初二数学-特殊四边形中的动点问题(教师版)

初二数学-特殊四边形中的动点问题(教师版)
初二数学-特殊四边形中的动点问题(教师版)

特殊四边形中的动点问题及解题方法

1、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D

以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.

(1)当t为何值时,四边形PQCD为平行四边形?

(2)当t为何值时,四边形PQCD为等腰梯形?

(3)当t为何值时,四边形PQCD为直角梯形?

分析:

(1)四边形PQCD为平行四边形时PD=CQ.

(2)四边形PQCD为等腰梯形时QC-PD=2CE.

(3)四边形PQCD为直角梯形时QC-PD=EC.

所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可.

解答:

解:(1)∵四边形PQCD平行为四边形

∴PD=CQ

∴24-t=3t

解得:t=6

即当t=6时,四边形PQCD平行为四边形.

(2)过D作DE⊥BC于E

则四边形ABED为矩形

∴BE=AD=24cm

∴EC=BC-BE=2cm

∵四边形PQCD为等腰梯形

∴QC-PD=2CE

即3t-(24-t)=4

解得:t=7(s)

即当t=7(s)时,四边形PQCD为等腰梯形.

(3)由题意知:QC-PD=EC时,

四边形PQCD为直角梯形即3t-(24-t)=2

解得:t=6.5(s)

即当t=6.5(s)时,四边形PQCD为直角梯形.

点评:

此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.

2、如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点

F,交∠ACB内角平分线CE于E.

(1)试说明EO=FO;

(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;

(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.

分析:

(1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO.

(2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形.

(3)利用已知条件及正方形的性质解答.

解答:

解:(1)∵CE平分∠ACB,

∴∠ACE=∠BCE,

∵MN∥BC,

∴∠OEC=∠ECB,

∴∠OEC=∠OCE,

∴OE=OC,

同理,OC=OF,

∴OE=OF.

(2)当点O运动到AC中点处时,四边形AECF是矩形.

如图AO=CO,EO=FO,

∴四边形AECF为平行四边形,

∵CE平分∠ACB,

∴∠ACE= ∠ACB,

同理,∠ACF= ∠ACG,

∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°,

∴四边形AECF是矩形.

(3)△ABC是直角三角形

∵四边形AECF是正方形,

∴AC⊥EN,故∠AOM=90°,

∵MN∥BC,

∴∠BCA=∠AOM,

∴∠BCA=90°,

∴△ABC是直角三角形.

点评:

本题主要考查利用平行线的性质“等角对等边”证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用.

3、如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点

C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.

(1)求NC,MC的长(用t的代数式表示);

(2)当t为何值时,四边形PCDQ构成平行四边形;

(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;

(4)探究:t为何值时,△PMC为等腰三角形.

分析:

(1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM;

四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解;

(3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC面积的一半,由此可得出是否存在符合条件的t值.

(4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论:

①当MP=MC时,那么PC=2NC,据此可求出t的值.

②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值.

③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值.

综上所述可得出符合条件的t的值.

解答:

解:(1)∵AQ=3-t

∴CN=4-(3-t)=1+t

在Rt△ABC中,AC2=AB2+BC2=32+42

∴AC=5

在Rt△MNC中,cos∠NCM= = ,CM= .

(2)由于四边形PCDQ构成平行四边形

∴PC=QD,即4-t=t

解得t=2.

(3)如果射线QN将△ABC的周长平分,则有:

MN+NC=AM+BN+AB

即:(1+t)+1+t= (3+4+5)

解得:t= (5分)

而MN= NC= (1+t)

∴S△MNC= (1+t)2= (1+t)2

当t= 时,S△MNC=(1+t)2= ≠ ×4×3

∴不存在某一时刻t,使射线QN恰好将△ABC的面积和周长同时平分.

(4)①当MP=MC时(如图1)

则有:NP=NC

即PC=2NC∴4-t=2(1+t)

解得:t=

②当CM=CP时(如图2)

则有:

(1+t)=4-t

解得:t=

③当PM=PC时(如图3)

则有:

在Rt△MNP中,PM2=MN2+PN2

而MN= NC= (1+t)

PN=NC-PC=(1+t)-(4-t)=2t-3

∴[ (1+t)]2+(2t-3)2=(4-t)2

解得:t1= ,t2=-1(舍去)

∴当t= ,t= ,t= 时,△PMC为等腰三角形

点评:

此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法.4、直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O?B?A运动.

(1)直接写出A、B两点的坐标;

(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;

(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.

分析:

(1)分别令y=0,x=0,即可求出A、B的坐标;

(2))因为OA=8,OB=6,利用勾股定理可得AB=10,进而可求出点Q由O到A的时间是8秒,点P的速度是2,从而可求出,

当P在线段OB上运动(或0≤t≤3)时,OQ=t,OP=2t,S=t2,当P在线段BA上运动(或3<t≤8)时,OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于点D,由相似三角形的性质,得 PD=48-6t5,利用S= 12OQ×PD,即可求出答案;(3)令S= 485,求出t的值,进而求出OD、PD,即可求出P的坐标,利用平行四边形的对边平行且相等,结合简单的计算即可写出M的坐标.

解答:

解:(1)y=0,x=0,求得A(8,0)B(0,6),

(2)∵OA=8,OB=6,∴AB=10.

∵点Q由O到A的时间是 81=8(秒),

∴点P的速度是 6+108=2(单位长度/秒).

当P在线段OB上运动(或O≤t≤3)时,

OQ=t,OP=2t,S=t2.

当P在线段BA上运动(或3<t≤8)时,

OQ=t,AP=6+10-2t=16-2t,

如图,做PD⊥OA于点D,

由 PDBO=APAB,得PD= 48-6t5.

