射并使电子加速的电子枪 (1)照明部分:会聚电子束的聚光镜 电子束平移、倾斜调节装置 作用:提供亮度好、相干性好、束流稳定的照明电子束。 物镜 中间镜 (2)成像部分:投影镜 物镜光阑

选区光阑 穿过试样的透射电子束在物镜后焦面上成衍射花样,在物 镜像平面上成放大的组织像,并经过中间镜、投影镜的接 力放大,获得最终的图像。 荧光屏 (3)观察记录部分 照相机 试样图像经过透镜多次放大后,在荧光屏上显示出高倍放 大的像。 2. 真空系统: 电子光学系统的工作过程要求在真空条件下进行,这是因为在充气的条件下会发生以下情况: 栅极与阳极间的空气分子电离,导致高电位差的两极之间放电 炽热灯丝迅速氧化,无法正常工作 电子与空气分子碰撞,影响成像质量 试样易于氧化,产生失真 目前,一般TEM的真空度为10-5 Torr(1Torr=133.32Pa)左右。 真空泵组经常由机械泵和扩散泵两级串联成。为了进一步提高真空度,可采用分子泵、离子泵,真空度可达10-8 Torr或更高。 3. 电源与控制系统: 电子枪加速电子用的小电流高压电源用于提供两部分电源 透射激磁用的大电流低压电源 Ⅳ. 透射电镜的成像原理: 1. TEM是依照阿贝成像原理工作的 平行入射波受到有周期性特征物体的散射作用在物镜的后焦面上形成衍射谱,各级衍射波通过干涉重新在像平面上形成反映物的特征的像。 2. 具体过程: 电子枪产生的电子束经1~2级聚光镜后均匀照射到试样上的某一待观察微

玻璃合同样本

玻璃购销合同 购方:宝航建设工程(吉林)有限公司(以下简称甲方)合同号:BHTJ-YKBL01 供方:北京科晶天润玻璃有限公司(以下简称乙方)签约地: 签约日期:2012年9月04日依照《中华人民共和国合同法》,甲乙双方经友好协商,本着诚信合作、平等自愿的原则,甲方就长春华瀚净月公馆向乙方订购玻璃事宜,达成一致,并签订本合同,双方共同严格履行。 一、合同标的 1.1 货物名称:建筑工程用玻璃 1.2 交货项目地址:长春华瀚净月项目工地 二、名称、配置、型号、数量、单价、合同金额以及其他加工费用: 序号名称规格 暂估数量 (M2) 单价 (元/M2) 总价 (RMB:元) 1 中空双钢化5LOW-E+12A+5590 14585550 2 中空玻璃5LOW-E+12A+5100 12512500 3 中空双钢化6LOW-E+9A+660 1609600 4 中空双钢化6LOW-E+12A+6900 165148500 5 中空双钢化8LOW-E+9A+8310 21566650 6 透明钢化玻璃12mm110 859350 7人民币大写:叁拾叁万贰仟壹佰伍拾元。332,150.00 说明: 1.合同价格及结算为按甲方提供下单生产的规格尺寸加工供货并验收合格品面积×合同约定单价计算,乙方提供17%增值税专用发票。本合同约定数量为暂定数量,结算以实际下单数量为准。 2.玻璃平均切裁率不低于85%,矩形玻璃的最大尺寸为2440*3660mm,超出此尺寸价格另议。 3.本单价含玻璃打孔、四周精磨边,如有大小片,按照大片面积计算,单价不变。 4.所有玻璃采用秦皇岛耀华原片,异型玻璃按照最小外接矩形面积计算,夹层玻璃用PVB胶片均采用国产优质胶片。 5.中空玻璃单片面积小于0.3㎡按0.3㎡计算,其它单片面积小于0.3㎡按实际面积计算,单价不变。 6.以上报价中空玻璃封胶采用优质聚硫胶,胶深按我司提供图纸要求,超出国标的胶深另议。 7.以上价格为包运输到甲方指定地点价格,包装费、运输费用及途中保险由乙方承担。 8.合同未涉及到的玻璃配置或加工要求另行商定议价,以合同补充协议确定。 三、产品执行质量标准 1、产品质量执行下列现行国家和行业标准的规定,其包括但不仅限于:

透射电子显微镜的原理

透射电子显微镜的原理 XXX (大庆师范学院物理与电气信息工程学院 2008级物理学 200801071293 黑龙江大庆163712) 摘要:透射电子显微镜在成像原理上与光学显微镜类似。它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。 关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜 作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。 0引言: 工业多相催化剂是极其复杂的物理化学体系。长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。 为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。 1透射电子显微镜的定义/组成 1.1定义 在一个高真空系统中,由电子枪发射电子束, 穿过被研究的样品,经电子透镜聚焦放大,在荧光 屏上显示出高度放大的物像,还可作摄片记录的一 类最常见的电子显微镜称为透射电子显微镜。[1] 1.2组成 透射电子显微镜由照明系统、成像系统、记录 系统、真空系统和电器系统组成。(如图1) 2透射电子显微镜的照明系统 照明系统的作用是提供亮度高、相干性好、束 流稳定的照明电子束。它主要由发射并使电子加速 的电子枪和会聚电子束的聚光镜组成。

电镜切片样品制作步骤知识讲解

A 悬浮培养的细胞、细菌、血细胞、精子等; 细胞使用PBS或无血清培养基离心漂洗1~2次以去除血清,离心转速依据不同离心机、不同样品自定,总时间控制在5min内;细胞团根据预设浓度在适量2.5%戊二醛吹悬,滴加在预先置入青霉素小瓶中的托盘,4℃静置沉降2~3天,在托盘周围加入PBS,以防止样品干燥。 B贴壁培养的细胞: 在培养皿中预先加入盖玻片,使细胞贴附于盖玻片上;PBS或无需请培养基漂洗后,放置在培养板室温固定1h,4℃3 h,注意放置干燥,自行转入青霉素小瓶中,加满PBS送检。SEM标本处理必须使用玻璃容器,需明确所用盖玻片尺寸可以放入青霉素瓶。 C组织取材 样品观察表面可达8~10mm2,高度小于5mm左右; 样品表面在固定前必须清洁:使用生理盐水或PBS冲洗掉表面的灰尘以及不需要观察的蛋白、粘液等。能够明确标识标本的观察面。消化道、呼吸道、血管、生殖器官、泌尿等官腔内表面,尤其要注意先清洗再固定。 如需要观察脏器内结构,应依照不同的实验目的,决定目的脏器是否需要灌注清洗; 固定2.5%戊二醛浸没标本,室温1h,4℃固定3h以上,换PBS送检。 附:2.5%戊二醛的配制 Step 1: 0.2M磷酸缓冲液的配制: --------------------- 磷酸二氢钠(NaH2PO4.H2O) 2.6克 磷酸氢二钠(Na2HPO4.12H2O)29克 双蒸馏水加至500毫升 pH调至7.4 Step 2: 戊二醛固定液的配制: --------------------- 25% 戊二醛1ml 双蒸馏水4ml 0.2mol/L磷酸缓冲液5ml 戊二醛最终浓度 2.5% pH值7.3-7.4

