扫描电镜简述

扫描电镜简述
扫描电镜简述

J I A N G S U U N I V E R S I T Y 冶金工程专业硕士研究生结课论文论文题目:扫描电镜SEM分析技术综述

课程名称:Modern Material Analytic Technology

专业班级: 2015级硕士研究生

学生姓名

学号:2211505072

学院名称:材料科学与工程学院

学期: 2015-2016第一学期

完成时间: 2015年11月 30 日

扫描电镜SEM分析技术综述

摘要

扫描电子显微镜(如下图所示),简称为扫描电镜,英文缩写为SEM(Scanning Electron Microscope)。它是用细聚焦的电子束轰击样品表面,通过电子与样品相互作用产生的二次电子、背散射电子等对样品表面或断口形貌进行观察和分析。现在SEM都与能谱(EDS)组合,可以进行成分分析。所以,SEM也是显微结构分析的主要仪器,已广泛用于材料、冶金、矿物、生物学等领域。

本文主要对扫描电镜SEM进行简单介绍,分别从扫描电镜发展的历史沿革;工作原理;设备构造及功能;在冶金及金属材料分析中的应用情况;未来发展方向等几个方面来对扫描电镜分析技术进行综述。

关键词: 扫描电子显微镜二次电子背散射电子 EDS 成分分析

扫描电子显微镜

目录

一扫描电镜 (4)

1.1 近代扫描电镜的发展 (4)

1.1.1场发射扫描电镜 (4)

1.1.2 分析型扫描电镜及其附件 (5)

1.2 现代扫描电镜的发展 (6)

1.2.1低电压扫描电镜 (6)

1.2.2 低真空扫描电镜 (6)

1.2.3环境扫描电镜ESEM (7)

1.3 扫描电镜工作原理设备构造及其功能 (7)

1.3.1扫描电镜工作原理 (8)

1.3.2 扫描电镜的主要结构及功能 (9)

1.4 扫描电镜性能 (11)

1.5扫描电镜在冶金及金属材料分析中的应用 (12)

二结论 (14)

三参考文献 (14)

一扫描电镜SEM

1.1近代扫描电镜的发展

扫描电镜的设计思想早在1935 年便已提出,1942 年在实验室制成第一台扫描电镜,但因受各种技术条件的限制,进展一直很慢。1965 年,在各项基础技术有了很大进展的前提下才在英国诞生了第一台实用化的商品仪器。此后,荷兰、美国、西德也相继研制出各种型号的扫描电镜,日本二战后在美国的支持下生产出扫描电镜,中国则在20 世纪70 年代生产出自己的扫描电镜。前期近20 年,扫描电镜主要是在提高分辨率方面取得了较大进展,80 年代末期,各厂家的扫描电镜的二次电子像分辨率均已达到4.5 nm。在提高分辨率方面各厂家主要采取了如下措施:

(1) 降低透镜球像差系数,以获得小束斑;

(2) 增强照明源,即提高电子枪亮度(如采用LaB6或场发射电子枪);

(3) 提高真空度和检测系统的接收效率;

(4) 尽可能减小外界振动干扰。

目前,采用钨灯丝电子枪扫描电镜的分辨率最高可以达到3.5nm,采用场发射电子枪扫描电镜的分辨率可达1 nm。到20 世纪90 年代中期,各厂家又相继采用计算机技术,实现了计算机控制和信息处理。

1.1.1场发射扫描电镜

采用场致发射电子枪代替普通钨灯丝电子枪,这项技术从1968 年就已开始应用,由于该电子枪的亮度(即发射电子的能力) 大为提高,因而可得到很高的二次电子像分辨率。采用场发射电子枪需要很高的真空度,在高真空度下由于电子束的散射更小,其分辨率进一步得到提高。近几年来,各厂家采用多级真空系统(机械泵+ 分子泵+ 离子泵),真空度可达10 - 7 Pa 。同时,采用磁悬浮技术,噪音振动大为降低,灯丝寿命也有增加。束流稳定度在12 h 内<0.8%。场致发射扫描电镜的特点是二次电子像分辨率高,如果采用低加速电压技术,在TV 状态下背散射电子(BSE) 成像良好,对于未喷涂非导电样品也可得到高倍像。可以预期,场发射扫描电镜将对半导体器件、精密陶瓷材料、氧化物材料等的发展起到很大的作用。

1.1.2分析型扫描电镜及其附件

所谓分析型扫描电镜即是指将扫描电镜配备多种附加仪器,以便对被测试样进行多种信息的分析,能谱仪,EBSD附件就是其中两种。

a 能谱仪附件

能谱仪(即X射线能量色散谱仪,简称EDS)通常是指X射线能谱仪。自能谱仪在20 世纪70年代末和80年代初期普遍推广以来,首先是在扫描电镜和电子探针分析仪器上得到应用,其优点是可以分析微小区域(几个微米) 的成分,并且可以不用标样。能谱仪收集谱线时一次即可得到可测的全部元素,因而分析速度快,另外,在扫描电镜所观察的微观领域中,一般并不要求所测成分具有很高的精确度,所以,扫描电镜配备能谱仪得到了广大用户的认可,并且其无标样分析的精确度能胜任常规研究工作。目前,最先进的采用超导材料生产的能谱仪,分辨率达到了5-15 eV,已超过了25 eV 分辨率的波谱仪,这是目前能谱仪发展的最高水平。

能谱仪主要是用来分析材料表面微区的成分,分析方式有定点定性分析、定点定量分析、元素的线分布、元素的面分布。例如夹杂物的成分分析、两个相中元素的扩散深度、多相颗粒元素的分布情况。其特点是分析速度快,作为扫描电镜的辅助工具可在不影响图像分辨率的前提下进行成分分析。分析元素范围为

B5-U92。可测质量分数0.01 %以上的重元素,对0.5%以上的元素有比较准确的结果,主元素的测量相对误差在5 %左右。像B、C、N、O 这些超轻元素则跟波谱仪一样,检测灵敏度较低,难以得到好的定量结果。目前采用超薄窗口甚至是无窗口的探测器,对B、C、N、O 检测的灵敏度有较大的提高。

b EBSD附件

早在20世纪70年代中期,有些材料工作者在扫描电镜上发现了背散射电子的衍射现象,由于这些衍射花样与所测单晶体的晶体结构有关,便将其用作材料的结构研究。直到90年代中期,有些厂家针对背散射电子衍射作用制作了专门的探测器并引进计算机技术,形成了背散射电子衍射分析技术,这就是我们通常说的EBSD(电子背散射衍射) 。EBSD主要可做单晶体的物相分析,同时提供花样质量、置信度指数、彩色晶粒图,可做单晶体的空间位向测定、两颗单晶体之间夹角的测定、可做特选取向图、共格晶界图、特殊晶界图,同时提供不同晶界类型的绝对数量和相对比例,即多晶粒夹角的统计分析、晶粒取向的统计分析以及它们的

彩色图和直方统计图,还可做晶粒尺寸分布图,将多颗单晶的空间取向投影到极图或反极图上可做二维织构分析,也可做三维织构即ODF分析。

EBSD会因测试条件而受到各种限制。只有在所测单晶体完整并且没有应力的情况下才会产生背散射衍射花样,试样必须平整并且始终要保持与入射电子70°的空间位向关系,这样才能保证衍射锥面向接收的探测器,否则,探测器接收不到衍射的信号。也就是说当试样存在应力时不宜做EBSD分析,试样粗糙不平时也不能做EBSD分析。另外,背散射电子的信息来自于试样表层几个纳米的深度、几个微米的宽度,因而,EBSD只能做几个微米以上大小晶粒的分析。诸如析出相及晶界相之类的分析,采用EBSD则难以收集到衍射花样。也就是EBSD面向微米级的晶粒,主要是用做微米级的机理研究。而X 射线衍射仪主要是针对大块试样和粉末压块试样,并且对有应力的试样仍可进行物相分析和织构分析,可测定应力的大小,这是EBSD力所不及的。

1.2现代扫描电镜的发展

近代扫描电镜的发展主要是在二次电子像分辨率上取得了较大的进展。但对不导电或导电性能不太好的样品还需喷金后才能达到理想的图像分辨率。随着材料科学的发展特别是半导体工业的需求,要尽量保持试样的原始表面,在不做任何处理的条件下进行分析。早在20世纪80年代中期,便有厂家根据新材料(主要是半导体材料) 发展的需要,提出了导电性不好的材料不经过任何处理也能够进行观察分析的设想,到90年代初期,这一设想就已有了实验雏形,90年代末期,已变成比较成熟的技术。其工作方式便是现在已为大家所接受的低真空和低电压,最近几年又出现了模拟环境工作方式的扫描电镜,这就是现代扫描电镜领域出现的新名词“环扫”,即环境扫描电镜。