∴S= 12OQ?PD=- 35t2+245t.

(3)当S= 485时,∵ 485>12×3×6∴点P在AB上

当S= 485时,- 35t2+245t= 485

∴t=4

∴PD= 48-6×45= 245,AD=16-2×4=8

AD= 82-(245)2= 325 ∴OD=8- 325= 85 ∴P ( 85, 245) M1( 285, 245),M2(- 125, 245),M3( 125,- 245) 点评:

本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象. 5.已知:如图,在直角梯形COAB 中,OC AB ∥,以O 为原点建立平面直角坐标系,A B C ,,三点的坐标分别为(80)(810)(04)A B C ,,,,,,点D 为线段BC 的中点,动点P 从点O 出发,以每秒1个单位的速度,沿折线OABD 的路线移动,移动的时间为t 秒. (1)求直线BC 的解析式;

(2)若动点P 在线段OA 上移动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的

27

? (3)动点P 从点O 出发,沿折线OABD 的路线移动过程中,设OPD △的面积为S ,请直接写出S 与t 的函数关系式,并指出自变量t 的取值范围;

6.如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.

(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?

四边形中的动点问题课后作业

1. 如图,已知AD 与BC 相交于E ,∠1=∠2=∠3,BD =CD ,∠ADB =90°,CH ⊥AB 于H ,CH 交AD 于F.

(1)求证:CD ∥AB ;

(2)求证:△BDE ≌△ACE ;

(3)若O 为AB 中点,求证:OF =

1

2

BE.

2、如图1―4―2l ,在边长为a 的菱形ABCD 中,∠DAB =60°,E 是异于A 、D 两点的动点,F 是CD 上的动点,满足A E +CF=a ,说明:不论E 、F 怎样移动,三角形BEF 总是正三角形.

3、在平行四边形ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F . (1)求证:CF AB ;

(2)当BC 与AF 满足什么数量关系时, 四边形ABFC 是矩形,并说明理由.

4、如图l -4-80,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,过点A 作AG ⊥EB ,垂足为G ,AG 交BD 于F ,则OE=OF . (1)请证明0E=OF

(2)解答(1)题后,某同学产生了如下猜测:对上述命题,若点E 在AC 的延长线上,AG ⊥EB ,AG 交 EB 的延长线于 G ,AG 的延长线交DB 的延长线于点F ,其他条件不变,则仍有OE=OF .问:猜测所得结论是否成立?若成立,请给出证明;若不成立,请说明理由.

F

E

D

C

B

A

E

5、如图,在梯形ABCD 中,3545AD BC AD DC AB B ====?∥,,,.动点M 从B 点出发沿线段

BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.

(2)当MN AB ∥时,求t 的值.

(3)试探究:t 为何值时,MNC △为等腰三角形.

6. 如图所示,有四个动点P 、Q 、E 、F 分别从正方形ABCD 的四个顶点出发,沿着AB 、BC 、CD 、DA 以同样的速度向B 、C 、D 、A 各点移动。

(1)试判断四边形PQEF 是正方形并证明。

(2)PE 是否总过某一定点,并说明理由。

(3)四边形PQEF 的顶点位于何处时,

其面积最小,最大?各是多少?

7、已知:如图,△ABC 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移

动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动.设点P 的运动时间为t (s ),解答下列问题:

(1)当t 为何值时,△PBQ 是直角三角形?

(2)设四边形APQC 的面积为y (cm 2

),求y 与t 的

关系式;是否存在某一时刻t ,使四边形APQC 的面积是△ABC 面积的三分之二?如果存在,求出相应的t 值;不存在,说明理由;

C

专题:二次函数中的动点问题2(平行四边形存在性问题)

y x O 二次函数中的动点问题(二) 平行四边形的存在性问题 一、技巧提炼 1、二次函数y=ax 2 +bx+c 的图像和性质 a >0 a <0 图 象 开 口 对 称 轴 顶点坐标 最 值 当x = 时,y 有最 值是 当x = 时,y 有最 值是 增减 性 在对称轴左侧 y 随x 的增大而 y 随x 的增大而 在对称轴右侧 y 随x 的增大而 y 随x 的增大而 2、平行四边形模型探究 如图1,点A ()11,x y 、B ()22,x y 、C ()33,x y 是坐标平面内不在同一直线上的三点。平面直角坐标系中是否存在点D ,使得以A 、B 、C 、D 四点为顶点的四边形为平行四边形,如果存在,请求出点D 的坐标。 A B C x y 图1 图2 如图2,过A 、B 、C 分别作BC 、AC 、AB 的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。

由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。 3、平面直角坐标系中直线和直线l2: 当l1∥l2时k1= k2;当l1⊥l2时k1·k2= -1 4、二次函数中平行四边形的存在性问题: 解题思路:(1)先分类(2)再画图(3)后计算 二、精讲精练 1、已知抛物线y=ax2+bx+c与x轴相交于A、B两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C 点,且OA:OB:OC=1:3:3,△ABC的面积为6,(如图1) (1)求抛物线的解析式; (2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形若存在,请求出点M的坐标;若不存在,请说明理由; (3)如图2,在直线BC上方的抛物线上是否存在一动点P,△BCP面积最大如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.

