五沟煤矿1013工作面地表移动观测站设计

五沟煤矿1013工作面地表移动观测站设计
五沟煤矿1013工作面地表移动观测站设计

皖北煤电集团有限责任公司

五沟煤矿1013工作面地表移动观测站设计

安徽理工大学

五沟煤矿

2008年4月

前言

为了获得五沟煤矿1013工作面最可靠的地表移动参数,掌握该地质采矿条件下的地表移动规律,皖北煤电集团有限责任公司五沟煤矿决定建立1013首采面地表移动观测站,进行该工作面地表移动的观测和研究工作。

1013首采面地表移动观测与研究的主要内容:

(1)掌握地质采矿条件与地表移动与变形的关系;

(2)获得厚松散层、综采条件下地表移动与变形的分布规律;

(3)确定首采面地质采矿条件下的角量参数、动态参数和预计参数。

通过对首采面地表移动观测站的研究,为五沟煤矿保护煤柱留设、征地、迁村和实现煤矿安全生产等提供科学依据,并进一步探求厚松散层条件下的地表移动规律,丰富和发展我国“三下”采煤技术。

1 1013首采工作面地质采矿条件

1013工作面倾向长1000m,走向宽150m,面积约15万m2,平均采深为385m,平均倾角10o,该工作面10煤层厚度在0~5.5m之间,平均3.1m。采用走向长壁垮落采煤法,综合机械化采煤。本工作面掘进水文地质条件较复杂,本区有“四含”水,其中四含岩性复杂,泥质含量高,渗透性差,补给条件较差,直接覆盖在煤系地层之上,而与上覆一、二、三含水层无直接水力联系。该工作面老顶为泥岩、粉细砂岩,岩性和厚度变化大。直接顶工作面外段为中厚层灰白色中、细粒砂岩,厚度为6.4~10m;中段为灰色~浅灰色粉砂岩,一般厚度为3.7m;里段直接顶板则为深灰色~灰黑色块状泥岩,含炭质,厚度为2.5m。直接底板岩性变化不大,岩性为粉、细砂岩或粉细砂岩互层。上部松散层厚度为270m左右。

1013工作面上方主要为农田和沟渠,地表地势平坦,无大型建筑物,地面标高+26.7~+27.5m 。

2 地表移动观测站的设计

1) 观测站设计原则

为了能够获得准确、可靠、有代表性的观测资料,在观测站设计中,应遵循以下原则:

(1)观测线应设在地表移动盆地的主断面上; (2)观测线在观测期间不受邻近开采的影响; (3)观测线的长度要大于地表移动盆地的范围;

(4)根据开采深度和设站目的,观测线上的测点应有一定的密度; (5)观测站的控制点要设在移动盆地范围以外,埋设要牢固。在冻土地区,控制点底面应在冻土线0.5m 以下。 2) 角量参数的选定

由于该观测站为五沟煤矿第一个观测站,角量参数的选定只能参照邻近相似地质采矿条件矿区地表移动观测站成果资料。

徐州西部矿区的角度参数为:

040=?αβ*8.0~750= 000075~7075~70==δγ,

由淮北矿区地表移动规律研究报告中经验公式可得:

0000

005.49.585.46.257

.508.71±=±-H h H m -==综综γδ 0000

009.15.589.132.02.247

.555.73±=±--αβH h H m -=综

其中?——松散层移动角;

γ、β——上、下山移动角;

δ——走向移动角;

α——煤层倾角;

m——煤层平均厚度;

h——松散层厚度;

H——回采工作面平均开采深度。

3)观测线位置的确定

根据观测站设计原则,在1013工作面上方地表布置两条观测线。A号观测线位于工作面下山边界43m,B号观测线位于距离开切眼325m的采空区上方,详见图1、2。

图1 A号观测线断面图

图2 B 号观测线断面图

观测站平面位置设计见附图。 4) 观测线长度的确定

根据《煤矿测量试行规程》第217条规定,调整β?、γ?、δ?取020。以剖面法求得A 号和B 号观测线长度分别为1610m 和1095.5m ,共计2705.5m ,如图1所示。

A 号观测线长度按下式计算:

l h A A +?--=)cot()2(H 0581δδ

式中l —工作面走向长度;

δ

?—为走向移动角的修正值。

同理可得B 号观测线的长度:

αγγββcos )cot()cot(21361L H H B B +?-+?-=

式中γ?、β?—分别为上、下山移动角的修正值;

L —工作面倾斜长度;

1H 、2H —分别为采区下边界和上边界的开采深度。

3 控制点及工作测点的个数和埋设方法

1) 控制点及工作测点数

按《煤矿测量试行规范》规定,测点间距为25m,控制点间距为50m,

由观测线长度计算得各测线控制点和工作测点的个数,见表1。

2)控制点和工作测点结构

所有控制点和工作测点全部为混凝土予制桩,钢筋露出水泥桩的高度

为5mm,如图2和图3。

3)埋设方法

(1)埋设控制点应用全站仪根据施工测量要求按设计坐标在实地标定其位置,工作测点用全站仪标定,尽量使其中心位于同一方向线上,用木桩做标志;

图2 控制点图图3 工作测点图

(2)挖坑前先把点位引到1米外的四个临时十字桩上,在所标定位置

挖一直径为0.5m左右,控制点坑深为0.7m以上、工作测点坑深为0.5m 以上的坑,坑底捣实,先铺一层0.1米厚的混凝土后放置予制桩,并用混凝土固定工作测点及控制点周围,固定高度分别为0.3m和0.5m;由十字桩拉线指示测点位置,控制点的偏心不要大于1cm,工作测点偏心不要大于5cm。观测线上为三个控制点时,先埋设两端点,然后用全站仪标埋中间控制点;

(3)在整个观测期间必须采取有效措施对控制点和工作测点严加保护,如有破坏应及时补埋;

(4)部分控制点和工作测点标定坐标见表2;

(5)观测站各控制点和工作测点的埋设工作应于5月10日前完成。

表2 控制点和工作点坐标

4 观测项目、方法、精度和时间

1)连接测量

①平面连接

控制点的平面位置采用D级GPS或全站仪导线控制,点位误差不得大于7mm。全站仪导线布置如图4所示。

图 4 连接测量平面图

②高程连接

由D013、D016点分别向观测线控制点引测三等水准,形成附合水准网,如图5所示。

图 5 连接测量水准网图

观测站连接测量成果的内业数据处理方法和常规方法一样,最终求出观测站各控制点的平面坐标和高程。野外数据采集工作包括全面观测和加密水准测量两大部分,内业均采用严密平差进行数据处理。

2) 全面观测

在观测站未受开采影响之前,独立进行两次全面观测。两次测得同一点的高程差值小于10mm,同一边长的长度差小于4mm,取两者平均值作为原始数据。

高程测量直接从观测站控制点开始,按三等水准测量的精度要求进行,观测工作测点时,可使一些测点作为中间点,但视线不宜超过50m(即不超过3个中间点)。若观测站两端有控制点,可进行附合水准测量;若只在一端有控制点,则需进行往返水准测量(或闭合水准测量)。

平面测量采用全站仪导线,正倒镜往返观测,直接测定出各测点的平面位置和高程,通过平面坐标反演,确定出各测点的支距和相邻测点之间在观测线方向的水平距离。

3) 日常观测

在首次和末次全面观测之间适当加密水准测量次数,为判定地表是否开始移动,在回采工作面推进一定距离(相当于0.1~0.5平均开采深度

H,

即工作面回采38m),在预计可能首先移动的地表,选择若干个工作测点,每星期进行一次水准测量。重复水准测量的时间间隔,视地表下沉的速度而定,一般是每隔1~3个月观测一次。在移动的活跃阶段,还应在下沉较大的区段,增加水准观测次数。