1.2.1低电压扫描电镜

在扫描电镜中,低电压是指电子束流加速电压在1kV 左右。此时,对未经导电处理的非导体试样其充电效应可以减小,电子对试样的辐照损伤小,且二次电子的信息产额高,成像信息对表面状态更加敏感,边缘效应更加显著,能够适应半导体和非导体分析工作的需要。但随着加速电压的降低,物镜的球像差效应增加,使得图像的分辨率不能达到很高,这就是低电压工作模式的局限性。

1.2.2低真空扫描电镜

低真空为是为了解决不导电试样分析的另一种工作模式。其关键技术是采用了一级压差光栏,实现了两级真空。发射电子束的电子室和使电子束聚焦的镜筒必须置于清洁的高真空状态,一般用1个机械泵和扩散泵来满足之。而样品室不一定要太高的真空,可用另一个机械泵来实现样品室的低真空状态。当聚焦的电子束进入低真空样品室后,与残余的空气分子碰撞并将其电离,这些离化带有正电的气体分子在一个附加电场的作用下向充电的样品表面运动,与样品表面充电的电子中和,这样就消除了非导体表面的充电现象,从而实现了对非导体样品自然状态的直接观察,在半导体、冶金、化工、矿产、陶瓷、生物等材料的分析工作方面有着比较突出的作用。

1.2.3环境扫描电镜ESEM

上述低真空扫描电镜样品室最高低真空压力为400 Pa ,现在有厂家使用专利技术,可使样品室的低真空压力达到2 600Pa ,也就是样品室可容纳分子更多,在这种状态下,可配置水瓶向样品室输送水蒸气或输送混合气体,若跟高温或低温样品台联合使用则可模拟样品的周围环境,结合扫描电镜观察,可得到环境条件下试样的变化情况。环扫实现较高的低真空,其核心技术就是采用两级压差光栅和气体二次电子探测器,还有一些其它相关技术也相继得到完善。它是使用1个分子泵和2个机械泵,2个压差(压力限制) 光栅将主体分成3个抽气区,镜筒处于高真空,样品周围为环境状态,样品室和镜筒之间存在一个缓冲过渡状态。使用时,高真空、低真空和环境3个模式可根据情况任意选择,并且在3 种情况下都配有二次电子探测器,都能达到3.5 nm 的二次电子图像分辨率。

ESEM的特点是:

(1) 非导电材料不需喷镀导电膜,可直接观察,分析简便迅速,不破坏原始形貌;

(2) 可保证样品在100 %湿度下观察,即可进行含油含水样品的观察,能够观察液体在样品表面的蒸发和凝结以及化学腐蚀行为;

(3) 可进行样品热模拟及力学模拟的动态变化实验研究,也可以研究微注入液体与样品的相互作用等。因为这些过程中有大量气体释放,只能在环扫状态下进行观察。

1.3扫描电镜的工作原理、设备构造及其功能

扫描电镜(Scanning Electron Microscope ,简写为SEM) 是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。以下为几种扫描电镜:

图2.1 Philips XL系列扫描电镜图2.2 日本电子(JEOL)普通扫描电镜

图2.3日本电子(JEOL)冷场发射扫描电镜

1.3.1 扫描电镜工作原理

扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集成细小(直径一般为1-5 nm)的电子束(相应束流为10- 11--10- 12 A) 。在末级透镜上方扫描线圈的作用下,使电子束在试样表面做光栅扫描(行扫+ 帧扫) 。入射电子与试样相互作用会产生二次电子、背散射电子、X射线等各种信息[1]。这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等等) ,将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图像[2] 。如果将探测器接收到的信号进行数字化处理即转变成

数字信号,就可由计算机做进一步的处理和存储。扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面[3]。扫描电镜的主要特征如下:

(1) 能够直接观察大尺寸试样的原始表面;

(2) 试样在样品室中的自由度非常大;

(3) 观察的视场大

(4) 图像景深大,立体感强;

(5) 对厚块试样可得到高分辨率图像;

(6) 辐照对试样表面的污染小;

(7) 能够进行动态观察(如动态拉伸、压缩、弯曲、升降温等) ;

1.3.2 扫描电镜的主要结构及其功能

传统扫描电镜主体结构和组成部分如图2.4[4] 2.5所示。

扫描电镜主要由电子光学系统,信号收集处理系统,图像显示和记录系统,真空系统,电源级控制系统几个部分组成。

图2.4 传统扫描电镜的主体结构图2.5 JSM-6301F场发射扫电镜的结构

(1)电子光学系统

电子光学系统包括电子枪,电磁透镜,扫描线圈和样品室等部件。作用是获得扫描电子束,作为产生物理信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。

a.电子枪

利用阴极与阳极灯丝间的高压产生高能量的电子束。目前大多数扫描电镜采用热阴极电子枪。优点:灯丝价格便宜,真空要求不高;缺点:发射效率低,发射源直径大,分辨率低。

现在,高等级扫描电镜采用六硼化镧(LaB6)或场发射电子枪,二次电子像的分辨率可达到2nm。

扫描电镜的分辨率与电子在试样上的最小扫描范围有关。通常电压为1-30 kV。

b.电磁透镜

作用:是把电子枪的束斑逐渐缩小,从原来直径约为50μm的束斑缩小成一个只有数nm的细小束斑。

工作原理:一般有三个聚光镜,前两个透镜是强透镜,用来缩小电子束光斑尺寸。

第三个聚光镜是弱透镜(习惯上称其为物镜),具有较长的焦距,它的功能是在样品室和透镜之间留有尽可能大的空间,以便装入各种信号探测器。在该透镜下方放置样品可避免磁场对二次电子轨迹的干扰。

c.扫描线圈

作用:提供入射电子束在样品表面上以及阴极射线管内电子束在荧光屏上的同步扫描信号。“光栅扫描”。

改变入射电子束在样品表面扫描振幅,以获得所需放大倍率的扫描像。SEM 的放大倍数是由调节扫描线圈的电流来改变的,电流小,电子束偏转小,在样品上移动的距离小,放大倍数大。

d.样品室

样品台,容纳大的样品(100mm),能进行三维空间的移动,还能倾斜(0°-90°)和转动(360°),精度高,振动小。

各种信号检测器。信号的收集效率和相应检测器的安放位置有很大关系。多种附件。例如加热、冷却、拉伸,可进行动态观察。

(2)信号收集和显示系统

信号收集:二次电子和背散射电子收集器、吸收电子检测器、X 射线检测器(波

谱仪和能谱仪)。

显示系统:显示屏有两个,一个用于观察,一个用于记录照相。阴极射线管CRT扫描一帧图像可以有0.2s、0.5s等扫描速度,10cm×10cm的屏幕,一般有500条线,用于人眼观察;照相的800-1000条线。观察时为便于调焦,采用快的扫描速度;拍照时为得到高分辨率,采用慢的扫描速度(50-100s)。

样品信号闪烁计数器,电离,复合光信号光电倍增管,信号放大电流信号视频放大器,放大调制信号显像管(CRT)

(3)真空系统和电源系统

真空系统,包括机械泵和扩散泵。作用:为保证电子光学系统正常工作,提供高的真空度,防止样品污染,保持灯丝寿命,防止极间放电。

要求:10-4-10-5mmHg。

电源系统,包括启动的各种电源(高压、透镜系统、扫描线圈),检测-放大系统电源,光电倍增管电源,真空系统和成像系统电源灯。还有稳压,稳流及相应的安全保护电路。

1.4扫描电镜的性能

(1)扫描电镜分辨率的高低与检测信号的种类有关

表2.1 各种信号成像的分辨率(单位为nm)

可以看出:

二次电子和俄歇电子的分辨率高,

在图像分析时,扫描电镜的分辨率,即指二次电子像的分辨率。

(2)影响扫描电镜的分辨率的三大因素

电子束的束斑大小、检测信号类型以及检测部位的原子序数。

扫描电镜的分辨率:是通过测定图像中两个颗粒(或区域)间的最小距离来确定的。

测定的方法:是在已知放大倍数(一般在10万倍)的条件下,把在图像上测到

的最小间距除以放大倍数所得数值就是分辨率。如图2.6,2.7所示。

图2.6普通钨灯丝扫描电镜的分照片

25KV 10万倍

JEOL 日本电子图2.7 场发射扫描电镜的分辨率照片

15KV 30万倍

JEOL 日本电子

1.5 扫描电镜在冶金及金属材料分析中的应用情况

扫描电镜结合上述各种附件,其应用范围很广[5-11],包括断裂失效分析、产品缺陷原因分析、镀层结构和厚度分析、涂料层次与厚度分析、材料表面磨损和腐蚀分析、耐火材料的结构与蚀损分析等等,结合钢铁材料的研究粗略列举如下:(1)机械零部件失效分析,可根据断口学原理判断断裂性质(如塑性断裂、脆性断裂、疲劳断裂、应力腐蚀断裂、氢脆断裂等) ,追溯断裂原因,调查断裂是跟原材料质量有关还是跟后续加工或使用情况有关等等。