激光共聚焦显微镜原理

激光共聚焦显微镜原理 激光共聚焦扫描显微技术(Confocal laser scanning microscopy)是一种高分辨率的显微成像技术。普通的荧光光学显微镜在对较厚的标本(例如细胞)进行观察时,来自观察点邻近区域的荧光会对结构的分辨率形成较大的干扰。共聚焦显微技术的关键点在于,每次只对空间上的一个点(焦点)进行成像,再通过计算机控制的一点一点的扫描形成标本的二维或者三维图象。在此过程中,来自焦点以外的光信号不会对图像形成干扰,从而大大提高了显微图象的清晰度和细节分辨能力。 图1. 共聚焦显微镜简化原理图 图1是一般共聚焦显微镜的工作原理示意图。用于激发荧光的激光束(Laser)透过入射小孔(light source pinhole)被二向色镜(Dichroic mirror)反射,通过显微物镜(Objective lens)汇聚后入射于待观察的标本(specimen)内部焦点(focal point)处。激光照射所产生的荧光(fluorescence light)和少量反射激光一起,被物镜重新收集后送往二向色镜。其中携带图像信息的荧光由于波长比较长,直接通过二向色镜并透过出射小孔(Detection pinhole)到达光电探测器(Detector)(通常是光电倍增管(PMT)或是雪崩光电二极管(APD)),变成电信号后送入计算机。而由于二向色镜的分光作用,残余的激光则被二向色镜反射,不会被探测到。

图2. 探测针孔的作用示意图 图2解释了出射小孔所起到的作用:只有焦平面上的点所发出的光才能透过出射小孔;焦平面以外的点所发出的光线在出射小孔平面是离焦的,绝大部分无法通过中心的小孔。因此,焦平面上的观察目标点呈现亮色,而非观察点则作为背景呈现黑色,反差增加,图像清晰。在成像过程中,出射小孔的位置始终与显微物镜的焦点(focal point)是一一对应的关系(共轭conjugate),因而被称为共聚焦(con-focal)显微技术。共聚焦显微技术是由美国科学家马文?闵斯基(Marvin Minsky)发明的;他于1957年就为该技术申请了专利。但是直到八十年代后期,由于激光研究的长足进步,才使得激光共聚焦扫描显微技术(CLSM)成为了一种成熟的技术。 图3. 激光共聚焦显微镜原理框图 当今的激光共聚焦显微镜已经发展为一种结合了激光技术,显微光学,自动控制和图像处理等多种尖端科研成果的高技术工具。是现代微观研究领域不可缺少的利器之一。Nikon秉承“信赖与创造”的一贯企业理念,正在为业界提供世界领先水平的共聚焦显微镜系统产品。

共聚焦原理及操作

一、细胞内游离Ca2+浓度([Ca2+]i)的测定 按经典方法,以钙离子敏感的荧光探针Fura-2/AM或Fluo-3/AM来检测细胞内[Ca2+]i。Fura-2的结构类似于四羧酸的Ca2+螯合剂EGTA,能以1:1的比例特异性地与Ca2+结合,与EGTA 不同的是Fura-2可发出荧光,并且结合Ca2+后荧光特性有改变,Fura-2及其与Ca2+结合后的复合物的最大激发波长分别为380 nm和340 nm,这种变化可指示Ca2+的存在及其浓度。Fura-2为一极性很大的酸性化合物,不能进入细胞内,但在其负性基团部位结合上乙酰氧甲酯基后则成为Fura-2/AM。后者脂溶性很强,又消除了负电荷,容易通过细胞膜,随后被细胞内的非特异性酯酶水解掉分子中的酯基后又变为Fura-2,与胞浆中的游离Ca2+结合后即可被特定波长的紫外光(340 nm)激发产生荧光。并且,Fura-2与Ca2+解离容易,随着游离Ca2+的增加或减少,其荧光强度便随之变化。因此,Fura-2的荧光强度与[Ca2+]i呈比例关系,据此可以测定[Ca2+]i及其变化(Malgaroli, A., et al., 1987)。 Fluo-3/AM是继Fura-2/AM等之后研制的新一代Ca2+ 荧光指示剂,与Fura-2/AM类似,Fluo-3/AM进入细胞后,酯基被水解掉,Fluo-3与细胞内游离Ca2+ 结合,因而其荧光强度可以反映细胞内游离Ca2+ 的浓度。但优于Fura-2/AM的是,Fluo-3与Ca2+ 结合时的荧光强度较未结合Ca2+ 的游离形式高40 ~ 100倍,避免了自发荧光的干扰,因而直接在单波长激发光下检测其荧光强度即可反映[Ca2+]i的变化。此外,Fluo-3与Ca2+ 亲和力低,易解离,适合测定细胞内Ca2+ 的快速、微量变化。Fluo-3 在可见光光谱激发,激发波长为488 nm,可避免紫外光对细胞的损伤(Greimers, R., et al., 1996)。Ca2+荧光探针用于检测[Ca2+]i 的基本原理如图7.1所示。 图Ca2+荧光探针检测[Ca2+]i的基本原理 a,代表一个细胞模型;b,Ca2+荧光探针的负载; c,Ca2+荧光探针去酯化;d,去酯化的Ca2+荧光探针与细胞质内游离Ca2+结合。 Fig. The mechanism for [Ca2+]i detection by fluorescent Ca2+ probe. [Ca2+]i的检测方法根据文献(Pan, Z., et al., 2000),并作适当的改进。具体过程如下: 1 Ca2+荧光探针负载 1. 以无菌D'-Hanks液清洗各处理细胞三次,加入适量的Fura-2/AM或Fluo-3/AM(终浓度为