观测站的各项观测,一般情况下可参照表3的程序进行。为了保证所

获得观测资料的准确性,每次观测应在尽量短的时间内完成,特别是在移动活跃阶段,水准测量必须在一天内完成,并力争做到高程测量和平面测量同时进行。

表3观测站观测程序

注:地表移动稳定后指6个月内地表各点的下沉值均小于30mm

4) 地表裂隙调查及井下工作面测量

调查记录产生裂缝的日期、位置、长、宽、深及其变化过程,并拍摄图片。

在每次地表移动观测的同时,应在井下测定工作面的推进位置、采厚和采高等采煤状况,并每周测定一次实际回采上限的位置。

5 观测成果的整理

地表移动观测站的观测成果预处理,必须在外业成果无误的基础上进行。观测数据的处理工作包括计算和绘图两部分。

1)观测成果的计算

为了确保观测成果的正确性,在进行内业数据处理之前,应对野外观测成果再次检查,然后进行各种改正数的计算和严密平差计算。

(1) 观测数据的预处理

观测数据预处理主要是计算各测点的高程、相邻两测点在观测线方向的水平距离,然后计算各测点的移动和变形值及下沉速度等。

对于全站仪而言,观测数据的处理除须加入气象改正和斜距改正之外,其余的计算和常规方法相同。有关气象改正和斜距改正的具体计算方法参看全站仪使用说明书。 (2) 移动和变形计算

观测数据经过预处理之后,便可计算观测线上各测点和各测点间的移动和变形值。移动和变形计算主要包括:各测点的下沉和水平移动,相邻两测点间的倾斜和水平变形,相邻两线段(或相邻三点)的曲率变形,观测点的下沉速度等。各移动和变形计算公式如下:

① m 次观测时n 点的下沉

m n n n H H W -=0,mm

式中 n W —n 号点的下沉值;

0n H 、m n H —分别为首次和m 次观测时n 号点的高程。

② 相邻两点间的倾斜

1

~11~+++-=

n n n

n n n l W W i ,mm/m 式中 1~+n n l —n 号点至n 1+号点的水平距离;

1+n W 、n W —分别表示n 1+号点和n 号点的下沉量。

③ n 号点附近的曲率,即n -1号点至n +1号之间的曲率

1~~1-+n n n K =

2

1~~11~~1-+-++-n n n n n n n n l l i i =1

~~11~~1)

(2-+-++-n n n n n n n n l l i i , mm/m 2或310-/m

式中 n n i ~1+、1~-n n i —表示n +1号点至n 号点和n 号点至n -1号点的倾斜;

n n l ~1+、1~-n n l —表示n +1号点至n 号点和n 号点至n -1号点的水平距离。 ④ n 号点的水平移动

n U =nm L -0n L ,mm

式中 n U —n 号点的水平移动;

nm L 、0n L —分别表示m 次观测时和首次观测时n 号点至观测线控制点间的水平距离,用点间距累加求得。

⑤ n 号点至n +1号点间的水平变形

n n ~1+ε=

~10

~1~1)()()(n n n n m n n l l l +++-, mm/m

式中 0~1)(n n l +、m n n l )(~1+—分别表示n +1号点至n 号点在首次观测时和m 次观测时的水平距离。

⑥ n 号点的下沉速度

t

W W V nm nm n 1

--=

,mm/d 式中 1-nm W 、nm W —分别表示m -1次和m 次观测时n 点的下沉值;

t —两次观测的间隔天数。 ⑦ n 号点的横向水平移动

'

n

U =nm y -0n y ,mm 式中 nm y 、0n y —分别表示第m 次观测和首次观测时n 号点的支距值。

横向水平移动是垂直于观测线方向的水平移动,计算时需注意正、负号。

每次观测结束之后应及时进行移动和变形计算,计算数字的取位见表4。

表4 移动、变形计算时的取位参考

(3)地表移动变形参数确定

地表移动变形计算之后,绘制移动变形曲线图和下沉速度曲线图。在图上可确定出移动变形的角量参数有:移动角、边界角、裂缝角、最大下沉速度角、超前影响角等,通过专业程序计算求得的地表移动预计参数有:下沉系数、水平移动系数、主要影响角正切、拐点偏移距等。

2)绘图工作

根据每次观测的计算结果绘制CAD曲线图,由这种曲线图能够清楚地看出沿观测线(主断面)的地表移动与变形的分布特征及其发展过程。

绘制移动和变形曲线图时,选择竖直比例尺的原则是:使绘制的曲线能清楚的反映出移动和变形的分布规律,并便于分析比较。水平比例尺与观测站平面图一致。

曲线图和观测线断面图应绘在一起,以表明各种地质采矿条件对移动和变形分布形态的影响。断面图的竖直和水平比例尺与井上下对照图的相同。在断面图上应标出地面,测点及其编号,松散层厚度,岩层柱状,采区位置,开采厚度,各次观测时的工作面位置及采区周围的开采情况等。

在观测站平面图上应表示出:测点的实际位置,地形,地物,钻孔,保护煤柱边界线,每次观测时的工作面位置,回采边界,地表裂缝,塌陷坑的形态及出现日期,并根据实测的移动和变形值勾绘等值线图。

每一次观测后,要及时进行计算和绘制移动、变形曲线图。观测站观测工作全部结束后,为了求出最终结果,应对每次观测结果进行综合分析,以便获得观测站受开采影响产生的移动、变形的发展过程,以及移动和变形的最终值。

绘制移动、变形曲线时,具有正号的移动、变形值绘在水平线的上方,负号值绘在水平线的下方,但下沉值除外。图6根据观测成果绘制的移动、变形曲线示意图。绘图展点时需注意:下沉是展在测点的正下方;水平移动是依据其正、负号分别展在测点的正上方或正下方;倾斜和水平变形是依据其正负号展在两测点间中点的正上方或正下方,曲率是依据其正负号两相邻线段的不同情况展点;当相邻两线段的长度相等时,曲率点展在中间点的正上方或正下方。

绘制下沉速度曲线时,按下沉速度值,在两次观测时间间隔的正中间展点。

图6移动和变形曲线绘制方法示意图

3)提交成果

观测站的实测资料经过数据处理后,可求得下列成果:

(1)地表移动盆地的范围、形状、大小,以及各种角值参数(边界角、移动角、裂缝角、最大下沉角、充分采动角等);

(2)地表移动盆地主断面上的移动和变形分布及其特征,移动和变形值的位置;

(3)工作面推进过程中移动和变形的发展过程及其相应的主要动态参数(起动距、超前距、超前影响角、滞后角等);

(4)地表移动过程中,地表移动速度的变化以及与工作面的相应关系;

(5)地表移动各个阶段(初始阶段、活跃阶段、衰退阶段)的持续时间以及地表移动持续的总时间;