(2)钢铁产品质量和缺陷分析,如连铸坯裂纹、气泡、中心缩孔;板坯过烧导致的晶界氧化制过程造成的机械划伤、折叠、氧化铁皮压入;过酸洗导致的蚀坑;涂层剥落及其它缺等等。由于扫描电镜的分辨率和景深比电子探针的高,因而,可从新鲜断口上获得更为全面的信息,如晶界碳化物、中心疏松等。

(3)利用高温样品台,可以观察材料在加热过程中组织转变的过程,研究不同材料在热状态下转变的差异。在材料工艺性能研究方面,可以直接观察组织形态的动态变化,弥补了以前只能通过间接观察方法的不足。例如,耐火材料和铁氧体的烧结温度都在1 000 ℃以上,实验中可以观察材料的原位变化,待冷却后,结合能谱仪和EBSD ,进而可以分析变化后的物相。

(4)利用拉伸样品台,可预先制造人工裂纹,研究在有预裂纹情况下材料

对裂纹大小的敏感性以及裂纹的扩展速度,有益于材料断裂韧性的研究。例如,钢帘线因其在后续加工过程中要拉拔到0. 2 mm 左右的直径,对夹杂物非常敏感,因此,其炼钢过程对夹杂物的控制要求特别严格。采用本仪器,可预先制作一个有夹杂物的钢帘线试样,在拉伸过程中观察夹杂物附近钢基的变化,直至开裂,然后对照钢帘线实物断口,讨论夹杂物类型、形态、尺寸、分布对断裂的影响。另外,还可研究线材形变跟夹杂物类型和尺寸的关系,也可研究夹杂物对其它材料形变行为的影响。还可将试样经过不同介质的腐蚀,然后装入拉伸样品台做拉伸实验,研究腐蚀条件对材料力学性能的影响。

(5)利用EBSD装置,对汽车板等小晶粒的织构产品,可在轧制并退火之后,统计各种取向晶粒的比例,研究轧制和退后工艺对织构的影响。又如焊接试样的熔合区为凝固状态的柱状晶,因其是定向生长,存在织构,可用EBSD得到各种取向晶粒的分布情况,并可进行统计,这对焊接材料、焊接工艺以及焊接性能的研究又扩展到了晶体学研究的层次。再如,管线钢在使用过程中可能出现选择性腐蚀,采用形貌观察,结合能谱仪成分分析,可以了解优先腐蚀的因素(如夹杂物类型、材料缺陷等);用EBSD分析,可以了解晶粒取向和组织结构跟腐蚀之间的关系。

(6)在陶瓷的制备过程中,原始材料及其制品的显微形貌、孔隙大小、晶界和团聚程度等将决定其最后的性能。扫描电子显微镜可以清楚地反映和记录这些微观特征,是观察分析样品微观结构方便、易行的有效方法,样品无需制备,只需直接放入样品室内即可放大观察;同时扫描电子显微镜可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析。扫描电子显微镜拍出的图像真实、清晰,并富有立体感,在新型陶瓷材料的三维显微组织形态的观察研究方面获得了广泛地应用。

由于扫描电子显微镜可用多种物理信号对样品进行综合分析,并具有可以直接观察较大试样、放大倍数范围宽和景深大等特点,当陶瓷材料处于不同的外部条件和化学环境时,扫描电子显微镜在其微观结构分析研究方面同样显示出极大的优势。主要表现为:

a力学加载下的微观动态(裂纹扩展)研究;

b加热条件下的晶体合成、气化、聚合反应等研究;

c晶体生长机理、生长台阶、缺陷与位错的研究;

d成分的非均匀性、壳芯结构、包裹结构的研究;(5)晶粒相成分在化学环境下差异性的研究等。

(7)纳米材料是纳米科学技术最基本的组成部分,现在可以用物理、化学及生物学的方法制备出只有几个纳米的“颗粒”。纳米材料的应用非常广泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点,纳米陶瓷在一定的程度上也可增加韧性、改善脆性等,新型陶瓷纳米材料如纳米称、纳米天平等亦是重要的应用领域。

纳米材料的一切独特性主要源于它的纳米尺寸,因此必须首先确切地知道其尺寸,否则对纳米材料的研究及应用便失去了基础。纵观当今国内外的研究状况和最新成果,目前该领域的检测手段和表征方法可以使用透射电子显微镜、扫描隧道显微镜、原子力显微镜等技术,但高分辨率的扫描电子显微镜在纳米级别材料的形貌观察和尺寸检测方面因具有简便、可操作性强的优势被大量采用。另外如果将扫描电子显微镜与扫描隧道显微镜结合起来,还可使普通的扫描电子显微镜升级改造为超高分辨率的扫描电子显微镜。

二结论

新一代环境扫描电镜与能谱仪和EBSD配合,可在得到较好的试样形貌像的前提下同时得到成分信息和晶体学的信息。最近几年实现了拉伸台与计算机的完美结合,有比较完善的材料动态拉伸扫描电镜,研究才有可能开展得更为深入。环境扫描电镜真空系统和探测器等相关技术的成熟,使得高温样品台的应用更安全可靠。可以预期,高温样品台、动态拉伸台、能谱仪、EBSD和环境扫描电镜组合,必将在钢铁材料工艺研究和品种开发等方面发挥更大的作用。

三参考文献

[1] 王成国,丁洪太,侯绪荣.材料分析测试方法[M].上海:上海交通大学出版社,1994.106

[2] 陈世朴. 金属电子显微分析[M]. 北京: 机械工业出版社,1992.

[3] 吴立新,陈方玉. 现代扫描电镜的发展及其在材料科学中的应用[M]. 武汉:武钢技术中心,2005.8.

[4] 谈育煦. 材料研究方法[M] . 北京:机械工业出版社,2004. 5.

[5] 郭可信.金相学史话;电子显微镜在材料科学中的应用[ J] . 材料科学与工程,2002,20(1):5-10.

[6] Li J B,Kong X Y,Xie Z P,et a.l. Improved strength recovery of a titanium carbide /silicon nitride composite from thermal shock damage via microwave heating[ J]. J Am Ceram Soc,1999,82(6):1576-1578.

[7] Deng X Y,W and X H,W en H,et a.l. Phase transitions in nanocrystalline barium titanate ceramics prepared by spark plasm a sintering[ J] . J Am Ceram Soc,2006,

89(3):1059-1064.

[8] 李成基,李韫言,商广义. 扫描电子显微镜与扫描隧道显微镜联用装置[ J] . 分析测试技术与仪器, 1997, 5(1):5-8.

[9] L i J B,Xu G Y,S un E Y,et a.l Synthesis and morphology of niobium monocarp bide whiskers[ J]. J Am Ceram Soc,1998,81(6):1689-1691.

[10] N an CW,Fan L Z,Lin Y H,et a.l Enhanced ionic conductivity of polymer electrolytes containing nano composite S iO2 particles[ J] . Phys Rev Lett,2003,91(26):266104.

[11] Chen IW,W and X H. Sintering dense nano-crystalline ceramics without final stage grain growth[ J] . Nature,2000,404(6774):168-171.