经典特殊的平行四边形讲义

特殊 的平行四边形 一、知识回顾 矩形、菱形、正方形 1、菱形的性质:①菱形的四条边都相等.②菱形的对角线互相垂直,并且每条对角线平分一组对角. ③具有平行四边形所有性质. 2.菱形的判定:①对角线互相垂直的平行四边形是菱形.②一组邻边相等的平行四边形是菱形. ③四条边都相等的四边形是菱形. 3.矩形的性质:①矩形的四个角都是直角.②矩形的对角线相等.③矩形具有平行四边形的所有性质. 4.矩形的判定:①有一个角是直角的平行四边形是矩形.②对角线相等的平行四边形是矩形. ③有三个角是直角的四边形是矩形. 5.正方形的性质:①正方形的四个角都是直角,四条边都相等. ②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角. 6.正方形的判定:①有一个角是直角的柳是正方形.②有一组邻边相等的矩形是正方形. ③对角线相等的菱形是正方形.④对角线互相垂直的矩形是正方形. 课前练习: 1.已知平行四边形ABCD 的周长是28cm ,CD-AD=2cm ,那么AB=______cm ,BC=______cm . 2.菱形的两条对角线分别是6cm ,8cm ,则菱形的边长为_____,一组对边的距离为_____ 3.在菱形ABCD 中,∠ADC=120°,则BD :AC 等于________ 4.已知正方形的边长为a ,则正方形内任意一点到四边的距离之和为_____. 5.矩形ABCD 被两条对角线分成的四个小三角形的周长之和是86cm ,对角线长是13cm , 则矩形ABCD 的周长是_____________ 6.如图,有一张面积为1的正方形纸片ABCD ,M ,N 分别是AD ,BC 边的中点, 将C 点折叠至MN 上,落在P 点的位置,折痕为BQ ,连结PQ ,则PQ 二、例题讲解 矩形 例1.如图,已知矩形ABCD 的纸片沿对角线BD 折叠,使C 落在C ’处,BC ’边交AD 于E ,AD=4,CD=2 (1)求AE 的长 (2)△BED 的面积 巩固练习: 1.如图,矩形ABCD 中,AD=9,AB=3,将其折叠,使其点D 与点B 重合,折痕为 EF,求DE 和EF 的长。 2.如图,已知将矩形ABCD 沿EF 所在直线翻折,使点A 与C 重合,AB=6,AD=8,求折痕EF 的长 M D Q BAC ’ D A B C E F D A B C E C ’ E A D

初二数学-特殊四边形中的动点问题(教师版)

特殊四边形中的动点问题及解题方法 1、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D 以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形? 分析: (1)四边形PQCD为平行四边形时PD=CQ. (2)四边形PQCD为等腰梯形时QC-PD=2CE. (3)四边形PQCD为直角梯形时QC-PD=EC. 所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可. 解答: 解:(1)∵四边形PQCD平行为四边形 ∴PD=CQ ∴24-t=3t 解得:t=6 即当t=6时,四边形PQCD平行为四边形. (2)过D作DE⊥BC于E 则四边形ABED为矩形 ∴BE=AD=24cm ∴EC=BC-BE=2cm ∵四边形PQCD为等腰梯形 ∴QC-PD=2CE 即3t-(24-t)=4 解得:t=7(s) 即当t=7(s)时,四边形PQCD为等腰梯形. (3)由题意知:QC-PD=EC时, 四边形PQCD为直角梯形即3t-(24-t)=2

解得:t=6.5(s) 即当t=6.5(s)时,四边形PQCD为直角梯形. 点评: 此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中. 2、如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点 F,交∠ACB内角平分线CE于E. (1)试说明EO=FO; (2)当点O运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论. 分析: (1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO. (2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形. (3)利用已知条件及正方形的性质解答. 解答: 解:(1)∵CE平分∠ACB, ∴∠ACE=∠BCE, ∵MN∥BC, ∴∠OEC=∠ECB, ∴∠OEC=∠OCE, ∴OE=OC, 同理,OC=OF, ∴OE=OF. (2)当点O运动到AC中点处时,四边形AECF是矩形. 如图AO=CO,EO=FO, ∴四边形AECF为平行四边形, ∵CE平分∠ACB, ∴∠ACE= ∠ACB, 同理,∠ACF= ∠ACG, ∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°, ∴四边形AECF是矩形. (3)△ABC是直角三角形 ∵四边形AECF是正方形,

特殊四边形动点问题专题训练及答案解析汇编

特殊四边形动点问题专题训练及答案解析 (一)已知,如图,点D是△ABC的边AB的中点,四边形BCED是平行四边形, (1)求证:四边形ADCE是平行四边形; (2)当△ABC满足什么条件时,平行四边形ADCE是矩形? 证明:(1)因为四边形BCED是平行四边形, 所以BD=CE且BD∥CE, 又因为D是△ABC的边AB的中点, 所以AD=BD,即DA=CE, 又因为CE∥BD, 所以四边形ADCE是平行四边形. (2)当△ABC为等腰三角形且AC=BC时,四边形ADCE是矩形 理由:∵AC=BC,D是△ABC的边AB的中点 ∴CD⊥AD,即∠ADC=90°, 由(1)可知,四边形ADCE是平行四边形 ∴四边形ADCE是矩形. (二)如图,已知E是?ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:△ABE≌△FCE. (2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.

(三)如图,O为△ABC的边AC上一动点,过点O的直线MN∥BC,设MN分别交 ∠ACB的内、外角平分线于点E、F。 (1)求证:OE=OF (2)若CE=12,CF=5,求OC的长 (3)当点O在AC边上运动到何处时,四边形AECF是矩形?证明你的结论 (4)在(3)的条件下,当△ABC满足什么条件时,四边形AECF为正方形,并说明你的理由。 (1)证明:∵CE平分∠ACB ∴∠ACE=∠BCE ∵MN∥BC ∴∠OEC=∠BCE, ∴∠ACE=∠OEC, ∴OE=OC, 同理:OF=OC ∴OE=OF (2)∵CE平分∠ACB ∴∠ACE=∠ACB/2 ∵CF平分∠ACD ∴∠ACF=∠ACD/2 ∴∠ECF=∠ACE+∠ACF=∠ACB/2+∠ACD/2=(∠ACB+∠ACD)/2=180/2=900 在Rt△ECF中,EF2= CE2+ CF2= 122+ 52=169 ∴EF=13 由(1)可知OE=OF ∴OC=EF/2=13/2 (3)、当O运动到AC的中点时,AECF是矩形 证明: ∵O是AC的中点 ∴AO=CO ∵OE=OF ∴四边形AECF是平行四边形 由(2)可知∠ECF=900 ∴四边形AECF是矩形 3、△ABC为直角三角形,且∠ACB=90时,四边形AECF是正方形 证明: ∵∠ACB=900,MN∥BC ∴∠AOM=∠ACB=900,