(6)工作面开始回采到地表开始下沉的时间等。

6 观测站经费预算及工作进度

附图:地表移动观测站设计平面图

矿山地表及岩层移动观测

矿山地表及岩层移动观测 为了保护井巷、建筑物、水体、铁路等免受开采的有害影响,合理提高煤炭资源回收率,并为留设保护煤柱提供技术资料,新建矿井应开展地表及岩层的移动观测工作。 地表及岩层的移动观测工作设置的各种观测站必须编写岩移观测方案,并报请集团公司地质勘测处审批。观测站设计由文字说明和图纸两部分组成。文字部分包括观测站设计书。图纸包括井上、下对照图(包括观测线和观测点的位置)、观测线剖面图(包括观测线长度的确定)、岩层柱状图、观测点的构造图等。 矿区设置观测站时应统一规划,并选择在有代表性的地方设置。地表移动观测站位置的选择,应遵循由简单到复杂的原则,初次建立地表移动观测站的位置应满足:煤层走向、倾角及厚度均稳定,地势平坦,无大断层,单煤层开采,四周无采空区。 地表移动观测站一般可设走向观测线和倾斜观测线各 一条,设在移动盆地的主断面位置。如回采工作面的走向长度大于1.4H0+50m(式中H0为平均开采深度),亦可设置两条倾斜观测线,但至少应相距50m,并且应距开切眼或停采线0.7H以上。 观测点间距离应根据开采深度按下表21确定。

表21 矿山企业应根据矿区地面控制网,按5″级导线(网) 精度要求建立岩移观测控制网。各控制点和观测点的高程测量应组成水准网,按三等水准测量的要求进行观测。 控制点和观测点的设置应符合下列要求: (一)埋设的控制点和观测点必须用全站仪按设计标定,并应尽可能使观测点中心位于控制点连线的方向上; (二)在非冻土地区,测点的埋设深度应不小于0.6m。在冻土地区,测点的底面一般应在冻结线0.5m以下。测点可采用浇注式或混凝土预制件; (三)当地表至冻结线下0.5m内有含水层时,一般应采用钢管式测点; (四)埋设的测点应便于观测和保存。如预计地表下沉后测点可能被水淹没,则点的结构应便于加高; (五)在一般情况下,倾斜观测线上观测点编号应自下山向上山方向顺序增加,走向观测线上观测点编号应按工作面推进方向顺序增加。 在观测站各点埋设10-15天后,即可进行观测。首先应

综采工作面设计使用说明

山西大同李家窑煤业有限责任公司82205工作面设计说明书 矿别: 李家窑煤业 单位: 生产技术科 工作面名称: 82205工作面 二〇一七年一月十日

目录 前言 (3) 第一章工作面概况及地质特征 (3) 第一节概况 (3) 第二节地质特征 (4) 第二章采煤方法、设备选型及巷道布置 (6) 第一节采煤方法及设备选型 (6) 第二节工作面巷道布置 (7) 第三章工作面生产能力及生产系统 (9) 第一节工作面生产能力 (9) 第二节生产系统 (10) 第三节机电设备及供电 (16) 第五章技术经济指标 (53) 第六章安全技术措施 (54)

前言 根据《采矿设计手册》、《综采技术手册》及《煤矿安全规程》等有关规定及要求,对82205综采工作面进行设计,该工作面位于我矿+1240m 水平一盘区,预计2017年8月15日采出。 第一章工作面概况及地质特征 第一节概况 一、工作面位置及地表概况 本矿井位于大同煤田南东部,大同市左云县东南26km,小京庄乡李家窑村南,行政区划隶属左云县小京庄乡,经济类型为集体所有制企业,其地理坐标为:东经112°44′41″~112°47′52″,北纬39°45′57″~39°48′18″。 井田东南距北同蒲铁路40km,并有小峪及峙峰山运煤专用线于宋家庄站与北同蒲铁路相接,宋家庄站至大同52km,与大秦铁路相连;南至朔州到太原长303km。另外北东有同煤集团王村矿至大同的运煤专线。井田北东有左(云)~吴(家窑)公路,往南东与大运高速公路相接,井田南东有岱(岳)~马(营)公路与大运也相连,另外井田内和周边均有简易公路与以上两条公路相连,交通较方便。 该矿东与峙峰山煤业有限公司相邻,西北与整合后的左云县长春兴煤矿相邻。南、北无其它煤矿开采。 二、工作面参数 82205工作面为22#煤层综采工作面,本采面北部为已采82203工作面,南部为82207设计采面,西部为22#煤层82204采面。 工作面标高:1302~1333.5m 工作面走向长度:890m

放顶煤工作面开采设计说明书

前言 一、概况 察布查尔县联发煤炭开发有限责任公司煤矿位于察布查尔县坎乡东南部,康萨依沟源头,隶属察布查尔县坎乡管辖。井田向北9KM有简易公路与县级公路相连,过卡拉塔姆吊桥,沿县级公路向东行4KM与S216省级公路连通,北西距察布查尔县城约62KM,距伊宁市约68KM,交通较方便。 矿井建于1989年,原生产能力3万t/a,“十五”期间,该矿井被列为新疆煤炭工业“十五”结构调整规划9万t/a改扩建井。2006年开始9万t/a改扩建工程施工,现即将完工验收。 该矿井采用斜井开拓,目前生产水平为+1065m,主要开采8号煤层,采用炮采放顶煤采煤方法,轻型放顶煤液压支架支护。 为了加强放顶煤工作面安全生产管理,减少重大事故发生,根据国家安全监管总局、国家煤矿安监局下发的《关于加强煤矿放顶煤开采安全管理工作的通知》(安监总煤行[2008]130号)精神,该矿根据实际情况进行对8号煤层放顶煤工作面进行专项设计。 二、设计依据 1、《关于加强煤矿放顶煤开采安全管理工作的通知》(安监总煤行[2008]130号)。

2、《煤矿安全规程》。 3、《煤炭工业小型矿井设计规范》。 4、新疆伊犁703勘查大队于2004年5月提交的《新疆察布查尔县联发煤矿生产地质报告》及评审意见书。 5、该矿井的初步设计等相关文件。 三、指导思想及原则 本设计结合矿井开采技术条件、矿井现有巷道系统、生产系统、生产设备、地面设施等,尽量采用先进开采工艺,提高资源回收率,投资少,见效快,工程量小,力求实用、安全、可靠,加强放顶煤开采的安全管理,遏制重特大事故的发生。 四、应注意的问题 1、该矿井未作煤的力学参数测试,如煤的硬度、单向抗压强度等,建议矿井开采前作煤的相关力学参数,以便更好的掌握放顶煤冒落规律。 2、井田内采空区范围及积水性需要进一步加强勘查,在生产中应做好掘进超前探放水工作,以防突水事故的发生。 3、矿井虽然为低瓦斯矿井,但放顶煤开采增加了瓦斯的涌出,生产中应加强矿井的瓦斯管理工作,严防瓦斯事故发生。 4、矿井煤层易自燃,自然发火期短,生产中应加强工作面防灭火工作。 第一章:井田概况及地质特征

岩层及地表移动的各种参数

岩层及地表移动的各种参数(08-12-2修订) 通过地表移动观测确定地表移动参数: 边界角:在充分采动或接近充分采动条件下,地表移动盆地主断面上盆地边界点(下沉值为10mm)至采空区边界的连线与水平线在煤柱一侧的夹角。考虑松散层时,还要根据松散层移动角确定。 移动角:在充分采动或接近充分采动条件下,地表移动盆地主断面上三个临界变形值中最外边的一个临界变形值点至采空区边界的连线与水平线在煤柱一侧的夹角。考虑松散层时,还要根据松散层移动角确定。 三个临界变形值为:倾斜变形3mm/m;水平变形2mm/m;曲率变形0.2mm/m2。 裂缝角:在充分采动或接近充分采动条件下,地表移动盆地内最外侧的地表裂缝至采空区边界的连线与水平线在煤柱一侧的夹角。 充分采动角:在充分采动条件下,地表移动盆地平地边缘点至采空区边界连线与煤层在采空区一侧的夹角。 以上各角又都分为上山、下山和走向三角。 最大下沉角:非充分采动时,地表移动盆地中心区的最大下沉点至采空区中心点的连线与水平线在下山方向的夹角。充分采动