扫描电镜的原理及其在材料科学领域的应用

一、扫描电镜的原理 扫描电镜(Scanning Electron Microscope),简写为SEM,是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。 扫描电镜的基本工作过程如图1,用电子束在样品表面扫描,同时,阴极射线管内的电子束与样品表面的电子束同步扫描,将电子束在样品上激发的各种信号用探测器接收,并用它来调制显像管中扫描电子束的强度,在阴极射线管的屏幕上就得到了相应衬度的扫描电子显微像。电子束在样品表面扫描,与样品发生各种不同的相互作用,产生不同信号,获得的相应的显微像的意义也不一样。入射电子与试样相互作用产生图2所示的信息种类[1-4]。 这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。 图1 扫描电子显微镜的工作原理图2 电子束探针照射试样产生的各种信息 扫描电子显微镜(SEM)中的各种信号及其功能如表1所示 表1 扫描电镜中主要信号及其功能 二、扫描电镜的构成

图3给出了电镜的电子光学部分的剖面图。主要包括以下几个部分: 1.电子枪——产生和加速电子。由灯丝系统和加速管两部分组成 2.照明系统——聚集电子使之成为有一定强度的电子束。由两级聚光镜组合而 成。 3.样品室——样品台,交换,倾斜和移动样品的装置。 4.成像系统——像的形成和放大。由物镜、中间镜和投影镜组成的三级放大系 统。调节物镜电流可改变样品成像的离焦量。调节中间镜电流可以改变整个系统的放大倍数。 5.观察室——观察像的空间,由荧光屏组成。 6.照相室——记录像的地方。 7.除了上述的电子光学部分外,还有电气系统和真空系统。提供电镜的各种电 压、电流及完成控制功能[3]。 图3 电镜的电子光学部分剖面图

扫描电镜及其在储层研究中的应用分析

扫描电镜测试技术原理及其在储层研究中的应用 1、扫描电镜的结构和工作原理 扫描电镜的主要构成分为四部分:镜筒、电子信号的显示与记录系统、电子信号的收集与处理系统、真空系统及电源系统(图1)。以下是各部分的简介和工作原理。 1.1扫描电镜结构 1.1.1镜筒 镜筒包括电子枪、聚光镜、物镜及扫描系统,其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面进行扫描,同时激发出各种信号。 1.1.2电子信号的收集与处理系统 在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几nm 至几十nm 的区域,其产生率主要取决于样品的形貌和成份。通常所说的扫描电镜图像指的就是二次电子像,它是研究样品表面形貌的最有用的电子信号。检测二次电子的检测器的探头是一个闪烁体,当电子打到闪烁体上时,就在其中产生光,这种光被光导管传送到光电倍增管,光信号即被转变成电流信号,再经前置放大及视频放大,将电流信号转变成电压信号,最后被送到显像管的栅极。 1.1.3电子信号的显示与记录系统 扫描电镜的图像显示在阴极射线管(显像管)上,并由照相机拍照记录。显像管有两个,一个用来观察,分辨率较低,是长余辉的管子;另一个用来照相记录,分辨率较高,是短余辉的管子。 1.1.4真空系统及电源系统 扫描电镜的真空系统由机械泵和油扩散泵组成,其作用是使镜筒内达到10 托的真空度。电源系统则供给各部件所需的特定电源。

图1 扫描电镜结构图 1.2扫描电镜的基本原理 扫描电镜的电子枪发射出电子束,电子在电场的作用下加速,经过两次电磁透镜的作用后在样品表而聚焦成极细的电子束。该细小的电子束在末透镜的上方的双偏转线圈作用下在样品表而进行扫描,被加速的电子与样品相互作用,激发出各种信号,如二次电子,背散射电子,吸收电子、X射线、俄歇电子、阴极发光等。这些信号被按顺序、成比例的交换成视频信号、检测放大处理成像,从而在荧光屏上观察到样品表而的各种特征图像。 2、扫描电镜在矿物岩石学领域的应用 2.1矿物研究 不同矿物在扫描电镜中会呈现出其特征的形貌,这是在扫描电镜中鉴定矿物的重要依据。如高岭石在扫描电镜中常呈假六方片状、假六方板状、假六方似板状;埃洛石常呈管状、长管状、圆球状;蒙脱石为卷曲的薄片状;绿泥石单晶呈六角板状,集合体呈叶片状堆积或定向排列等。王宗霞等在扫描电镜下观察了硅藻上的形貌,硅藻上多呈圆盘状、板状,根据这一特征即可将它鉴定出来。 矿物特征及残余结构可以推断其成岩环境和搬运演化历史,扫描电镜可对矿 物的结构和成分进行分析,为推断矿物的成岩环境和搬运演化历史提供基础资

S4800扫描电镜操作说明书

冷场发射扫描电子显微镜S4800操作说明(普通用户) 燕山大学材料学院材料管A104(场发射,钨灯丝) 编写人:李月晴吕益飞 普通用户在熟练操作1个月后,如无不良记录,可申请高级用户培训。 高倍调清晰:局部放大(Red) →聚焦Focus→消像散 一、日常开机 1,开启冷却循环水电源。 2,按下Display开关至,PC自动开机进入用户界面并自动运行PC_SEM程序,以空口令登入。 3,打开信号采集开关,位置打到1,为打开。 4,打开电源插排的开关。 5,打开装有EDS软件的主机电源。 6,记录仪器运行参数(右下角Mainte),即钨灯丝真空度。如:IP1:0.0×10-8Pa;IP2:0.0×10-8Pa; IP3:9.6×10-7Pa。PeG-1,<1×10-3;PeG-2,<1×10+2。 注意:PeG≤1×10-3Pa时才能加高压测量。记录的参数:①点Flashing时会显示:In2(Ie)Flashing时电流最大值,如32.9μA;②加上高压后会显示,V ext=3.4kV。 二、轰击(点flashing,即在阴极加额外电压) 目的:高温去除针尖表面吸附的气体 1,最好在每天开始观察样品前一时做flashing; 2,选择flashing intensity为2 ; 3,若flashing运行时Ie小于20μA,则反复执行直至Ie值超过20μA且不再增加。 4,若flashing后超过8个小时仍继续使用,重新执行flshing 。 三、加液氮 容积不要超过1L,能维持4~6h。 四、样品制备及装入 样品制备简单,对样品要求较低,只要能放进样品室,都可进行观察。 1,化学上和物理上稳定的干燥固体,表面清洁,在真空中及在电子束轰击下不挥发或变形,无放射性和腐蚀性。 2,样品必须导电,非导电样品,可在表面喷镀金膜。 3,带有磁性的样品,由于物镜有强磁性,制样必须非常小心,防止在强磁场中样品被吸入

扫描电镜简述

J I A N G S U U N I V E R S I T Y 冶金工程专业硕士研究生结课论文论文题目:扫描电镜SEM分析技术综述 课程名称:Modern Material Analytic Technology 专业班级: 2015级硕士研究生 学生姓名 学号:2211505072 学院名称:材料科学与工程学院 学期: 2015-2016第一学期 完成时间: 2015年11月 30 日

扫描电镜SEM分析技术综述 摘要 扫描电子显微镜(如下图所示),简称为扫描电镜,英文缩写为SEM(Scanning Electron Microscope)。它是用细聚焦的电子束轰击样品表面,通过电子与样品相互作用产生的二次电子、背散射电子等对样品表面或断口形貌进行观察和分析。现在SEM都与能谱(EDS)组合,可以进行成分分析。所以,SEM也是显微结构分析的主要仪器,已广泛用于材料、冶金、矿物、生物学等领域。 本文主要对扫描电镜SEM进行简单介绍,分别从扫描电镜发展的历史沿革;工作原理;设备构造及功能;在冶金及金属材料分析中的应用情况;未来发展方向等几个方面来对扫描电镜分析技术进行综述。 关键词: 扫描电子显微镜二次电子背散射电子 EDS 成分分析 扫描电子显微镜

目录 一扫描电镜 (4) 1.1 近代扫描电镜的发展 (4) 1.1.1场发射扫描电镜 (4) 1.1.2 分析型扫描电镜及其附件 (5) 1.2 现代扫描电镜的发展 (6) 1.2.1低电压扫描电镜 (6) 1.2.2 低真空扫描电镜 (6) 1.2.3环境扫描电镜ESEM (7) 1.3 扫描电镜工作原理设备构造及其功能 (7) 1.3.1扫描电镜工作原理 (8) 1.3.2 扫描电镜的主要结构及功能 (9) 1.4 扫描电镜性能 (11) 1.5扫描电镜在冶金及金属材料分析中的应用 (12) 二结论 (14) 三参考文献 (14)