特殊平行四边形:动点问题

特殊四边形:动点问题 题型一: 1.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为( ) A 、17 17 2 B 、 17174 C 、 17 178 D 、3 2.如图4,在梯形ABCD 中,AD ∥BC ,AD =6,BC =16,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时, 以点P ,Q ,E ,D 为顶点的四边形是平行四边形. 3.如图,在梯形ABCD 中,AD ∥BC,E 是BC 的中点,AD=5,BC=12,CD=42,∠C=0 45,点P 是BC 边上一动点,设PB 长为x. (1)当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为直角梯形. (2)当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为平行四边形. (3)点P 在BC 边上运动的过程中,以点P 、A 、D 、E 为顶点的四边形能否构成菱形?试说明理由. 4.在一个等腰梯形ABCD 中,AD//BC ,AB=CD ,AD=10cm ,BC=30cm ,动点P 从点A 开始沿AD 边向点D 以每秒1cm 的速度运动,同时动点Q 从点C 开始沿CB 边向点B 以每秒3cm 的速度运动,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t s. (1).t 为何值时,四边形ABQP 为平行四边形? (2).四边形ABQP 能为等腰梯形吗?如果能,求出t 的值,如果不能,请说明理由。

动点问题中的平行四边形

动点问题中的平行四边形 教学内容:动点问题中的平行四边形 教学要求:1、利用平行四边形的有关知识解决动点中的相关问题 2、领会转化、数形结合、分类讨论的数学思想在动点问题中的应用. 教学过程 一、复习:1、平行四边形的性质与判定 2、几何作图的关键 二、新课 1、情境引入,探究已知三点确定平行四边形的第四个顶点。 1.1、张大伯家有一个直角三角形的池塘,如图1所示,张大伯打算把池塘在原有的基础上,把面积扩大一倍后变成一个平行四边形,你能帮张大伯找到这个平行四边形的第四个顶点么?并说出你的理由! 图1 图2 1.2、小结方法:如何确定平行四边形的第四个顶点,你的依据是什么? 1.3、趁热打铁: 如图2,在平面直角坐标系中,点A (1,0) , B (0,2), 则平行四边形AOBC 的顶点C 的坐标为__________________

1.4、变式练习: 如图2,在平面直角坐标系中,点A(1,0)B(0,2),求以A、O、B、C 为顶点的平行四边形的顶点C坐标,则点C的坐标为____________________ ________________________________. 小结:如何求点的位置,你的依据是什么? 1.5、举一返三 1、如图3,在梯形ABCD中,A D∥BC ,在AD边上有一点P从点A到点D运动,速度为每秒1个单位,在CB边上有一点Q从点C向点B运动,速度为每秒2个单位,已知AD=8,BC=12,若P、Q同时运动,当四边形ABQP是平行四边形时,P 运动多少秒时?

2、如图4,抛物线1417 452++-=x y 与直线y =12 1+x 交于A 、 B 点,过点B 作BC ⊥x 轴,垂足为点C (3,0).动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N . 设点P 移动的时间为t 秒,MN 的长度为l 个单位,求l 与t 的函数关系式,并写出t 的取值范围;设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?

初二平行四边形的动点问题学案 (含答案经典)

第十一讲平行四边形中的动点问题时间:年月日刘满江老师学生姓名:一、兴趣导入 二、学前测试 1.如图,在平行四边形ABCD中,下列结论中错误的是() 2.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件: ①AD∥BC;②AD=BC;③OA=OC;④OB=OD

交AC于点H,则的值为() ∴= 三、方法培养: 知识要点: 平行四边形的概念:两组对边分别平行的四边形叫平行四边形 平行四边形的性质:边:对边平行且相等 角:内角和为______,外角和___________,邻角______,对角__________ 对角线:互相平分 平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离叫 性质:平行线之间的距离处处相等。 推广:夹在两条平行线之间平行线段相等 平行四边形的判定: 定义:两组对边分别平行的四边形是平行四边形 定理1:两组对角分别相等的四边形是平行四边形 定理2:两组对边分别相等的四边形是平行四边形 定理3:对角线互相平分的四边形是平行四边形