时,在松散层不厚情况下,可依据上下山充分采动角作两直线,其交点至采空区中点连线与水平线在下山一侧的夹角。 开采影响传播角:充分采动时,倾向主断面上地表最大下沉值与该点水平移动值的比值的反正切值。 关于最大下沉角和开采影响传播角,有些书和文章不加区分,其实从以上《规程》中的定义来看,一个通过作图得到,一个通过计算得到,二者从数值上是很可能不同的。 地表移动计算参数: 下沉系数:充分采动时,地表最大下沉值与煤层法线采厚在铅垂方向投影长度的比值。 水平移动系数:充分采动时,走向主断面上地表最大水平移动值与地表最大下沉值的比值。 主要影响角正切:走向主断面上走向边界采深与其主要影响半径之比。在概率积分法预计时,不用边界角、移动角和裂缝角作为预计参数而一般采用主要影响角正切作为预计参数。 注意:主要影响角与下山移动角是不同的概念。 拐点偏距:下沉曲线的几何拐点与煤壁在水平方向上的偏离距离(偏向采空区)。 对于以上计算参数,《规程》给出了根据地表移动观测站数据计算的方法。对于缺少实际观测资料的矿区,可采用覆岩综合评价系数P及地质、开采技术条件来确定地表移动计算参数(见《规程》)。《规程》还给出了煤层群条件下,如果下层煤开采的影

6200工作面地表移动观测站设计

中国矿业大学 某矿6200工作面地表移动观测站设计 姓名: 学号: 班级: 指导老师: 环境与测绘学院 2016年4月17日

目录 一建立观测站的目的和任务 (2) 二设站地区的地形及地质采矿条件 (2) 三观测站设计时所采用的开采沉陷参数 (2) 四地表移动观测站的设计 (3) 五确定观测点间距、测点编号 (6) 六工作测点和控制点的构造和埋设方法 (6) 七观测站与矿区控制网连接设计 (8) 八观测站日常观测方案, (8) 九观测站成果整理方法 (9) 十观测站经费预估 (14)

一建立观测站的目的和任务 某矿 6200 工作面西部、西南部有后鲍店村、中鲍店村。为研究地下开采对村庄的影响及地表移动变形规律和参数,拟在该矿6200 工作面设置地表移动观测站,进行地表移动观测,通过观测获得地表移动动态参数和角值参数,同时,监测地下开采对建筑物的影响。 二设站地区的地形及地质采矿条件 6200 工作面位于六采区东北部,是该采区设计开采 2 层煤的第一个工作面,北部、东部分别为 3 煤的一采区 1308、1310、1312 采空区和二采区 2310、2311、2312 采空区及未开采区域,南部、西部尚未开采。6200 工作面基本沿倾向布置,为刀把型,倾向长为623~820 m ,走向宽为 46~129 m ,煤层厚度 0.70~1.33 m ,平均 1.10 m ,煤层倾角 4~19/6°,第四系平均厚度 196.16 m 。工作面标高为-233~-303m 。2 煤与下伏 3 煤的层间距一般为 21 m 。6200 工作面上方地表地势平坦,标高为 43 m 左右,冻土深度 0.4m 。 三观测站设计时所采用的开采沉陷参数 根据现场实测,求得本区域实测地表移动参数为:走向移动角=75°,上山移动角 =75°,下山移动角 =75°-0.6

地表移动观测站设计

地表移动观测站设计作业 一、设站目的: 某矿6200工作面西部、西南部有后鲍店村、中鲍店村。为研究地下开采对村庄的影响及地表移动变形规律和参数,拟在该矿6200工作面设置地表移动观测站,进行地表移动观测,通过观测获得地表移动动态参数和角值参数,同时,监测地下开采对建筑物的影响。 二、设站地区地质采矿概况: 6200工作面位于六采区东北部,是该采区设计开采2层煤的第一个工作面,北部、东部分别为3煤的一采区1308、1310、1312采空区和二采区2310、2311、2312采空区及未开采区域,南部、西部尚未开采。6200工作面基本沿走向布置,为刀把型,倾向长为623~820m,走向宽为46~129m,煤层厚度0.70~1.33 m,平均 1.10m,煤层倾角4~19/6°,第四系平均厚度196.16m。工作面标高为-233~-303m。2煤与下伏3煤的层间距一般为21m。 6200工作面上方地表地势平坦,标高为43m左右,冻土深度 0.4m。 三、地表移动参数:

根据现场实测,求得本区域实测地表移动参数为: 走向移动角δ=750,上山移动角γ=750,下山移动角β=750-0.6α,表土移动角φ=450,充分采动角ψ1=ψ2=ψ3=550,最下沉角θ=900-0.5α 平均采深 H=0.5(-233-303)=-268m,煤层平均倾角α

四、地表移动观测线位置、长度确定: 采空区走向长度超过1.2~1.40H (0H 为平均采深),地表走向方向达到充分采动;倾向方向小于1.2~1.40H ,地表倾向方向为非充分采动。 1、走向观测线位置确定: 由于倾向充分采动,走向观测线由最大下沉角θ=900-0.5α或充分采动角ψ1=ψ2=550确定 2、全走向观测线长度确定: m 439)cot()2(H cot 2AB 0=+?--+=l h h δδ? l 为走向工作面长度,m 3、倾向观测线位置确定: 由于走向非充分采动,倾斜主断面位于采空区中央 4、半倾向观测线长度确定: 384cos 2 L )cot(h cot h CD 1=+ ?--+=αββ?)(H 五、确定观测点间距、测点编号: 根据国内对开采沉陷的大量研究,一般根据开采深度确定观测点密度,该矿区平均采深在200~300m ,所以观测点间距为20m 。

8203对拉采煤工作面设计说明书

8203对拉采煤工作面设 计说明书 第一章工作面概况及危险源分析 第一节工作面概况 一、采面概况 工作面位于+214水平东翼+250-+160m标高段,东部以8203E工作面风巷为界,西以8201E工作面风巷为界,南部+230东翼回风巷为界,北部为井田边界。工作面底板标高为+175m,最低标高为+160m,工作面走向长245m,倾向长平均840m,可采面积为205800m2。 该工作面对应地面位置为:羊儿坡、半边街,地表为丘陵地带,无大型建筑物,地面标高在+450-530m之间。 二、煤层赋存情况 煤层走向75-85°之间,倾向345-355°之间,倾角4-6°之间,平均倾角5°。该煤层为复杂结构,以双层结构为主,由2-4个分煤层组成,纯煤厚度0.3-0.67m,由1-3层夹矸组成,夹矸厚度0.04-0.33m。根据其临近的8201工作面机巷煤厚变化情况并结合附近钻孔资料分析,工作面煤层最大厚度为0.6m,最小厚度为0.3m,平均厚度为 0.45m,煤层厚度基本稳定。 三、地质构造 该工作面地质构造为单斜构造,从揭露出来的巷道及开切眼来看均无断层出现,因此估计该对拉工作面在开采过程中不会遇到断层;只是局部煤层有变薄的现象。 四、顶底板岩性 顶板为黑色、深灰色页状粘土岩,质软,底部含砂质,富有植物化石碎片,煤层与顶板多呈直接接触,个别地段有0.03—0.12m厚的含黑色高炭质粘土岩伪顶与煤层呈过渡接