扫描电镜技术及其在材料科学中的应用

扫描电镜在材料分析中的应用 摘要:随着科学技术的发展进步,人们不断需要从更高的微观层次观察、认识周围的物质世界。细胞、微生物等微米尺度的物体直接用肉眼观察不到,显微镜的发明解决了这个问题。目前,纳米科技成为研究热点,集成电路工艺加工的特征尺度进入深亚微米,所有这些更加微小的物体光学显微镜也观察不到,必须使用电子显微镜。电子显微镜可分为扫描电了显微镜简称扫描电镜(SEM)和透射电子显微镜简称透射电镜(TEM)两大类。本文主要介绍扫描电子显微镜工作原理、结构特点及其发展,阐述了扫描电子显微镜在材料科学领域中的应用。 关键词:电子显微镜;扫描电镜;材料;应用 引言: 自从1965年第一台商品扫描电镜问世以来,经过40多年的不断改进,扫描电镜的分辨率从第一台的25nm提高到现在的0.01nm,而且大多数扫描电镜都能通X射线波谱仪、X射线能谱仪等组合,成为一种对表面微观世界能过经行全面分析的多功能电子显微仪器。扫描电镜已成为各种科学领域和工业部门广泛应用的有力工具。从地学、生物学、医学、冶金、机械加工、材料、半导体制造、陶瓷品的检验等均大量应用扫描电镜作为研究手段。 在材料领域中,扫描电镜技术发挥着极其重要的作用,被广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究。利用扫描电镜可以直接研究晶体缺陷及其生产过程,可以观察金属材料内部原子的集结方式和它们的真实边界,也可以观察在不同条件下边界移动的方式,还可以检查晶体在表面机械加工中引起的损伤和辐射损伤等。 1.扫描电镜的原理 扫描电镜(Scanning Electron Microscope),简写为SEM,是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。 扫描电镜的基本工作过程如图1,用电子束在样品表面扫描,同时,阴极射线管内的电子束与样品表面的电子束同步扫描,将电子束在样品上激发的各种信号用探测器接收,并用它来调制显像管中扫描电子束的强度,在阴极射线管的屏幕上就得到了相应衬度的扫描电子显微像。电子束在样品表面扫描,与样品发生各种不同的相互作用,产生不同信号,获得的相应的显微像的意义也不一样。入射电子与试样相互作用产生图2所示的信息种类[1-4]。 这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图如果将探测器接收到的信号进行数字化处理即转变成数字

扫描电镜在材料表面形貌观察及成分分析中的应用

扫描电镜在材料表面形貌观察及成分分析中的应用 一、实验目的 1)了解扫描电镜的基本结构和工作原理,掌握扫描电镜的功能和用途; 2)了解能谱仪的基本结构、原理和用途; 3)了解扫描电镜对样品的要求以及如何制备样品。 二、实验原理 (一)扫描电镜的工作原理和结构 1. 扫描电镜的工作原理 扫描电镜是对样品表面形态进行测试的一种大型仪器。当具有一定能量的入射电子束轰击样品表面时,电子与元素的原子核及外层电子发生单次或多次弹性与非弹性碰撞,一些电子被反射出样品表面,而其余的电子则渗入样品中,逐渐失去其动能,最后停止运动,并被样品吸收。在此过程中有99%以上的入射电子能量转变成样品热能,而其余约1%的入射电子能量从样品中激发出各种信号。如图1所示,这些信号主要包括二次电子、背散射电子、吸收电子、透射电子、俄歇电子、电子电动势、阴极发光、X射线等。扫描电镜设备就是通过这些信号得到讯息,从而对样品进行分析的。 图1 入射电子束轰击样品产生的信息示意图

从结构上看,扫描电镜主要由七大系统组成,即电子光学系统、探测、信号处理、显示系统、图像记录系统、样品室、真空系统、冷却循环水系统、电源供给系统。 由图2我们可以看出,从灯丝发射出来的热电子,受2-30KV电压加速,经两个聚光镜和一个物镜聚焦后,形成一个具有一定能量,强度和斑点直径的入射电子束,在扫描线圈产生的磁场作用下,入射电子束按一定时间、空间顺序做光栅式扫描。由于入射电子与样品之间的相互作用,从样品中激发出的二次电子通过收集极的收集,可将向各个方向发射的二次电子收集起来。这些二次电子经加速并射到闪烁体上,使二次电子信息转变成光信号,经过光导管进入光电倍增管,使光信号再转变成电信号。这个电信号又经视频放大器放大,并将其输入到显像管的栅极中,调制荧光屏的亮度,在荧光屏上就会出现与试样上一一对应的相同图像。入射电子束在样品表面上扫描时,因二次电子发射量随样品表面起伏程度(形貌)变化而变化。 故视频放大器放大的二次电子信号是一个交流信号,用这个交流信号调制显像管栅极电,其结果在显像管荧光屏上呈现的是一幅亮暗程度不同的,并反映样品表面起伏程度(形貌)的二次电子像。应该特别指出的是:入射电子束在样品表面上扫描和在荧光屏上的扫描必须是“同步”,即必须用同一个扫描发生器来控制,这样就能保证样品上任一“物点”样品A点,在显像管荧光屏上的电子束恰好在A’点即“物点”A与“像点” A’在时间上和空间上一一对应。通常称“像点”A’为图像单元。显然,一幅图像是由很多图像单元构成的。 扫描电镜除能检测二次电子图像以外,还能检测背散射电子、透射电子、特征x射线、阴极发光等信号图像。其成像原理与二次电子像相同。 在进行扫描电镜观察前,要对样品作相应的处理。扫描电镜样品制备的主要要求是:尽可能使样品的表面结构保存好,没有变形和污染,样品干燥并且有良好导电性能。

TEM和SEM的异同比较分析以及环境扫描电镜场知识交流

TEM和SEM的异同比较分析以及环境扫描电镜,场发射电镜与传统电镜相比较的技术特点和应用 xrd是x射线衍射,可以分析物相,SEM是扫描电镜,主要是观察显微组织,TEM是透射电镜,主要观察超限微结构。AES 是指能谱,主要分析浓度分布。STM扫描隧道显微镜,也是观察超微结构的。AFM是原子力显微镜,主要是观察表面形貌用的。 TEM: 透射电子显微镜(英语:Transmission electron microscope,缩写TEM),简称透射电镜,是把经加速和聚集的电子束投射到非常薄的样品上,电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密度、厚度相关,因此可以形成明暗不同的影像。通常,透射电子显微镜的分辨率为0.1~0.2nm,放大倍数为几万~百万倍,用于观察超微结构,即小于0.2μm、光学显微镜下无法看清的结构,又称“亚显微结构”。TEM是德国科学家Ruskahe和Knoll在前人Garbor和Busch的基础上于1932年发明的。 编辑本段成像原理透射电子显微镜的成像原理可分为三种情况:

吸收像:当电子射到质量、密度大的样品时,主要的成相作用是散射作用。样品上质量厚度大的地方对电子的散射角大,通过的电子较少,像的亮度较暗。早期的透射电子显微镜都是基于这种原理TEM透射电镜 。衍射像:电子束被样品衍射后,样品不同位置的衍射波振幅分布对应于样品中晶体各部分不同的衍射能力,当出现晶体缺陷时,缺陷部分的衍射能力与完整区域不同,从而使衍射钵的振幅分布不均匀,反映出晶体缺陷的分布。相位像:当样品薄至100A以下时,电子可以穿过样品,波的振幅变化可以忽略,成像来自于相位的变化。 编辑本段组件电子枪:发射电子,由阴极、栅极、阳极组成。阴极管发射的电子通过栅极上的小孔形成射线束,经阳极电压加速后射向聚光镜,起到对电子束加速、加压的作用。聚光镜:将电子束聚集,可用于控制照明强度和孔径角。样品室:放置待观察的样品,并装有倾转台,用以改变试样的角度,还有装配加热 、冷却等设备。物镜:为放大率很高的短距透镜,作用是放大电子像。物镜是决定透射电子显微镜分辨能力和成像质量的关键。中间镜:为可变倍的弱透镜,作用是对电子像进行二次放大。通过调节中间镜的电流,可选择物体的像或电子衍射图来进行放大。透射镜:为高倍的强透镜,用来放大中间像后在荧光屏上成像。此外还有二级真空泵来对样品室抽真空、照相装置用以记录影像。 编辑本段应用透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物体吸收,故穿透力低,样品的密度、厚度等都会影响到最后