激光共聚焦显微镜与普通显微镜成像原理及区别

激光扫描共聚焦显微镜采用激光作为光源, 有效地除去了非聚焦平面的信息, 提高了微观形貌的清晰度和分辨率。其与计算机软件结合可以实现深度方向的光学切片观察, 再将这些扫描得到的信息通过软件算法以及叠加和重组, 可以获得材料的微观三维形貌, 因此激光共聚焦显微镜具有快速、无损、制样简单等优点。那么激光共聚焦显微镜的原理又是怎样的呢? 它采用激光点光源照射样品, 从发射器发出的光经过光路后在聚焦平面上形成一个大小分明的光点,它沿着原照射光路到达分光镜并且该点发出的光被物镜收集,分光镜将收集来的光直接反馈给探测器。光点通过前方探测器设有的探测针孔等一系列的透镜, 最终同时聚焦于探测针孔, 这样来自聚焦平面的光可以会聚在探测孔之内, 而来自聚焦平面上方或下方的散射光都被挡在探测孔之外而不能成像, 从而提高了焦平面的分辨率。激光共聚焦显微镜逐点扫描样品, 探测针孔后的光电倍增管也逐点获得对应光点的共聚焦图像, 转为数字信号传输到计算机上, 最终在屏幕上聚合成清晰的整个焦平面的共聚焦图像。转为数字信号传输到计算机上, 最终在屏幕上聚合成清晰的整个焦平面的共聚焦图像。此外激光共聚焦显微镜还可以对样品进行逐层光学切片扫描, 得到高度方向每一层的图像信息, 传回计算机软件叠加处理后可以得到三维形貌图。它成像清晰、精确、最大的优点在于能对材料进行深层形貌的观察。可以对样品进行断层扫描观察和成像, 进行无损观察和三维形貌分析。 激光共聚焦显微镜可用来观察样品表面亚微米级别的三维轮廓形貌, 也可以测量多种微几何尺寸, 像晶粒度、体积、膜深、膜厚、深度、长宽、线粗糙度、面粗糙度等。激光共