触,间有微冲刷接触的。 底板为K8与K7煤层相夹的一套沼泽相沉积物灰,以粘土岩为主,间夹0.3m的泥质粉砂岩或细砂岩透镜体,与煤层呈明显接触。 五、水文条件 本矿区位于犍乐煤田东翼,地层产状平缓,出露地层为:上三叠纪须家河组顶部,中下侏罗系沙溪庙组,岩层为碎屑岩类,含水性弱,区类气候温暖潮湿,常年降雨量1668mm,地貌属低山丘陵,矿井主要水源为顶板含水层充水、地表水等,井田水文地质属简单类型。煤层顶板上部有一若含水层,其上部至地表有多层隔水层。在掘进8201E 风巷时,未见顶板有淋水,估计在开采过程中不会受影响。 根据其临近的8201工作面机巷煤厚变化情况并结合附近钻孔资料分析,预计在开采过程中不会受断层水的影响;该工作面无地质钻孔。工作面在开采过程中的洒水防尘后的积水,水量小,对开采影响小。 六、瓦斯 根据2010年瓦斯鉴定情况,矿井相对瓦斯涌出量为22.14 m3/t,绝对瓦斯涌出量为7.823 m3/min。二氧化碳相对涌出量为5.48 m3/t,绝对涌出量为1.936m3/min,属于高瓦斯矿井。由于该工作面的开采深度增加、规模扩大为普采、相似开采解放层、全部垮落法管理顶板,因此采用统计法进行预测:该工作面绝对瓦斯涌出量为1.3 m3/min,绝对涌出量为0.40 m3/min;同时,该工作面为W型通风,上隅角容易瓦斯超限,通风部门要加强通风管理。 七、地表情况 该工作面地面为荒坡,周围无建筑物和其他设施,不会造成其他影响。 第二节危险源分析及采掘工艺、采面生产能力确定 一、危险源分析 1、顶板 根据8201采煤工作面掘进及回采期间的资料分析,该采面区域地质构造简单,在局部地段可能会有小的褶区,但对巷道施工及回采无大的影响。 在回采过程中经过煤层薄化地段及其顶板破碎带时,要加强工作面及回风巷的瓦斯检查,预防瓦斯大量涌出,工作面的液压支柱要加固加牢,对压力增大地点要加密支护,

第一章 开采引起的岩层与地表移动

第一章开采引起的岩层与地表移动 煤矿开采的三性特殊性、艰巨性和困难性; 特殊困难条件下的开采 三下一上(建筑物下、铁路下、水体下和承压水上);有冲击地压危险的煤层;有煤与瓦斯突出危险的煤层;三软煤层;深部;边角煤;极薄煤层。 采用特殊开采工艺方式 短壁开采;充填采煤;上行开采;水力采煤;煤与煤层气共采;煤的地下气化 1、下沉及变化规律 主断面内地表移动向量的铅直分量,用W表示。坐标O点:最大下沉值处的地表点W坐标轴向下为正,单位为mmx坐标轴向右为正,单位为mW=W(x)最大下沉值在盆地中央,Wo=W5; x增加,W由零增加到最大,而后又趋于零W(-x)=W(x);边界点由d0决定;下沉曲线凹凸分界的拐点处,下沉值约为最大值的一半 2、倾斜 倾斜是指地表单位长度内下沉的变化,用i表示单位为mm/m,i坐标轴向下为正 倾斜是地表下沉的一阶导数,i(x) 正负号的决定:① i=tga 下沉曲线的切线与x轴正向所夹锐角为+a时,倾斜为正; 下沉曲线的切线与x轴正向所夹锐角为-a时倾斜为负。 倾斜的正负号的物理意义;垂直于地表下沉曲线的杆状物倾倒的趋向与x轴正向相同时,倾斜为正;杆状物倾倒的趋向与x 轴负向相同时倾斜为负。 3、水平移动 水平移动-地表移动向量的水平分量,用U表示,单位为mm,U=U(x),有两组方向不同的水平移动

规定:正值的水平移动与x轴的正方向一致 负值的水平移动与x轴的负方向一致 水平移动U(x)和倾斜i(x)的变化趋势同步他们之间相差一个有单位的比例系数B 4、曲率 地表单位长度内倾斜的变化,用K表示,单位为mm/m2或 10-3/m。 曲率坐标轴向上为正 . 正负号 倾斜曲线的切线与x轴正向所夹锐角为+a时,曲率为正; 倾斜曲线的切线与x轴正向所夹锐角为-a时曲率为负。 曲率正负号的物理意义 ; 正曲率的物理意义是地表下沉曲线在地面方向凸起或在煤层方向下凹.负曲率的物理意义是地表下沉曲线在地面方向下凹或在煤层方向凸起 5、水平变形 水平变形—单位长度上水平移动的变化 用 e 表示,坐标向上为正,单位:mm/m 正负号 用tga,水平移动曲线的切线与x轴正向所夹锐角为+a时,曲率为正; 水平移动曲线的切线与x轴正向所夹锐角为-a时曲率为负。 水平变形正负号的物理意义 . 水平变形正值的物理意义为地表受拉伸变形,负值的物理意义为地表受压缩变形。 水平变形的变化规律 两个相等的正极值和两个相等的负极值 正极值为最大拉伸值,位于边界点和拐点之间; 负极值为最大压缩值,位于两个拐点之间; 盆地边界点、拐点和中点处水平变形为零;

最新11042地表移动观测站设计方案汇总

11042地表移动观测站设计方案

六盘水恒鼎实业有限公司 盘县石桥镇喜乐庆煤矿 地表移动观测站设计方案2015年1月20日

11042采面地表移动观测站设计方案 前言 为了获得我矿采煤工作面最可靠的地表移动参数,掌握我矿地质采矿条件下的地表移动规律,我矿决定建立11042采面地表移动观测站,进行该工作面地表移动的观测和研究工作。 11042采面地表移动观测与研究的主要内容: (1)掌握地质采矿条件与地表移动与变形的关系; (2)获得厚松散层、炮采条件下地表移动与变形的分布规律; (3)确定采面地质采矿条件下的角量参数、动态参数和预计参数。 通过对采面地表移动观测站的研究,为我矿保护煤柱留设、征地、迁村和实现煤矿安全生产等提供科学依据,并进一步探求厚松散层条件下的地表移动规律,丰富和发展我国“三下”采煤技术。 一、11042采工作面地质采矿条件 4#煤层位于龙潭组上部,上距飞仙关组(T1f)底界平均12.09m。11042采工作面倾向平均长87m,走向长222m,面积约19314m2,平均煤厚为m=2m,平均倾角14o,工作面标高为+1531m~+1541m,该工作面相对范围内地面标高为+1625m~+1655m,其最大开采深度为114m,最小开采深度为94m。上部松散层厚度为h=70m且该工作面上方无农田、建筑物等。 二、地表移动观测站的设计 1、观测站设计原则