环境扫描电子显微镜及其应用

环境电子扫描显微镜及其应用 谭明洋 (山东科技大学化学与环境工程学院,山东青岛266590) 摘要:随着科学技术的发展,微区信息已成为现代物质信息研究的重要组成部分,透射电镜(TEM)、扫描电镜(SEM)、电子探针等技术已广泛应用于材料学、生物学、医学、冶金学、矿物学等学科的领域中,促进了各有关学科的发展。但普通电子显微镜的高真空的要求限制了其适用范围,环境扫描电子显微镜(ESEM)应运而生,把人们引入了一个全新的形态学观察的领域。 关键词:环境扫描电子显微镜(ESEM),微区分析 Environmental Scanning Electron Microscope and Its Application TAN Mingyang (College of Chemistry and Environmental Engineering ,Shandong University of Science and Technology , Qingdao ,Shandong 266590) Abstract: With the development of science and technology, micro-zone information has become an important part of modern material and information studies, transmission electron microscopy (TEM), scanning electron microscopy (SEM), electron probe technology has been widely used in the field of Materials science, Biology, Medicine, Metallurgy, mineralogy etc, and promote the development of the respective disciplines. But the high-vacuum requirements of ordinary electron microscopy limits its application scopes. Environmental scanning electron microscope (ESEM) came into being and have lead us into a new morphological observation areas. Keywords: Environmental scanning electron microscope (ESEM) ,Microanalysis 环境扫描电镜(environmental scanning electron microscope, ESEM)是近年发展起来的新型扫描电镜。它克服了普通扫描电镜对试样必须干燥、洁净、导电的要求,可以在高真空度(HV)下作为普通扫描电镜使用,也可以在低真空度(LV)和模拟试样环境下对试样进行微区分析。 1环境扫描电镜的工作原理 环境扫描电镜(environmental scanning electron microscopy , ESEM)采用多级真空系统、气体二次电子信号探测器等独特设计。观察不导电样品不需要镀导电膜.可以在控制温度、压力、相对湿度和低真空度的条件下进行观察分析含水的、含油的、已污染的、不导电的样品,减少了样品的干燥损伤和真空损伤。 环境扫描电镜有三种工作方式:A)高真空方式(常规方式);B)低真空方式: 0.1 ~ 1 Torr;C)环境方式: 0.1~20 Torr 。 在高真空的常规扫描电镜中,用标准的Everhart Thornley探测器来接受被高能入射电子激发的样品的信号电流(二次电子和部分背散射电子),经放大后形成图像。 在低真空及环扫模式下,由电子枪发射的高能入射电子束穿过压差光阑进入样品室,射向被测定的样品,从样品表面激发出信号电子:二次电子一SE和背散射电子一BSE。由于样品室内有气体存在,入射电子和信号电子与气体分子碰撞,使之电离产生电子和离子。如果我们在样品和电极板之间加一个稳定电场,电离所产生的电子和离子会被分别引往与各自极

电子显微镜简介

电子显微镜简介 人类的肉眼是认识客观世界的重要工具。但因受分辨能力的限制,在300年前光学显微镜尚未出世之前,人类对世界的认识只能停在肉眼水平。光学显微镜的诞生提供了一把金钥匙,为我们打开了微观世界知识宝库的第一道大门,从而出现了组织学、细胞学、细胞病理学等前所未有的新学科。然而,光学显微镜因受照明光波波长的限制,其分辨能力也有限。自1932年德国Max Knolls 和Ernst Ruska发明了电子显微镜,为我们打开了微观世界知识宝库的第二道大门。目前电镜不仅可以观变一般细胞的超微结构,而且还可以探讨其分子结构;从一般超微结构的定性观,走向定量分析;从透射电镜超薄切片的平面观察,进入扫描电镜三维空间的立体表面观变和元素分析,使人们的认识不断深化。 一、分辨率和放大倍数 电镜的分辨率是指分辩二点间最小距离的能力。德国理论光学家Ernst Abbe证实光学显微镜分辨率的极限为照明光源波长的一半,如照明光源的平均波长为5000A(1A=10-10m)光学显微镜分辨率的极限则为2500A(0.25μm=250nm)。电镜利用波长极短的电子束为光源,其分辨率可达2-2.5A(0.2-0.25nm),比光镜高1000倍,比肉眼高一百万倍。 二、透射电镜(transmission electron microscope)的结构与原理 (一)光学透镜与电子透镜 1.透镜:光镜以可见光作光源,经玻璃透镜(凸或凹)使光线会聚或发散,形成放大的实像或虚像。电镜则以电子束为光源。电子具有波动性和粒子性,经过电磁透镜时,在电场或磁场作用下,可以改变其前进的轨道。因而,可利用电场或磁场控制电子运动的轨迹,使之产生偏转、聚集或发散。 2.电磁透镜:根据轴对称的弯曲磁场对电子束能起聚焦的作用的原理制成。磁场范围比焦距小得多的轴对称磁场透镜称为短磁透镜。短磁透镜的焦距与磁场强度的平方呈反比。磁场强度越强,焦距越短、放大倍数越大。短磁透镜的磁场强度则与透镜励磁线圈的匝数呈反比。近代高辨率电镜透镜,在线圈的内侧有高精度加工的非常轴对称的纯铁或铁钴合金高导磁材料制成的“极靴”,线圈外包有铁壳屏罩。当线圈通过电流时,就会在极靴间隙产生轴对称磁场。这种短磁透镜的焦距等于极靴间隙宽度。“极靴”内孔越小、上下“极靴”间隙越小,透镜的放大率越大。因此,“极靴”是电镜的关键部分,对电镜的分辨率起着决定性作用。只要改变透镜线圈的是电流,就能相应地改变透镜的焦距和放大率。 (二)电镜成像原理 电子显微镜以电子束为光源。由热阴极发射的电子,在几十至几百千伏加速电压作用下,经聚光镜聚焦成束,以较高速度投射到很薄的样品上,并在与样品中的原子发生碰撞时,改变方向,产生立体角发散。散射角的大小与样品的密度和厚度有关:质量、厚度越大者,电子散射角也越大,通过的电子被样品后面小孔光栏挡住的就越多,像的亮度较暗;质量、厚

扫描电镜技术及其在材料科学中的应用

扫描电镜技术及其在材料科学中的应用 摘要:随着科学技术的发展进步,人们不断需要从更高的微观层次观察、认识周围的物质世界。细胞、微生物等微米尺度的物体直接用肉眼观察不到,显微镜的发明解决了这个问题。目前,纳米科技成为研究热点,集成电路工艺加工的特征尺度进入深亚微米,所有这些更加微小的物体光学显微镜也观察不到,必须使用电子显微镜。电子显微镜可分为扫描电了显微镜简称扫描电镜(SEM)和透射电子显微镜简称透射电镜(TEM)两大类。本文主要介绍扫描电子显微镜工作原理、结构特点及其发展,阐述了扫描电子显微镜在材料科学领域中的应用。 关键词:电子显微镜;扫描电镜;材料;应用 二十世纪60年代以来,出现了扫描电子显微镜(SEM)技术,这样使人类观察微小物质的能力发生质的飞跃依靠扫描电子显微镜的高分辨率、良好的景深和简易的操作方法,扫描电子显微镜(SEM)迅速成为一种不可缺少的工具,并且广泛应用于科学研究和工程实践中近年来,随着现代科学技术的不断发展,相继开发了环境扫描电子显微镜(ESEM)、扫描隧道显微镜(SEM)、原子力显微镜(AFM)等其它一些新的电子显微技术这些技术的出现,显示了电子显微技术近年来自身得到了巨大的发展,尤其是大大扩展了电子显微技术的使用范围和应用领域在材料科学中的应用使材料科学研究得到了快速发展,取得了许多新的研究成果[1-3]。 一、扫描电镜的原理 扫描电镜(Scanning Electron Microscope),简写为SEM,是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。 扫描电镜的基本工作过程如图1,用电子束在样品表面扫描,同时,阴极射线管内的电子束与样品表面的电子束同步扫描,将电子束在样品上激发的各种信号用探测器接收,并用它来调制显像管中扫描电子束的强度,在阴极射线管的屏幕上就得到了相应衬度的扫描电子显微像。电子束在样品表面扫描,与样品发生各种不同的相互作用,产生不同信号,获得的相应的显微像的意义也不一样。入射电子与试样相互作用产生图2所示的信息种类[1-4]。 这些信息的二维强度分布随试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等),是将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图如果将探测器接收到的信号进行数字化处理即转变成数字