聚焦相比于其他测量手段有其独特的优势, 它提高了图片的清晰度, 有很好的景深, 提高了分辨率, 可以进行无接触的三维轮廓测试。在金属材料研发方面还经常用到光学显微镜和扫描电子显微镜。光学显微镜是一种二维的形态学工具, 有效分辨率较低, 分辨率的景深较小, 也不能观察纵向方向的三维形态。而扫描电镜在样品的制备方面比较复杂, 有时还会引起样品的破坏, 对于扫描的面积和材料的表面高度都有所限制, 同时它也不能测量面积、体积、深度等信息。在钢铁材料的生产和开发过程中, 众多的环节需要关注表面形貌, 采用激光共聚焦显微镜技术进行相应检测, 不仅可以获得媲美SEM的显微图像, 同时还能够进行快速、无损测量, 加之其较低的引入和维护成本,更符合目前行业成本控制的需求。本文将举例说明激光共聚焦显微镜在金属研究领域的典型应用。 激光共聚焦显微镜由于其优于光学显微镜的清晰度和分辨率, 使其在金相组织观察方面有独特的优势。试验样品为海洋平台用钢, 将样品进行磨制、抛光处理, 并用腐蚀溶液腐蚀, 要求观察并测量基体上粒状贝氏体的形态和尺寸。相比于普通光学显微镜, 激光共聚焦显微镜清晰度好, 分辨率高。激光作为光源, 它的单色性非常好, 光束的波长相同, 从根本上消除了色差。共聚焦显微镜中在物镜的焦平面上放置了一个带有针孔的挡板, 将焦平面以外的杂散光挡住, 从而消除了球差。同时激光共聚焦显微镜采取的点扫描技术和计算机采集和处理信号也进一步提高了图像的清晰度。

第4章 透射电子显微镜样品制备

第四章透射电子显微镜样品的制备 晶体薄膜衍射衬度成像分析 电子衍射的基础内容,主要针对相结构分析。透射电子显微镜另一重要功能是进行微观结构形貌分析,要求电子束能够透过所观察的样品,常规的透射电镜电子束能透过样品的厚度极其有限,约数百纳米。 将透射电镜应用于材料科学研究领域的早期,受到样品制备技术的限制,利用复型技术获取间接样品实现对微观组织的观察,较光学显微镜的分辨率提高约2个数量级,达到几百纳米左右。这主 要是由于复型材料颗粒较大,不能把样品中小的细微结构复制出来。要指出的是,复型仅仅得到的是样品的表面形貌,无法对样品的内部组织结构(晶体缺陷、界面等)进行观察分析。 制样技术的进步,能够获得使电子束直接透过的薄膜样品,从而实现对样品的直接观察分析,揭示样品内部的精细结构,使电镜的分辨率大大提高。同时应用衍射技术,就能够在一台仪器上同时进行微观组织与结构分析。

透射电子显微镜样品的制备方法表面复型技术 一级复型 塑料-碳二级复型 抽取复型 粉末样品和薄膜制备 粉末样品 薄膜样品的制备 大块晶体样品制成薄膜的技术 金属块体制成薄膜样品 聚焦离子束方法

4.1 表面复型技术 透射电镜的出现,为金相分析技术的发展开辟了新的前景。但 要用这种技术分析材料的显微组织,需要制备的样品对电子束“透明”。在透射电镜发展的早期,将其用于观察材料组织分析,首先遇到的问题是样品制备问题。因此,在20世纪40年代出现了“复型技术”。 复型是指将样品表面的浮凸复制于某种薄膜,可间接反映原样 品的表面形貌特征的间接样品。 复型材料的要求: 1) 本身是无定型或非晶态的; 2) 具有足够的强度、刚度,良好的导电、导热和耐电子束轰击性能; 3) 分子尺寸要尽量小,以利于提高复型的分辨率。 常用材料:非晶碳膜和各种塑料薄膜