为了能够获得准确、可靠、有代表性的观测资料,在观测站设计中,应遵循以下原则: (1)观测线应设在地表移动盆地的主断面上; (2)观测线在观测期间不受邻近开采的影响; (3)观测线的长度要大于地表移动盆地的范围; (4)根据开采深度和设站目的,观测线上的测点应有一定的密度; (5)观测站的控制点要设在移动盆地范围以外,埋设要牢固。若在冻土地区,控制点底面应在冻土线0.5m 以下。 2、角量参数的选定 角量参数的选定只能参照网上相似地质采矿条件矿区地表移动观测站成果资料。 网上相似地质采矿条件矿区的角度参数为: ,040=?αβ*8.0~750= 000075~7075~70==δγ, 网上地表移动规律研究报告中经验公式可得: 0000 005.49.585.46.257.508.71±=±-H h H m -==综综γδ 0000 009.15.589.132.02.247 .555.73±=±--αβH h H m -=综 其中 ?——松散层移动角; γ、β——上、下山移动角; δ——走向移动角; α——煤层倾角;

10102综采工作面供电设计说明书

山西吕梁离石金晖荣泰煤业有限公司10102综采工作面供电设计说明书 设计:孟庆保 2011-6-21

10102综采工作面供电设计 (一)综采工作面主要条件 该工作面属于10#煤层一采区,平均煤层厚度3.3m,工作面长度180m,走向长度为1170m,平均倾角3-5度,采用一次采全高采煤工艺,可采最高煤层厚度3.5m。 矿井井下高压采用10KV供电,由采区变电所负责向该综采工作面供电。变电所高压设备采用PBG23-630/10Y型高压隔爆开关,保护选用常州市武进矿用设备厂GZB-ARM-911系列智能型高压数字式综合继电保护装置,采区变电所距综采工作面皮带机头200m。 (二)设备选用 1、工作面设备 采煤机选用山西太重煤机煤矿装备成套有限公司生产的MG300/730-WD型采煤机,其额定功率730KW,其中两台截割主电动机

功率为300KW,额定电压为1140V;两台牵引电机功率为55KW,额定电压为380V;调高泵电机电压1140V,功率20KW。 工作面刮板输送机中煤张家口煤矿机械有限责任公司制造的SGZ764/630型输送机,机头及机尾都采用额定功率为160/315KW的双速电机,额定电压为1140V。 2、顺槽设备 1)破碎机:采用中煤张家口煤矿机械有限责任公司制造的PCM-110型破碎机,其额定功率110KW,额定电压1140V。 2)转载机:采用中煤张家口煤矿机械有限责任公司制造的SZZ764/160型转载机。其额定功率160KW,额定电压1140V。 3)顺槽带式输送机:采用兖州市华泰机械公司制造的DSJ100/63/2*110型输送机(1部),驱动电机额定功率2×110 KW, 4)乳化液泵站:两泵一箱,乳化液泵采用无锡威顺生产的BRW200/31.5型液泵,其额定功率125KW,额定电压1140V。 5)喷雾泵:采用无锡威顺生产的BPW315/6.3型(2台),其额定功率45KW,额定电压1140V。 3、其它设备 (三)工作面移动变电站及配电点位置的确定 工作面电源电压为10kV,来自井下中央变电所。根据用电设备的容量与布置,采用1140V电压等级供电,照明及保护控制电压采用127V。在临时变电所处设置移动变电站,为顺槽皮带机供电;在顺槽

地表移动观测站设计

目录 一、建立地表观测站的目的 (2) 二、建立地表观测站的目的 (2) 三、工作面地质采矿条件 (2) 3.1设站地区地质采矿概况 (2) 3.2地表移动参数 (2) 四、地表移动观测站的设计 (3) 4.1 观测站设计原则 (3) 4.2观测线长度、位置的确定 (3) 4.3确定观测点间距、测点编号 (4) 4.4控制点、观测点的构造及埋设方法设计 (7) 五、观测站成果整理方法 (10) 六、移动和变形计算 (10) 七、绘图工作 (12) 八、观测成果整理 (12) 九、观测站经费估算 (12)

某矿6200工作面西部、西南部有后鲍店村、中鲍店村。为研究地下开采对村庄的影响及地表移动变形规律和参数,拟在该矿6200工作面设置地表移动观测站,进行地表移动观测,通过观测获得地表移动动态参数和角值参数,同时,监测地下开采对建筑物的影响。 二、建立地表观测站的目的 1、由于国内外对重复采动下的地表移动变形及对外建筑物的影响和破坏的研究还很不充分,所以本项目通过地表移动的观测研究,探寻重复采动条件下地表移动变形的规律,对本矿区重复开采沉陷问题起到现实的指导意义。 2、综合分析观测资料,求取地表变形的角量参数及概率积分法预计参数。 3、用实测的移动变形参数进行建筑物、铁路和水体下的保护煤柱设计,有效地减少铁路、建筑物、水体下压煤量,并可以合理确定综采工作面的尺寸,提高煤炭采出率。 4、减少和避免不必要的采矿纠纷,可进行提前预测和防护措施,有利于保护人身、财产安全。 三、工作面地质采矿条件 3.1设站地区地质采矿概况 6200工作面位于六采区东北部,是该采区设计开采2层煤的第一个工作面,北部、东部分别为3煤的一采区1308、1310、1312采空区和二采区2310、2311、2312采空区及未开采区域,南部、西部尚未开采。6200工作面基本沿走向布置,为刀把型,走向长为623~820m,倾斜宽为46~129m,煤层厚度0.70~1.33 m,平均1.10m,煤层倾角4~19/6°,第四系平均厚度196.16m。工作面标高为-233~-303m。2煤与下伏3煤的层间距一般为21m。6200工作面上方地表地势平坦,标高为43m左右,冻土深度0.4m。 3.2地表移动参数 根据现场实测,求得本区域实测地表移动参数为:走向移动角δ=750,上山移动角γ=750,下山移动角β=750-0.6α,表土移动角φ=450,充分采动角ψ1=ψ2=ψ3=550,最下沉角θ=900-0.5α

一份综采工作面供电设计说明书

842综采工作面供电设计说明书 一、工作面概述 842综采工作面是西四采区8层煤的一个综采工作面,总安装长度635米,其中切眼长145米,机巷长400米,溜斜长90米。工作面支护选用ZY3800/13/28型综采支架,采煤机选用MWG-300/700WD型,工作面车选用SGZ-764/2×315型。机巷安装SDJ-150P型皮带机一台、溜斜安装SGB-80T 型刮板机一台、转载机使用SZZ-764/160 型以及WRB-400/31.5型乳化泵站、通讯控制采用KTC-2 型。移变、乳化泵站、工作面设备控制开关设备集中安设在联巷设备硐室,这样可便于检修和管理,供电电源来自西四上部变电所。 二、移变容量计算 1、设备负荷统计 根据设备选型,负荷统计结果如下: 本系统供电设备额定功率之和为: ∑P=700+160+250+110+2×315+2×75+2×55+2×55=2220KW 2、移变容量计算与选择 采区供电一般采用需用系数法,因自移支架且设备按一定顺序起动,故需