扫描电镜实验报告要求

扫描电镜实验报告要求 第一部分:实验预习报告 一、实验目的、意义 1、了解扫描电镜的基本结构与原理 2、掌握扫描电镜样品的准备与制备方法 3、掌握扫描电镜的基本操作并上机操作拍摄二次电子像 4、了解扫描电镜图片的分析与描述方法 二、实验基本原理与方法 1、扫描电镜的基本结构构造 2、扫描电镜的工作原理 3、扫描电镜成像原理 三、主要仪器设备及耗材 1、JSM-5610 LV扫描电镜 2、JFC-1600离子溅射仪(样品喷涂导电层用) 3、银导电胶、双面胶(制样用) 4、粉末样品、块状样品 四、实验方案与技术路线 1、介绍扫描电镜的基本情况与最新进展(场发射扫描电镜、环境扫描电镜的特点及应用) 2、结合具体仪器介绍扫描电镜的构造与工作原理; 3、重点介绍扫描电镜样品的准备与制备方法,并要求每位同学动手制样,掌握扫描电镜样 品的准备与制备方法; 4、了解扫描电镜的操作过程,掌握二次电子像的观察过程,要求每位同学上机操作,并在 2-4个样品上拍摄2-4张二次电子像图片,要求图片清晰有代表性; 5、仔细观察和分析现场给出的200多张图片,并对某类或某几张自己感兴趣的图片进行描 述(要求总字数150字以上)。 第二部分:实验过程记录 一、实验原始记录 按实验过程进行记录: 1、样品的准备与制备过程 2、仪器操作过程与照片的拍摄过程。 第三部分:结果与分析 一、实验结果与分析 1、现场没描述照片的同学,对“附件二、扫描电镜图片”进行微观形态描述(要求:写清 楚图片或样品名称,不需要打印照片,描述图片张数自己确定,总字数要达到150字以上); 2、将2-4张自己拍摄的照片打印并粘贴到实验报告上,写上样品名称。 3、总结对扫描电镜实验课的体会。

扫描电镜的综述及发展

扫描电镜的综述及发展 1 扫描电镜的原理 扫描电镜(Scanning Electron Microscope,简写为SEM)是一个复杂的系统,浓缩了电子光学技术、真空技术、精细机械结构以及现代计算机控制技术。成像是采用二次电子或背散射电子等工作方式,随着扫描电镜的发展和应用的拓展,相继发展了宏观断口学和显微断口学。 扫描电镜是在加速高压作用下将电子枪发射的电子经过多级电磁透镜汇集成细小(直径一般为1~5nm)的电子束(相应束流为10-11~10-12A)。在末级透镜上方扫描线圈的作用下,使电子束在试样表面做光栅扫描(行扫+帧扫)。入射电子与试样相互作用会产生二次电子、背散射电子、X射线等各种信息。这些信息的二维强度分布随着试样表面的特征而变(这些特征有表面形貌、成分、晶体取向、电磁特性等等),将各种探测器收集到的信息按顺序、成比率地转换成视频信号,再传送到同步扫描的显像管并调制其亮度,就可以得到一个反应试样表面状况的扫描图像[1]。如果将探测器接收到的信号进行数字化处理即转变成数字信号,就可以由计算机做进一步的处理和存储。 扫描电镜主要是针对具有高低差较大、粗糙不平的厚块试样进行观察,因而在设计上突出了景深效果,一般用来分析断口以及未经人工处理的自然表面。机构组成 扫描电子显微镜由三大部分组成:真空系统,电子束系统以及成像系统。 真空系统 真空系统主要包括真空泵和真空柱两部分。真空柱是一个密封的柱形容器。 真空泵用来在真空柱内产生真空。有机械泵、油扩散泵以及涡轮分子泵三大类,机械泵加油扩散泵的组合可以满足配置钨枪的SEM的真空要求,但对于装置了场致发射枪或六硼化镧枪的SEM,则需要机械泵加涡轮分子泵的组合。 成像系统和电子束系统均内置在真空柱中。真空柱底端即为右图所示的密封室,用于放置样品。

扫描电镜经典总结材料

?扫描电镜(SEM) ?透射电镜(TEM)?原子力显微镜(AFM)? X射线衍射(XRD)?元素分析(EA)显微分析技术——电子显微镜 一束电子射到试样上,电子与物质相互作用,当电子的运动方向被改变,称为散射。 透射电子直接透射电子,以及弹性或非弹性散射的透射电子用于透射 电镜(TEM)的成像和衍射 二次电子 入射电子与样品中原子的价电子发生非弹性散射作用而损 失的那部分能量(30~50eV)激发核外电子脱离原子,能量 大于材料逸出功的价电子可从样品表面逸出,成为真空中的 自由电子,此即二次电子。在电场的作用下它可呈曲线运动 进入检测器,使表面凹凸的各个部分都能清晰成像。 二次电子试样表面状态非常敏感,能有效显示试样表面的 微观形貌;二次电子的分辨率可达5~10nm,即为扫描电镜 的分辨率。 二次电子的强度主要与样品表面形貌相关。二次电子和背 景散射电子共同用于扫描电镜(SEM)的成像。 当探针很细,分辨高时,基本收集的是二次电子而背景电 子很少,称为二次电子成像(SEI)。 背景散射电子 入射电子穿达到离核很近的地方被反射,没有能量损失; 既包括与原子核作用而形成的弹性背散射电子,又包括与样 品核外电子作用而形成的非弹性背散射电子,前者的份额远

大于后者。 背散射电子反映样品表面的不同取向、不同平均原子量的 区域差别,产额随原子序数的增加而增加;利用背散射电子 为成像信号,可分析形貌特征,也可显示原子序数衬度而进 行定性成分分析。 特征X射线入射电子和原子中的层电子发生非弹性散射作用而损失一 部分能量(几百个eV),激发层电子发生电离,形成离 子,该过程称为芯电子激发。除了二次电子外,失去层电 子的原子处于不稳定的较高能量状态,将依一定的选择定则 向能量较低的量子态跃迁,跃迁过程中发射出反映样品中元 素组成信息的特征X射线,可用于材料的成分分析。 俄歇(Auger)电子如果入射电子把外层电子打进层,原子被激发了.为释放能量而电离出次外层电子,叫俄歇电子。主要用于轻元素和超轻元素(除H和He)的分析,称为俄歇电子能谱仪。 阴极荧光如果入射电子使试样的原于电子发生电离,高能级的电子向低能级跃迁时发出的光波长较长(在可见光或紫外区),称为阴极荧光,可用作光谱分析,但它通常非常微弱。 各种信号的深度与区域大小高能电子束受到物质原子的散射作用偏离入射方向,向外发散;随着深度的增加,分布围增大,动能不断降低、直至为0,形成一个作用区。“梨形作用体积”:对轻元素样品,入射电子经多次小角散射,在未达到较大散射角之前已深入样品部;最后散射角增大,达到漫散射的程度。“半球形作用体积”:对重元素样品,入射电子在样品表面不很深的位置就达到漫反射的程度。电子在样品散射区域的形状主要取决于原子序数,改变电子能量只引起作用体积大小的改变而不会显著改变形状。 深度能逸出材料表面的俄歇电子距表面的深度:0.4~2nm,为表 面信号;

扫描电子显微镜操作规程

扫描电子显微镜操作规程 1. 打开墙上配电箱里的空气开关(见标签上开下关) 2. 打开变压器电源(正常电压应为100v) 3. 打开主机电源:钥匙拧到START位置,停两秒松手,钥匙回到I位置。 4. 打开电脑电源 5. 点击桌面图标,等待 6. 当HT图标显示蓝色后,点VENT排气(排气时vent闪,排完气vent不闪),排完气方可打开样品室 7. 正确选择Z轴高度(需要估计样品高度,Z轴大于样品高度 放入样品,关闭样品台,点击EV AC抽气,抽气时推着样品室门,听到机械泵响声后松手 8. 打开HT图标(此图标在非真空下是灰色,真空位蓝色,打开灯丝拍照为绿色) 9. 选择扫描模式、加速电压(0.5-30KV之间选择,一般微生物类样品选10左右)、WD工作距离(10-15之间选择)、SS电子束斑(一般选30-40) 10. 在SCAN2下调焦、调整对比度及亮度、调消象散(放大时照片晃动、或者样品变形、或者整体移动可点WOBBLE(一般10000倍左右调节有效果)调节光缆使照片不晃动) 11. 高倍下调清晰度,低倍下拍照,拍照选择photo(曝光40秒)或者SCAN4(曝光80秒),拍完选择FREEZE并保存照片 12. 拍完照后关闭灯丝,点VENT排气(排气时vent闪,排完气vent不闪),排完气方可打开样品室,取出样品台;关闭样品台,点击EV AC抽气,抽气时推着样品室门,听到机械泵响声后松手 13. 依次关闭软件、电脑、主机电源、变压器、空开 注意事项 1.注意Z轴的距离要足够高不要让样品碰到探头 2.慢慢调节光缆,防止调节过快看不到被观察物 3.取、放前一定要卸真空,再抽真空 4.关机的时候,要在真空状态下关机