定理4:一组对边平行且相等的四边形是平行四边形 例11.如图所示,在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=12,BC=21,AD=16. 动点P 从点B 出发,沿射线BC 的方向以每秒2个单位长的速度运动,动点Q 同时 从点A 出发,在线段AD 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t (秒). (1)当t 为何值时,四边形PQCD 的面积是梯形ABCD 的面积的一半; (2)四边形PQCD 能为平行四边形吗?如果能,求出t 的值;如果不能,请说明理由. (3)四边形PQCD 能为等腰梯形吗?如果能,求出t 的值;如果不能,请说明理由. 考点:等腰梯形的判定;平行四边形的判定;直角梯形。 专题:动点型。 分析:(1)根据:路程=速度×时间,表示线段的长度,再利用:S 梯形ABPQ =S 梯形PQDC ,列方程求解; (2)只要能满足DQ=PC 即可,由此建立等量关系,列方程求解; (3)当四边形PQCD 为等腰梯形时,作PE ⊥BC ,DF ⊥BC ,垂足为E 、F ,需要满足QE=CF , 由此建立等量关系,列方程求解. 解答:解:(1)由已知得:AQ=t ,QD=16﹣t ,BP=2t ,PC=21﹣2t , 依题意,得 12)22116(21 12)2(2 1?-+-=?+t t t t 解得 ; (2)能;当四边形PQDC 为平行四边形时, DQ=PC ,即16﹣t=21﹣2t 解得t=5; (3)不能 作QE ⊥BC ,DF ⊥BC ,垂足为E 、F , 当四边形PQCD 为等腰梯形时,PE=CF , 即t ﹣2t=21﹣16 解得t=﹣5,不合实际. 点评:本题考查了梯形计算面积的方法,根据平行四边形、等腰梯形的性质列方程求解的问题. 变式练习:如图所示,在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=12,BC=21,AD=16.动点P 从点 B 出发,沿射线B C 的方向以每秒2个单位长的速度运动,动点Q 同时从点A 出发,在线段A D 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t (秒). (1)设△DPQ 的面积为S ,求S 与t 之间的函数关系式; (2)当t 为何值时,四边形PCDQ 是平行四边形? (3)分别求出当t 为何值时,①PD=PQ ,②DQ=PQ . 考点:直角梯形;勾股定理;平行四边形的判定与性质。 解答:(1)解:直角梯形ABCD 中,AD ∥BC ,∠A=90°,BC=21,AB=12,AD=16, 依题意AQ=t ,BP=2t ,则DQ=16﹣t ,PC=21﹣2t , 过点P 作PE ⊥AD 于E , 则四边形ADPE 是矩形,PE=AB=12, ∴S △DPQ =DQ ?AB=(16﹣t )×12=﹣6t+96. (2)当四边形PCDQ 是平行四边形时,PC=DQ ,

动点问题与特殊平行四边形(1)

例一:如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=?x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD. (1)若点A的坐标是(?4,4). ①求b,c的值; ②试判断四边形AOBD的形状,并说明理由; (2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A 的坐标;若不存在,请说明理由。 例二:如图,抛物线y=ax2+bx+c的图象经过点A(?2,0),点B(4,0),点D(2,4),与y轴交于点C,

作直线BC,连接AC,CD. (1)求抛物线的函数表达式; (2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标; (3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长。 例三:如图,在平面直角坐标系xOy中,抛物线y=ax2?2ax?3a(a<0)与x轴交于A,B

两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC. (1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示); (2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为5 4 ,求a的 值; (3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由。 例四:如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于

二次函数中动点问题——平行四边形(练习)

2018年04月28日187****6232的初中数学组卷 一.解答题(共5小题) 1.如图,已知抛物线y=ax2+bx+c经过点A(﹣1,0),点B(3,0)和点C(0,3). (1)求抛物线的解析式和顶点E的坐标; (2)点C是否在以BE为直径的圆上?请说明理由; (3)点Q是抛物线对称轴上一动点,点R是抛物线上一动点,是否存在点Q、R,使以Q、R、C、B为顶点的四边形是平行四边形?若存在,直接写出点Q、R 的坐标,若不存在,请说明理由. 2.如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),其顶点为D. (1)求抛物线的解析式; (2)设点M(1,m),当MB+MD的值最小时,求m的值; (3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值;(4)若抛物线的对称轴与直线AC相交于点N,E为直线AC上任意一点,过点E 作EF∥ND交抛物线于点F,以N,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.

3.如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为2. (1)求A,B两点的坐标及直线AC的函数表达式; (2)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE面积的最大值; (3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE上一动点,则在x轴上是否存在一点N,使四边形DMNQ 的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由. (4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由. 4.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).

特殊的平行四边形知识梳理+典型例题

特殊的平行四边形 知识点一:矩形 1、概念有一个角是直角的平行四边形叫做矩形 2、性质定理(1)矩形的四个角是直角 (2)矩形的对角线相等且互相平分 (3)矩形既是中心对称图形又是轴对称图形 直角三角形的性质定理:直角三角形斜边上的中线等于斜边的一半 特殊运用:直角三角形斜边上的中线等于斜边的一半 3、判定定理 (1)有一个角为直角的平行四边形叫矩形 (2)对角线相等平行四边形为矩形 (3)有三个角是直角的四边形是矩形 推论:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 归纳补充: 1、矩形是对称图形,对称中心是,矩形又是对称图形,对称轴有条 2、矩形中常见题目是对角线相交成600或1200角时,利用直角三角形、等边三角形等图形的性质解决问题 3、矩形的面积S矩形=长×宽=ab

知识点二:菱形 1、定义:一组邻边相等的平行四边形叫做菱形 2、性质定理: (1)菱形的四条边都相等 (2)菱形的对角线互相垂直平分,且每条对角线平分一组对角 (3)菱形是轴对称图形,两条对角线所在的直线是都是它的对称轴 菱形是中心对称图形,对角线的交点是它的对称中心 2、判定定理: (1)一组邻边相等的平行四边形是菱形 (2)对角线互相垂直的平行四边形是菱形 (3)四条边都相等的四边形是菱形 ※注意:对角线互相垂直的四边形不一定是菱形,对角线互相垂直平分的四边形才是菱形 归纳补充: 1、菱形被对角线分成四个全等的三角形和两对全等的三角形 2、菱形的面积可以用平行四边形面积公式计算,也可以用两对角线积的来计算 3、菱形常见题目是内角为1200或600时,利用等边三角形或直角三角形的相关知识解决题目知识点三:正方形 1、定义:有一组邻边相等的矩形叫正方形 2、性质定理 (1)正方形的四条边都相等,四个角是直角。 (2)正方形的两条对角线相等且互相垂直平分,每一组对角线平分一组对角 (3)正方形既是中心对称图形,又是轴对称图形 3、判定定理 (1)有一组邻边相等的矩形是正方形 (2)对角线相互垂直的矩形是正方形 (3)对角线相等的菱形是正方形 (4)有一个角是直角的菱形是正方形 方法总结: (1)判定一个四边形是正方形的主要依据是定义,途径有两种: 先证它是矩形,再证有一组邻边相等。先证它是菱形,再证有一个角是直角。