玻璃实验讲义

玻璃成品检测实验讲义 实验一玻璃密度的测定 一、目的要求 1.熟悉沉浮法的试验原理; 2.掌握玻璃密度的测定方法。 二、实验原理 用沉浮法测定玻璃密度是基于与已知密度值的固体在密度值随温度变化而变化的混合液中由于密度相等产生沉浮而比较测定的。 固体的密度随温度的升高变化很小,可以忽略不计。 选择某种液体,其密度值岁温度升高呈线性减小,在常温下若混合液的密度大于固体试样时,已知密度值的标准试样与待测试样均浮在混合液的表面,随着温度的升高,混合液的密度值逐渐减小,当与某固体试样的密度值相等时,固体试样便开始下沉。若标准试样与待测试样在混合液中下沉时通过同一刻度线的温度分别为ts和tx,则二者的密度差△D按下式计算: △D=F(ts-tx)克/厘米3 试样的绝对密度按下式计算: Dx=Ds+F(ts-tx) 式中:Dx-待测试样的密度(克/厘米3) Ds-标准试样的密度(克/厘米3) F-标准试样的密度-温度系数 ts-标准试样下沉通过刻度线时的温度(℃) tx-待测试样下沉通过刻度线时的温度(℃) 也可选择在常温下比试样密度较小的混合液,通过冷却方法,测定试样在混合液中开始上浮的温度,即所谓降温法。为简便起见,目前广泛需要升温法测定。 三、仪器与设备 电热水浴槽 温度计(1/50℃)

平口试管 四、试样和混合液的测定 1.试样的制备 供测定玻璃密度的试样要求均匀,没有条纹、气泡和结石等缺陷。为了监控某种玻璃的生产,就取这种玻璃作为标准玻璃,如果是棒状最好是φ3×6mm,如果从制品上敲取,取长、宽、高约在3~4mm左右,形状规则一些。避免与被册玻璃混淆。试样必须良好退火,退火程度不同,密度也有变化。标准啊样品密度可采用比重瓶法或排水法精密测定,精密度达到0.0001g/cm3。 标准试样与被册玻璃的密度差在0.003以内为最好,差别太大,实验时不易精确测量。 2.混合液的配置 为了使供实验用的混合液密度值便于调节,一般采用具有不同密度值的两种液体混合而成。 在选择这两种液体时,要求二者的密度相差较大,能以任何比例互溶,混合后不起化学反应,导热性好,不易挥发、五毒,供应方便、价格便宜。常选用α-溴代萘和四溴乙烷,其主要性能如下表: 混合液的密度取决于测定的方法、试样的密度和气温等条件。当采用升温法测定时,混合液的密度应大于试样的密度,使试样浮在液面上,以便测定试样开始下沉时的温度;若采用降温法时,混合液的密度应小于试样的密度,使试样沉在容器底部,以便测定试样开始上浮时的温度。为了缩短试样开始下沉(上浮)所需的时间,混合液与试样的密度值相差在0.01~0.02g/cm3较好。 不同季节,因气温不同,应使用不同密度值的混合液。气温高时应使用密度较大的混合液;气温低时应使用密度较小的混合液。这样才不会出现试样下沉温度比气温高出很多或低于气温的现象。 标准试样与待测试样的密度值也不应相差太大,否则在采用升温法时将出现混合液的温度升得过高,引起四溴乙烷挥发,造成混合液的比例改变而使密度值发生变化,

透射电子显微镜样品制备技术

透射电子显微镜样品制备技术 样品制备的方法随生物材料的类型以及研究目的而各有不同。对生物组织和细胞等,一般多用超薄切片技术,将大尺寸材料制成适当大小的超薄切片,并且利用电子染色、细胞化学、免疫标记及放射自显影等方法显示各种超微结构、各种化学物质的部位及其变化。对生物大分子(蛋白质、核酸)、细菌、病毒和分离的细胞器等颗粒材料,常用投影、负染色等技术以提高反差,显示颗粒的形态和微细结构。此外还有以冷冻固定为基础的冷冻断裂──冰冻蚀刻、冷冻置换、冷冻干燥等技术。 超薄切片术将小块生物材料,用液态树脂单体浸透和包埋,并固化成塑料块,后用超薄切片机切成厚度为500埃左右,甚至只有50埃的超薄切片。超薄切片的制备程序与光学显微镜的切片程序类似,但各步骤的要求以及所使用的试剂和操作方法有很大差别。 固定选用适宜的物理或化学的方法迅速杀死组织和细胞,力求保持组织和细胞的正常结构,并使其中各种物质的变化尽可能减小。固定能提高细胞承受包埋、切片、染色以及电子束轰击的能力。主要固定方法有: ①快速冷冻,用致冷剂(如液氮、液体氟利昂、液体丙烷等)或其他方法使生物材料急剧冷冻,使组织和细胞中的水只能冻结成体积极小的冰晶甚至无定形的冰──玻璃态。这样,细胞结构不致被冰晶破坏,生物大分子可保持天然构型,酶及抗原等能保存其生物活性,可溶性化学成分(如小分子有机物和无机离子)也不致流失或移位。用冷冻的组织块,可进行切片、冷冻断裂、冷冻干燥和冷冻置换等处理。用此法固定的样品既可提供组织、细胞结构的形态学信息,又可提供相关的细胞化学信息。②化学固定,固定剂有凝聚型和非凝聚型两种,前