扫描电镜操作流程

SIRION场发射扫描电镜操作规程 一.开机 1.首先检查循环水系统,压力显示约4.5,温度显示约11-18度,为正常范围。 2.检查不间断电源的”LINE”,”INV.”指示灯亮,上部6只灯仅一只亮是为正常。 3.开电镜电脑(白色机箱)的电源,通过密码进入WINDOWS后,先启动”SCS”,然后启 动”Microscope Control”。 二.操作过程 1.有关样品的要求: 需用电镜观测的样品,必须干燥,无挥发性,有导电性,能与样品台牢固粘结(块状试样的下底部需平整,利于粘结)。粉末样品用导电胶带粘结后,需敲击检查,或用吹风机吹去粘结不牢固的粉末。含有机成份的样品(包括聚合物等),需经过干燥处理。 2.交换样品特别注意点: 该电镜的样品台是4轴马达驱动的精密机械,定位精度1微米,同时也可以手动旋钮驱动。样品室中暴露着镜头极靴,二次电子探头,低压背散射电子探头,能谱探头,红外相机,涡轮分子泵等电镜的核心部件,样品台驱动过程中存在着碰撞的可能性,交换样品和驱动样品台时要特别小心。比如样品室门应轻拉轻推;样品要固定牢固,防止掉到镜筒里去;样品高度要合适,Z轴移动样品或手动倾斜样品前,用CCD图象检查样品位置等等。 3.换样品过程:换样品前必须先检查加速电压是否已经关闭,条件符合,可按放气键(“VENT”)。交换样品台操作必须戴干净手套。固定好样品台后(固紧内六角螺丝),必须用专用卡尺测量样品高度,不允许超过规定高度。推进样品室,左手按住样品室门上手柄,右手点击抽真空软件键”PUMP”。整个换样品过程中,不要手动调节样品台位置(倾动除外)。 4.关高压过程:按下软件键“xx kV”,稍等待,听到V6阀的动作声音后,键颜色由黄色变灰色,表示高压已正式关闭。 5.开高压过程:样品室抽真空到达5e -5 mBar以上,可以开高压,观察图象。开高压:检查“Detector”菜单项中的“SE”或“TLD”被选中,按“HT”键,数秒后按软键“xx kV”,应听到V6阀开启的声音,等待键颜色变黄色。图象出来后,同时会弹出一个窗口,提示首先必须聚焦图象,然后按“OK”,使电脑能测出实际的样品高度,次序不可颠倒。在数千倍聚焦完成后(In Focus),按“OK”。 6.聚焦图象:按住鼠标右键,左或右向移动鼠标来聚焦图象。 7.消像散:按住左Shift键,按住鼠标右键移动,消除像散。 8.拍照:按“F2”键,电镜开始单次扫描。扫描结束,过数秒,冻结键(雪花图形)自动激活(变黄色)。这时可用“InOut”菜单中的Image保存图象。 9.拷贝图象:须用新光盘或未开封的新软盘拷贝。 三.关机 1.先关高压,放气后,取出样品后,重抽真空,然后关“Microscope Control”,再关WINDOWS。 电镜的电脑是控制整台电镜的,电脑的CMOS管理,显示卡及驱动程序等与普通电脑不同,请不要当作普通电脑来使用。禁止修改电脑的任何设置,禁止安装任何软件。禁止使用USB

Philips XL30 ESEM环境扫描电镜操作流程

Philips XL30-ESEM环境扫描电镜操作规程 一、开机 1.分别打开电源总开关、主控面板上电源开关、UPS电源开关,等待计算机主机启动。 2.按照显示屏提示按CTRL+ALT+DEL键及桌面上的XL30图标,提示做Home时按Yes图标。 3.用鼠标点击真空Pump图标抽真空,待提示 Vac OK时,按主控面板上的高压钮,鼠标点击显 示屏高压图标,图象显示。 二、样品安装 1.关闭显示屏上的高压图标,关真空VENT图标,待镜筒完全放气后轻轻拉开样品室门,装入 样品(带手套),慢慢推回样品室门。 2.用鼠标点击真空图标抽真空,待提示真空OK时,鼠标点击显示屏高压图标,图象显示。 三、扫描图象观察 1.调整好亮度和反差,用鼠标右键横向移动粗调焦。按放大倍数要求设好样品高度,高倍下选 区扫描,用鼠标右键横向移动细调焦。 2.扫描速度1、2用于选择和粗调焦,扫描速度3、Photo用于细调焦及照相。 3.高倍下用Shift+鼠标右键横向移动消象散。 四、图象记录、储存和打印 1.点击扫描速度3或Photo进行慢扫描,扫描完成后点击显示屏上雪花图标锁定图象。 2.打开我的电脑E盘USR目录,按客户姓名建立文件名,点击显示屏In/Out菜单中的Image, 输入样品名称,点击Save图标存盘。再点击In/Out菜单中的Photo,用120相机拍摄底片。 五、合轴操作及环境扫描模式 按仪器说明书操作。 六、关机 1.样品高度调至20毫米,放大倍数调至100倍,样品位置调至中心。 2.依次关闭显示屏上的高压图标、主控面板上的高压钮、真空Vent图标,点击显示屏左下角的 开始图标,选择现在关机。 3.待提示安全关机后,关闭主控面板上的电源、UPS电源和电源总开关。

扫描电子显微镜的操作步骤和注意事项心得

扫描电子显微镜的操作步骤和注意事项心得扫描电子显微镜的操作步骤与注意事项一、样品制备 将分散好的样品滴于铜片上,干燥后将载有样品的铜片粘在样品座上的导电胶 带上(对于大颗粒样品可直接将样品粘在导电胶带上)。 对于导电性不好的样品必须蒸镀导电层,通常为蒸金:将样品座置于蒸金室 中,合上盖子,打开通气阀门,对蒸金室进行抽真空。选择好适当的蒸金时间,达 到真空度定好时间后加电压并开始计时,保持电流值,时间到后关闭电压,关闭仪器。取出样品。(注意:打开蒸金室前必须先关闭通气阀门,以防液体倒流。) 二、扫描电镜的操作 1.安装样品 “Vent”直至灯闪,对样品交换室放氮气,直至灯亮; 1) 按 2) 松开样品交换室锁扣,打开样品交换室,取下原有的样品台,将已固定好 样品的样品台,放到送样杆末端的卡抓内(注意:样品高度不能超过样品台高度,并 且样品台下面的螺丝不能超过样品台下部凹槽的平面); 3) 关闭样品交换室门,扣好锁扣; 4) 按“EVAC”按钮,开始抽真空,“EVAC”闪烁,待真空达到一定程度,“EVAC”点亮; 5) 将送样杆放下至水平,向前轻推至送样杆完全进入样品室,无法再推动为 止,确认“Hold”灯点亮,将送样杆向后轻轻拉回直至末端台阶露出导板外将送 样杆竖起卡好。(注意:推拉送样杆时用力必须沿送样杆轴线方向,以防损坏送样杆) 2.试样的观察(注意:软件控制面板上的背散射按钮千万不能点,以防损坏仪器) -51) 观察样品室的真空“PVG”值,当真空达到9.0×10Pa时,打开“

Maintenance”,加高压5kv,软件上扫描的发射电流为10μA,工作距离“WD”为8mm,扫描模式为“Lei”(注意:为减少干扰,有磁性样品时,工作距离一般为15mm左右); 2) 操作键盘上按“Low Mag”、“Quick View”,将放大倍率调至最低,点击“Stage Map”,对样品进行标记,按顺序对样品进行观察; 3) 取消“Low Mag”,看图像是否清楚,不清楚则调节聚焦旋钮,直至图像清楚,再旋转放大倍率旋钮,聚焦图像,直至图像清楚,再放大……,直到放大到所需要的图; 4) 聚焦到图像的边界一致,如果边界清晰,说明图像已选好,如果边界模糊,调节操作键盘上的“X、Y”两个消像散旋钮,直至图像边界清晰,如果图像太亮或太暗,可以调节对比度和亮度,旋钮分别为“Contrast”和“Brightness”,也可以按“ACB”按钮,自动调整图像的亮度和对比度; 5) 按“Fine View”键,进行慢扫描,同时按“Freeze”键,锁定扫描图像; 6) 扫描完图像后,打开软件上的“Save”窗口,按“Save”键,填好图像名称,选择图像保存格式,然后确定,保存图像; 7) 按“Freeze”解除锁定后,继续进行样品下一个部位或者下一个样品的观察。 3.取出样品 1) 检查高压是否处于关闭状态(如HT键为绿色,点击HT键,关闭高压,HT键为蓝色或灰色); mm,点击样品台按钮,按Exchang(2)检查样品台是否归位,工作距离为8 键, Exchang灯亮; (3) 将送样杆放至水平,轻推送样杆到样品室,停顿1秒后,抽出送样杆并将送样杆竖起卡好,注意观察Hold关闭,为样品台离开样品室。

相关文档
最新文档