四边形动点问题(初二用平行四边形和面积问题总结)

四边形动点问题(初二用平行四边形和面积问题总结)

2015-2016学年度???学校3月月考卷 1.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N,设△BPQ, △DKM, △CNH 的面积依 次为S 1,S 2 ,S 3 .若S 1 +S 3 =20,则S 2 的值为 ( ). A.6 B. 8 C. 10 D. 12 2.如右图所示,ABCD是一个正方形,其中几块阴影部分的面积如图所示,则四边形BMQN 的面积为。

3.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A 出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t. (1)求CD的长; (2)当四边形PBQD为平行四边形时,求四边形PBQD的周长; (3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由. 4.如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.

H G N M F E D C B A (1)求证:四边形ABCD 是正方形; (2)连接BD 分别交AE 、AF 于点M 、N ,将△ABM 绕点A 逆时针旋转,使AB 与AD 重合,得到△ADH ,试判断线段MN 、ND 、DH 之间的数量关系,并说明理由. (3)若EG=4,GF=6,BM=32,求AG 、MN 的长. 5.正方形ABCD 的顶点A 在直线MN 上,点O 是对角线AC 、BD 的交点,过点O 作OE ⊥MN 于点E ,过点B 作BF ⊥MN 于点F . (1)如图1,当O 、B 两点均在直线MN 上方时,易证:AF+BF=2OE (不需证明) (2)当正方形ABCD 绕点A 顺时针旋转至图2、图3的位置时,线段AF 、BF 、OE 之间又有怎样的关系?请直接写出你的猜想, 并选择一种

四边形中动点问题的解题策略

四边形中动点问题的解题策略 动点问题集代数、几何知识于一体,有较强的综合性,题型灵活多变,解题方法渗透了分类讨论、数形结合、转化等数学思想.本文以四边形中的动点问题为例,谈谈此类问题的解题策略,供读者参考. 策略一动中寻静 在“静”中探求“动”的一般规律,获得图形在运动过程中具有的某种性质,从而抓住变化中的不变因素. 例1 如图1,在四边形ABCD中,点E、F分别是AP、BP的中点,当点P在线段CD上从点C向点D移动时,线段EF的长度将______.(填“变大”、“变小”或“不变”) 分析当点P在CD上运动时,线段E F始终为△ABP的中位线,所以,总有EF=1 AB,因此线段EF的长度不变. 2 例2 如图2,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D是BC上一动点,以AC为对角线的所有≌ABCD中,DE最小的值为( ) (A)2 (B)3 (C)4 (D)5

分析当点D在BC上运动时,在□ABCD中总有DE=2OD.易知,OD取最小值时 OD上BC,且此时OD=1 2 AB,这样,DE最小值=2· 1 2 AB=AB=3. 注例1中抓住不变量EF=1 2 AB,例2中抓住不变量DE=2OD.这些等量关系不 随动点位置的改变而改变. 策略二化动为静 “静”只是“动”的瞬间,化动为静就是抓住动的瞬间,将一般转化为特殊,从而找到动与静的关系. 例3 如图3,已知正方形ABCD的边长为8,点M在DC上,且DM=2,点N在线段AC上运动,求DN+MN 的最小值. 分析结合正方形的性质和轴对称相关知识,不难找到DN+MN取最小值时点N的位置,如图4.此时,DN+MN=BN+MN=BM. 在Rt△BMC中,根据勾股定理,得 BD= 10 = ∴(DN+MN)最小值=BM=10. 注处理好动态几何中的最值问题,不能被动点所迷惑,要通过猜想与证明,确定满

特殊四边形经典例题

特殊四边形经典例题 ①一组对边平行且一组对角相等的四边形是平行四边形; ②对角线互相垂直且相等的四边形是正方形; ③顺次连接矩形四边中点得到的四边形是菱形; 于点M,N.给出下列结论: ①△ABM≌△CDN;②AM=AC;③DN=2NF;④S四边形BFNM=S平行四边形ABCD. 其中正确的结论有() MNQP,分别内接于△BCD和△ABD,设矩形EFCH,MNQP的周长分别为m1,m2,则 m1,m2的大小关系为() 6.如图,已知AD是三角形纸片ABC的高,将纸片沿直线EF折叠,使点A与点D重合,给出下列判断: ①EF是△ABC的中位线; ②△DEF的周长等于△ABC周长的一半; ③若四边形AEDF是菱形,则AB=AC; ④若∠BAC是直角,则四边形AEDF是矩形, 其中正确的是()

7.如图,已知A1,A2,A3,…A n是x轴上的点,且OA1=A1A2=A2A3=…=A n﹣1A n=1,分别过点A1,A2,A3,…A n作x轴的垂线交反比例函数y=(x>0)的图象于点B1,B2,B3,…B n, 过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2…,记△B1P1B2的面积为S1,△B2P2B3的面积为S2…,△B n P n B n+1的面积为S n,则S1+S2+S3+…+S n=_________.8.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1D1C1;在等腰直角三角形OA1B1中作内接正方形A2B2D2C2;在等腰直角三角形OA2B2中作内接正方形 A3B3D3C3;…;依次做下去,则第n个正方形A n B n D n C n的边长是_________. 9.已知如图,在线段BG同侧作正方形ABCD和正方形CEFG,其中BG=10,BC:CG=2:3,则S△ECG=_________,S△AEG=_________. 10.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始,沿边AC向点C 以每秒1个单位长度的速度运动,动点D从点A开始,沿边AB向点B以每秒个单位长 度的速度运动,且恰好能始终保持连结两动点的直线PD⊥AC,动点Q从点C开始,沿边CB向点B以每秒2个单位长度的速度运动,连结PQ.点P,D,Q分别从点A,C同时出发,当其中一点到达端点时,另两个点也随之停止运动,设运动时间为t秒(t≥0). (1)当t为何值时,四边形BQPD的面积为△ABC面积的? (2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由; (3)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q 的速度.