者如光学显微术中常用的乙醇、二氯化汞等,此法常使大多数蛋白质凝聚成固体,结构发生重大变化,常导致细胞的细微结构出现畸变。非凝聚型固定剂包括戊二醛、丙烯醛和甲醛等醛类固定剂和四氧化锇,四氧化钼等,适用于电子显微。它们对蛋白质有较强的交联作用,可以稳定大部分蛋白质而不使之凝聚,避免了过分的结构畸变。它们与细胞蛋白质有较强的化学亲和力,固定处理后,固定剂成为被固定的蛋白质的一部分。如用含有重金属元素的固定剂四氧化锇(也是良好的电子染色剂)进行固定,因为锇与蛋白质结合,增强了散射电子的能力,提高了细胞结构的反差。采用一种以上固定剂的多重固定方法,如采用戊二醛和四氧化锇的双固定法,能较有效地减少细胞成分的损失。此外,固定剂溶液的浓度、pH 及所用的缓冲剂类型、渗透压、固定时间和温度等对固定效果都有不同程度的影响。 固定操作方法通常是先将材料切成1立方毫米左右小块,浸在固定液中,保持一定温度(通常为4℃),进行一定时间的固定反应。取材操作要以尽可能快的速度进行,以减少组织自溶作用造成的结构破坏。对某些难以固定的特殊组织,如脑、脊髓等,最好使用血管灌注方法固定,即通过血管向组织内灌注固定液,使固定液在组织发生缺氧症或解剖造成损伤之前,快速而均匀地渗透到组织的所有部分。灌注固定的效果比浸没固定好得多。 脱水化学固定后,将材料浸于乙醇、丙酮等有机溶剂中以除去组织的游离水。为避免组织收缩,所用溶剂需从低浓度逐步提高到纯有机溶剂,逐级脱水。 浸透脱水之后,用适当的树脂单体与硬化剂的混合物即包埋剂,逐步替换组织块中的脱水剂,直至树脂均匀地浸透到细胞结构的一切空隙中。 包埋浸透之后,将组织块放于模具中,注入树脂单体与硬化剂等混合物,通

透射电子显微镜实验讲义

一、实验名称 透射电子显微镜用于无机纳米材料的检测。 二、实验目的 1.认知透射电子显微镜的基本原理,了解有关仪器的主要结构; 2.学习利用此项电子显微技术观察、分析物质结构的方法,主要包括:常规成 像、高分辨成像、电子衍射和能谱分析等; 3.重点帮助学生掌握纳米材料等的微观形貌和结构测试结果的判读,主要包括: 材料的尺寸、大小均匀性、分散性、几何形状,以及材料的晶体结构和生长取向等。 三、实验原理 透射电子显微技术自20世纪30年代诞生以来,经过数十年的发展,现已成为材料、化学化工、物理、生物等领域科学研究中物质微观结构观察、测试十分重要的手段,尤其是近20多年来,纳米材料研究的快速发展又赋予这一电子显微技术以极大的生命力,可以这样说,没有透射电子显微镜,就无法开展纳米材料的研究。 透射电子显微镜在成像原理上与光学显微镜是类似的,所不同的是光学显微镜以可见光做光源,而透射电子显微镜则以高速运动的电子束为“光源”。在光学显微镜中,将可见光聚焦成像的是玻璃透镜;在电子显微镜中,相应的电子聚焦功能是电磁透镜,它利用了带电粒子与磁场间的相互作用。 在真空系统中,由电子枪发射出的电子经加速后,通过磁透镜照射在样品上。透过样品的电子被电子透镜放大成像。成像原理是复杂的,可发生透射、散射、吸收、干涉和衍射等多种效应,使得在相平面形成衬度(即明暗对比),从而显示出透射、衍射、高分辨等图像。对于非晶样品而言,形成的是质厚忖度像,当入射电子透过此类样品时,成像效果与样品的厚度或密度有关,即电子碰到的原子数量越多,或样品的原子序数越大,均可使入射电子与原子核产生较强的排斥作用——电子散射,使面通过物镜光阑参与成像的电子强度降低,忖度像变淡。另外,对于晶体样品而言,由于入射电子波长极短,与物质作用满足布拉格

玻璃检验报告

检验报告 报告编号:034C201403251005 产品名称:夹层玻璃 送检单位:重庆市北碚玻璃有限责任公司检验类别:有见证取样 国家玻璃质量监督检验中心

检 验 报 告 监督检验中心 共2页 第1页 编制:马佐 审核:刘龙健 批准:张开林 样品名称 夹层玻璃 型号 受检单位 重庆市北碚玻璃有限责任公司 检验类别 委托检验 生产单位 重庆市北碚玻璃有 限责任公司 样品等级 1类 抽样者 周程名 抽(送)样日期 2014.01.20 抽样基数 / 样品状态 完好 规格数量 5块 生产日期 2014.01.05 检验依据 GB9962-1999 检验项目 性能 检验结论 经检验,该夹层玻璃符合GB9962-1999《夹层玻璃》 标准中Ⅱ-1类的技术要求。 样品合格。 (检验 单位公章) 2013年12月24日 部分复制检验报告无效 备注

检验报告附页 类别:Ⅱ-1类夹层玻璃共2页第2页 客户编码样品规格(mm) 检验项目GB9962-1999 标准要求 样品 编号 检验结果 单项 结论 耐热性 距边部或裂缝超过13mm 处不允许产生影响使用的 气泡或其它缺陷。 1~3 3块试样均未产生影 响使用的气泡或其 它缺陷 合格 耐湿性试验后超出原始边15mm、 新裂口25mm、裂口10mm 处不能产生气泡或其它缺 陷 4~6 3块试样均未产生气 泡或其它缺陷 合格 耐辐照性透光率响度减少率不大于 10%,不可产生显著变色、 气泡及浑浊现象。 7~9 透光率相对减少率 分别为0.8%、0.7%、 0.9%,3块试样均未 产生显著变色、气泡 及浑浊现象。 合格 落球冲击剥离性能1040g钢球从1200mm高度 自由落下,6块试样只允 许一块胶层断裂或因玻璃 脱落而暴漏。玻璃未破坏, 提升高度冲击直至玻璃破 坏,仍不破坏,换2260g 球;钢化夹层玻璃供需双 方商定。 10~15 2块试样1500mm高 度破坏,2块试样 1900mm高度破坏,2 块试样2400mm高度 破坏,夹层均未断 裂、未暴露。 合格 散弹袋冲击性能 散弹袋1200mm高度冲击 试样不破坏或试样破坏后 部分不可产生使直径 75mm的球自由通过开口。 16~19 4块试样1200mm高 度冲击均未破坏,胶 层未断裂。 合格 检验员:刘龙江日期:2013 年 12月 24日

相关文档
最新文档