人教版八年级下学期 第18章 平行四边形——动点问题(尖子生必练)(无答案)

八年级下学期第18章平行四边形——动点问题 1、如图,在边长为4的菱形 ABCD 中,BD=4,E 、F 分别是AD 、CD 上的动点(包含端点),且AE+CF=4,连接BE 、EF 、FB . (1)试探究BE 与BF 的数量关系,并证明你的结论; (2)求EF 的最大值与最小值. 2、在四边形ABCD 中,AD ∥BC,∠B=90°,AD=24cm ,AB=8cm ,BC=26cm ,动点P 从点A 开始,沿AD 边,以1cm/秒的速度向点D 运动;动点Q 从点C 开始,沿CB 边,以3cm/秒的速度向B 点运动。 已知P 、Q 两点分别从A 、C 同时出发,,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t 秒,问: (1)t 为何值时,四边形PQCD 是平行四边形? (2)在某个时刻,四边形PQCD 可能是菱形吗?为什么? , 3、如右图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点P 从 A 开始沿折线A — B — C — D 以4cm/s 的速度运动,点Q 从C 开始沿CD 边1cm/s 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达点D 时,另一点也随之停止运动,设运动时间为t(s),t 为何值时,四边形APQD 也为矩形? A B C D P Q

A M O F N E B C D 4、如图所示,△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN//BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于F 。 (1)求证:EO FO =; (2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论。 5、(1)如图1,纸片□ABCD 中,AD =5,S □ABCD =15,过点A 作AE ⊥BC ,垂足为E ,沿AE 剪下△ABE ,将它平移至△DCE '的位置,拼成四边形AEE 'D ,则四边形AEE 'D 的形状为( ) A .平行四边形 B .菱形 C .矩形 D .正方形 (2)如图2,在(1)中的四边形纸片AEE 'D 中,在EE '上取一点F ,使EF =4,剪下△AEF ,剪下△AEF ,将它平移至△DE 'F '的位置,拼成四边形AFF 'D . ①求证:四边形AFF 'D 是菱形;②求四边形AFF 'D 的两条对角线的长。 C B A E E'D E E' F F'D A 图1 图2 6、在正方形ABCD 中,过点A 引射线AH ,交边CD 于点H (点H 与点D 不重合).通过翻折,使点B 落在射线AH 上的点G 处,折痕AE 交BC 于E ,延长EG 交CD 于F . (1)如图①,当点H 与点C 重合时,可得FG FD .(大小关系) (2)如图②,当点H 为边CD 上任意一点时,猜想FG 与FD 的数量关系,并说明理由. (3)在图②中,当AB=8,BE=3时,利用探究的结论,求CF 的长。

八年级数学四边形动点问题练习.doc

中考数学动点专题 所谓“动点型问题”是指题设图形中存在一个或多个动点 , 它们在线段、射线或弧线上运动的一 类开放性题目 . 解决这类问题的关键是动中求静 , 灵活运用有关数学知识解决问题 . 关键 : 动中求静 . 数学思想:分类思想函数思想方程思想数形结合思想转化思想注重 对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。 选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的 情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路 , 这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容 包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:( 1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等. 1、已知:等边三角形 ABC 的边长为 4 厘米,长为 1 厘米的线段 MN 在△ ABC 的边 AB 上沿 AB 方向以 1 厘米 / 秒的速度向 B 点运动(运动开始时,点 M 与点 A 重合,点 N 到达点 B 时运动终止), 过点 M 、N 分别作 AB 边的垂线,与△ ABC 的其它边交于P、Q两点,线段 MN 运动的时间为 t 秒. (1)、线段 MN 在运动的过程中, t 为何值时,四边形MNQP恰为矩形并求出该矩形的面积; (2 )线段 MN 在运动的过程中,四边形MNQP 的面积为S,运动的时间为t.求四边形 MNQP 的面 积 S 随运动时间 t 变化的函数关系式,并写出自变量t 的取值范围. C Q P A M N B 2.梯形 ABCD中, AD∥BC,∠ B=90°, AD=24cm, AB=8cm,BC=26cm,动点 P 从点 A 开始,沿AD边,以 1 厘米 / 秒的速度向点 D运动;动点 Q从点 C开始,沿 CB边,以 3 厘米 / 秒的速度向 B 点运动。

第一章 特殊平行四边形专训2 利用特殊四边形的性质巧解动点问题(含答案)

专训2利用特殊四边形的性质巧解动点问题 名师点金:利用特殊四边形的性质解动点问题,一般将动点看成特殊点解决问题,再运用从特殊到一般的思想 .........,将特殊点转化为一般点(动点)来解答. 平行四边形中的动点问题 1.如图,在?ABCD中,E,F两点在对角线BD上运动(E,F不重合),且保持BE=DF,连接AE,CF.请你猜想AE与CF有怎样的数量关系和位置关系,并说明理由. (第1题) 菱形中的动点问题 2.如图,在菱形ABCD中,∠B=60°,动点E在边BC上,动点F在边CD上. (1)如图①,若E是BC的中点,∠AEF=60°,求证:BE=DF; (2)如图②,若∠EAF=60°,求证:△AEF是等边三角形. (第2题)

矩形中的动点问题 3.在矩形ABCD中,AB=4 cm,BC=8 cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为O. (1)如图①,连接AF,CE.试说明四边形AFCE为菱形,并求AF的长. (2)如图②,动点P,Q分别从A,C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P 的速度为5 cm/s,点Q的速度为4 cm/s,运动时间为t s,当以A,C,P,Q四点为顶点的四边形是平行四边形时,求t的值. (第3题) 正方形中的动点问题 4.如图,正方形ABCD的边长为8 cm,E,F,G,H分别是AB,BC,CD,DA上的动点,且AE=BF=CG=DH. (1)求证:四边形EFGH是正方形; (2)判断直线EG是否经过一个定点,并说明理由. (第4题)

2016—2017学年八年级数学四边形动点问题期末复习及答案

2016—2017学年八年级数学四边形动点问题期末复习及答案 1、如图,E 是正方形ABCD 对角线AC 上一点,EF ⊥AB ,EG ⊥BC ,F 、G 是垂足,若正方形ABCD 周长为a ,则EF +EG 等于 。 2、如图,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转能与△CBP′重合,若PB=3,则PP′= 3、在Rt △ABC 中 ∠C=90° AC=3 BC=4 P 为AB 上任意一点 过点P 分别作PE ⊥AC 于E PE ⊥BC 于点F 线段EF 的最小值是 4、如图,菱形ABCD 中,AB=4,∠BAD =60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是 。 5、如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE 的和最小,则这个最小值为 C A B P F E E D C A P A D E P B C

6、如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为cm. 7、如图,在菱形ABCD中,对角线AC、BD相交于点O,且AC=12,BD=16,E为AD的中点,点P在BD上移动,若△POE为等腰三角形,则所有符合条件的点P共有个. 8、已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P 在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为。 9、如图,在边长为10的菱形ABCD中,对角线BD=16.点E是AB的中点,P、Q是BD上的动点,且始终保持PQ=2.则四边形AEPQ周长的最小值为_________.(结果保留根号)

动点问题中的平行四边形.doc

动点问题中的平行四边形

动点问题中的平行四边形 教学内容:动点问题中的平行四边形 教学要求: 1、利用平行四边形的有关知识解决动点中的相关问题 2、领会转化、数形结合、分类讨论的数学思想在动点问题中的应用. 教学过程 一、复习: 1、平行四边形的性质与判定 2、几何作图的关键 二、新课 1、情境引入,探究已知三点确定平行四边形的第四个顶点。 1.1、张大伯家有一个直角三角形的池塘,如图 1 所示,张大伯打算把池塘在 原有的基础上,把面积扩大一倍后变成一个平行四边形,你能帮张大伯找到这 个平行四边形的第四个顶点么?并说出你的理由! B B y C A O A x 图1图2 1.2、小结方法:如何确定平行四边形的第四个顶点,你的依据是什么? 1.3、趁热打铁: 如图 2,在平面直角坐标系中,点 A (1,0) , B( 0, 2),则 平行四边形 AOBC 的顶点 C 的坐标为 __________________

1.4、变式练习: 如图 2,在平面直角坐标系中,点A(1,0)B(0,2),求以 A、O、 B、 C 为顶点的平行四边形的顶点 C 坐标,则点 C 的坐标为 ____________________ ________________________________. 小结:如何求点的位置,你的依据是什么? 1.5、举一返三 1、如图 3,在梯形 ABCD 中, AD∥BC, 在 AD边上有一点 P 从点 A 到点 D运动, 速度为每秒 1 个单位,在 CB边上有一点 Q从点 C 向点 B 运动,速度为每秒 2 个 单位,已知 AD=8,BC=12,若 P、Q 同时运动,当四边形ABQP是平行四边形时, P 运动多少秒时 ? A D C B 图 3

(完整版)平行四边形及特殊平行四边形知识点(经典完整版)

平行四边形矩形菱形正方形图形 性质①对边且; ②对角;邻角; ③对角线; ④对称性:平行四边形不是轴对称图形. ①对边且; ②对角且四个角都是; ③对角线; ④对称性:轴对称图形(对边中点连线所在直 线,2条). ①对边且四条边都; ②对角; ③对角线且每条对角 线; ④对称性:轴对称图形(对角线所在直线,2 条) ①对边且四条边都; ②对角且四个角都是; ③对角线且每条对角线 (即与边的夹角 度); ④对称性:轴对称图形(4条) 判定方法 ①的 四边形是平行四边形; ②的 四边形是平行四边形; ③的 四边形是平行四边形; ④的 四边形是平行四边形; ⑤的 四边形是平行四边形; ①是矩形; ②是矩形; ③是矩形; ①是菱形; ②是菱形; ③是菱形; ①有一组的矩形是正方形; ②对角线的矩形是正方形; ③有一个角是的菱形是正方形; ④对角线的菱形是正方形.; ⑤有一组且有一个角是的 平行四边形是正方形; ⑥对角线且的 平行四边形是正方形.?????? 正方形的判定方法很多,所有以平行四边形, 矩形,菱形三者的判定作为条件的四边形都是 正方形. 面积

一、本章知识框架图 正方形与平行四边形、矩形、菱形之间的关系有怎样的包含关系?请填入下图中. 平行四边形 二、几种特殊四边形的常用说理方法与解题思路分析 (1)判定矩形的常用方法(3种) ①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的有一个角为直角. ②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等. ③说明四边形ABCD的三个角是直角. (2)判定菱形的常用方法(3种)

相关文档
最新文档