用系数为: 589.02220 700 6.04.06.04.0max =?+=∑? +=e X P P K 查表综采面加权平均功率因数cos Ψdj 取0.7。 因此移变容量计算为: KVA P K S dj e X B 97.18677 .02220589.0cos =?=ψ∑?= 2、移变选择: 根据以上计算,选用两台移变负责该面供电,1140V 系统采用一台KSGZY-800/6型矿用移动变电站分别对转载机、破碎机、机巷刮板机、机巷皮带、溜斜刮板机进行供电。3300V 系统采用一台KSGZY-1600/6型矿用移动变电站对工作面输送机、乳化泵、采煤机进行供电。 容量验算如下: 1#移变KSGZY-800/6型(6/1.14KV): 设备总功率:∑Pe=640KW 查表K X 取0.5,cosP dj 取0.7 故移变容量计算为:KVA P K S dj e X B 14.4577 .0640 5.0cos =?=ψ∑?= 因S B 457.14KV A <Se=800KV A ,该移变选择符合要求。 2#移变KSGZY-1600/6型(6/3.3KV): 需用系数:666.01580 700 6.04.06.04.0max =?+=∑? +=e X P P K 设备总功率:∑P =700+250+2×315=1580KW 故移变容量为 KVA P K S dj e X B 86.15027 .01580 666.0cos =?=ψ∑?=

井下煤矿掘进工作面爆破设计方案

. 大理州双河煤矿有限责任公司 井下巷道掘进 爆破设计 编制单位:大理州双河煤矿有限责任公司 编制部门:矿井小型机械化项目办公室 编制日期: 2016 年 11 月 25 日

编制人员名单表 审核人员

目录 矿井基本情况 井下巷道爆破环境描述掘进爆破设计目的及要求爆破参数的确定 凿岩工作

一、矿井基本情况 (一)项目名称、所在位置及隶属关系 1、项目名称:大理州双河煤矿有限责任公司双河煤矿机械化改造。 2、所在位置:大理州双河煤矿有限责任公司双河河煤矿(以下简称“双河煤矿)位于大理州剑川县城北西330°方向,直距约10km。地处剑川县东岭区石菜江村境内。 3、隶属关系:该机械化改造工程项目法人为大理州双河煤矿有限责任公司,属民营企业。 (二)项目背景 双河煤矿为大理州双河煤矿有限责任公司的子公司。 双河煤矿为一小型矿山企业,主要经营煤炭开采和销售,现在册职工125人。矿山始建于1965年,前身为国有煤矿,年产量1万吨左右。2006年以后,矿井通过技术改造,逐步完善了生产系统,矿井产量逐年增加,近年产量在4.5万吨左右,云煤行管[2008]23号文件核定生产能力5万t/a,在大理州“十一.五”煤炭资源整合中属单独保留型矿井,拟整合规模9万t/a。双河煤矿于2009年1月申请延续办理了采矿许可证,证号:C03120,有效期十年,自2009年1月至2019年1月。 根据《云南省大理州双河煤矿有限公司双河煤矿资源储量核实报

告》,双河煤矿截至2008年12月,矿界范围内共获资源总量386万吨。保有资源储量218万吨。为进一步规范采掘部署,改进采煤工艺,优化施工组织,充分合理地开发利用资源,确保矿井持续稳定发展,并为认真落实安监总煤行【2010】178号、云工信煤技【2012】614号精神,按照“大力推行小型煤矿机械化改造,淘汰落后生产工艺,提高技术装备水平,提升安全保障能力”的要求,双河煤矿拟在对矿井采掘运系统进行机械化改造。目前项目已经取得开工备案并与2015年6月正式开工建设。 二、井下巷道爆破环境描述 1、工作面位置范围:该掘进工作面位于四平硐下部,距四平硐硐口300m,南以16上山二级的上出口为界,北以四平硐运输平巷为界,西以原16上山二级上部的采空区为界,东以五平硐北三运上部的待采掘区域为界。 工作面走向长度为240m,倾向长度为76m,该煤层属双河南井田C1煤层,含矸1~2层,为简单结构煤层,煤层厚度稳定,变化不大,上层煤在1.2~1.6m,(可采煤层),中间夹矸为0.2~0.8m,下层煤0.2~0.5m,(一般不可采),即:1.4~1.8m,平均厚度1.6m;煤层倾角9~13°,平均倾角11°,为进水平煤层,该煤层属长焰煤,煤质中硬,硬度系数f:2~5、岩石硬度系数f:7~11。 2、掘进目的用途:主要为探明一采区的资源及地质构造情况,解决一采区采掘工作面的通风线路(主要是回风)过长等问题。详见

五沟煤矿1013工作面地表移动观测站设计

皖北煤电集团有限责任公司 五沟煤矿1013工作面地表移动观测站设计 安徽理工大学 五沟煤矿 2008年4月

前言 为了获得五沟煤矿1013工作面最可靠的地表移动参数,掌握该地质采矿条件下的地表移动规律,皖北煤电集团有限责任公司五沟煤矿决定建立1013首采面地表移动观测站,进行该工作面地表移动的观测和研究工作。 1013首采面地表移动观测与研究的主要内容: (1)掌握地质采矿条件与地表移动与变形的关系; (2)获得厚松散层、综采条件下地表移动与变形的分布规律; (3)确定首采面地质采矿条件下的角量参数、动态参数和预计参数。 通过对首采面地表移动观测站的研究,为五沟煤矿保护煤柱留设、征地、迁村和实现煤矿安全生产等提供科学依据,并进一步探求厚松散层条件下的地表移动规律,丰富和发展我国“三下”采煤技术。 1 1013首采工作面地质采矿条件 1013工作面倾向长1000m,走向宽150m,面积约15万m2,平均采深为385m,平均倾角10o,该工作面10煤层厚度在0~5.5m之间,平均3.1m。采用走向长壁垮落采煤法,综合机械化采煤。本工作面掘进水文地质条件较复杂,本区有“四含”水,其中四含岩性复杂,泥质含量高,渗透性差,补给条件较差,直接覆盖在煤系地层之上,而与上覆一、二、三含水层无直接水力联系。该工作面老顶为泥岩、粉细砂岩,岩性和厚度变化大。直接顶工作面外段为中厚层灰白色中、细粒砂岩,厚度为6.4~10m;中段为灰色~浅灰色粉砂岩,一般厚度为3.7m;里段直接顶板则为深灰色~灰黑色块状泥岩,含炭质,厚度为2.5m。直接底板岩性变化不大,岩性为粉、细砂岩或粉细砂岩互层。上部松散层厚度为270m左右。

2127综采工作面开采设计说明书

2127综采工作面开采设计说明书 1 工作面地质概况 2127工作面位于吕家屯村南约1公里处。井下位置:位于F19断层和主暗斜井延伸之间,西2123工作面650m,工作面运输巷紧靠近矿区边界线。该工作面周围无采动情况,工作面南侧有两条巷道,即二水平轨道下山和皮带下山。 2 工作面地质及水文地质情况 2.1 地质构造情况: 由于邢东矿下水平钻孔稀少,所以在2003年初在下水平搞了三维地震勘探,从首采区的地震资料来看可靠性不大,下水平地震资料可靠性怎样?有待揭露验证。 工作面涉及的断层共3条,以下列表说明: 2.2 工作面回采对地面建筑物的影响 2127工作面大部分储量在大色庄村庄保护煤柱内,通过矿与唐山研究院合作,计算得2127工作面在不同长度下回采完毕后对村庄的影响如下表所示:

说明: ⑴从水平变形来看,各个方案对大色村的影响均小于规程所指的Ⅰ级破坏。 ⑵Ⅰ级破坏:水平变形≤2.0mm/m;倾斜变形≤3.0mm/m;曲率变形≤0.2×10-3。 ⑶表中《2100及2300开采》是指2127、2125、2126及2321、2322、2323六个工作面全部开采对大色村影响的初步计算结果。(此时的2127面宽度约155m) 结论:2127工作面宽度可以取为150m,对大色村的地表破坏小于Ⅰ级破坏,因此可以正常回采,不用迁村。 2.3 煤层赋存及地质构造 2#煤层结构简单,厚度稳定(构造影响除外),煤层厚度来源于相关钻孔煤厚资料和主暗斜井算术平均值。 2#煤为深黑色,玻璃光泽,块状构造,节理发育,参差状断口,主要由亮煤组成,并夹有镜煤暗煤条带,属半光亮型煤.具有三低一高之特点,

地表移动观测站设计

地表移动观测站设计-CAL-FENGHAI.-(YICAI)-Company One1

地表移动观测站设计作业 一、设站目的: 某矿6200工作面西部、西南部有后鲍店村、中鲍店村。为研究地下开采对村庄的影响及地表移动变形规律和参数,拟在该矿6200工作面设置地表移动观测站,进行地表移动观测,通过观测获得地表移动动态参数和角值参数,同时,监测地下开采对建筑物的影响。 二、设站地区地质采矿概况: 6200工作面位于六采区东北部,是该采区设计开采2层煤的第一个工作面,北部、东部分别为3煤的一采区1308、1310、1312采空区和二采区2310、2311、2312采空区及未开采区域,南部、西部尚未开采。6200工作面基本沿走向布置,为刀把型,倾向长为623~820m,走向宽为46~129m,煤层厚度~ m,平均,煤层倾角4~19/6°,第四系平均厚度。工作面标高为-233~-303m。2煤与下伏3煤的层间距一般为21m。 6200工作面上方地表地势平坦,标高为43m左右,冻土深度。 三、地表移动参数: 根据现场实测,求得本区域实测地表移动参数为: 走向移动角δ=750,上山移动角γ=750,下山移动角β=α,表土移动角φ=450,充分采动角ψ1=ψ2=ψ3=550,最下沉角θ=α 平均采深 H=(-233-303)=-268m,煤层平均倾角α

四、地表移动观测线位置、长度确定: 采空区走向长度超过~0H (0H 为平均采深),地表走向方向达到 充分采动;倾向方向小于~0H ,地表倾向方向为非充分采动。 1、走向观测线位置确定: 由于倾向充分采动,走向观测线由最大下沉角θ=α或充分采动角ψ1=ψ2=550确定 2、全走向观测线长度确定: m 439)cot()2(H cot 2AB 0=+?--+=l h h δδ? l 为走向工作面长度,m 3、倾向观测线位置确定: 由于走向非充分采动,倾斜主断面位于采空区中央 4、半倾向观测线长度确定: 384cos 2 L )cot(h cot h CD 1=+?--+=αββ?)(H 五、确定观测点间距、测点编号: 根据国内对开采沉陷的大量研究,一般根据开采深度确定观测点密度,该矿区平均采深在200~300m ,所以观测点间距为20m 。 在倾斜观测线上自下山向上山方向顺序增加,分别为B0-B19,在走向观测线上按工作面推进方向顺序增加,分别为A0-A11。

煤矿工作面综采设计

一、地质概况: (一)工作面位置、范围及井上下对照关系 工作面地面位置:位于许疃镇与集南王家附近,地表为季节性河流和农田。 该面位于82采区左翼第二区段,南侧为81采区7114工作面,北侧为82采区上山。上邻8221工作面(尚未开拓),下邻8225工作面(尚未开拓),顶部7123及7223工作面已回采完毕。 工作面概况:该面可采走向长600 m,倾斜长152m。总面积约91200 m2。工作面标高- 410.9~- 460.0m。 (二)煤层及围岩情况: 82煤层属二迭系下石盒子组,该煤层由亮煤和半亮煤组成,具有玻璃光泽,该工作面煤层厚度1.9~2.46米,平均2.18米,结构简单,赋存较稳定。倾角一般在4°~28°左右,平均16°,该煤层与上覆72煤层的层间距为8.95~16.23米,平均为15.78米,与下伏83煤层的层间距0.45~2.1米,距下部铝质泥岩约12.5米。 该工作面顶板为细砂岩,厚度平均为13.86m上部水平层理,浅灰色;中部灰白色细砂,以石英为主,局部含菱铁鲕粒,厚层状;下部灰白色,夹大量植物根部化石而呈波状层理。 该工作面直接底为泥岩,厚度平均为1.27m,灰色,富含植物根部化石,其下为83煤,玻璃光泽。老底为泥岩,厚度平均为4.6m灰色,靠上部较厚,部分地点略带褐色。 (三)地质构造情况:

根据三维勘探资料及72煤层回采的资料,该区域内共发育断层10条,其中三维地震勘探7条,7223回采揭露3条。对8223有一定影响的各断层参数如下: (四)水文地质情况: 本工作面的水文地质条件较简单。该工作面掘进施工时将会出现顶板滴,淋水等现象,对掘进工作面有一定影响。预计涌水量5~10t/h。 8223工作面位于7123工作面、7223工作面采空区下方,由于7123工作面、7223工作面老空区积水,将会对8223工作面掘进施工构成水害威胁。 掘进工作面的充水水源为82煤层顶板砂岩裂隙水及上覆7223老空区积水,特别是在断层等裂隙发育处,滴、淋水现象较严重。 (五)工作面瓦斯、煤尘及地温情况:

煤矿工作面设计开采说明书

第一章工作面地质条件 第一部分工作面位置 XX采区采煤工作面位于三采区轨道下山北翼,走向长600米,倾斜长90米,工作面地面标高+700~ +725米,工作面标高+132.2~ +182.5米。 1、地面位置:XX采区回采工作面位于XXX以西700米,地表多为耕地,荒坡,无水体。 2、井下位置及四邻采掘情况:XX采区回采工作面位于三采区轨道下山北翼,上部为xxxx工作面(已回采结束),其余均未开采。 3、回采对地面设施的影响:XX采区工作面回采过程中对地面影响不大。 第二部分地质概况 一、煤层简述: 本工作面设计开采为煤层结构较简单,煤层赋存总体为单斜构造,煤层倾角9°,煤层平均厚度一般0.4~14米,平均厚度5米,局部含碳质泥岩、泥岩,夹矸厚度0.1~0.8米,1~3层,含夹矸较少,结构较简单但煤层厚度变化较大。 二、地质构造: 区内无陷落柱及岩浆岩发育。该工作面顶板较稳定,底板变化大,导致煤层厚度变化较大,该下巷掘进至F8点时曾揭露一条落差°

5275<8正断层,产状07—F3点处揭示F15米的断层。在5~3为 在对其改造中又揭示一条同期沉淀构造,倾向为230°,现均已对其改造。 三、煤层储量: XX采区工作面走向长600m,倾斜长90m,面积为61280.625㎡平均,平均煤厚为5m,煤层工业储量为413644.2T,回采率按90%,可采储量372279.8T。 四、水文: 该工作面地表为丘陵及冲沟,无地表水体。故受地表水之影响很小。其上部的13231采空区内的积水以基本放净,唯标高最低处的3/h15m 左右,下巷里段位处断层边缘,放水孔中有出水现象,水量在掘进时无出水现象,但应该预防因采动引发断层滞后突氺。下巷需留设移动泵坑,F8前需建造环形水仓;合理配备排水设备;发现问题及时处理。 33/min。m m/min,正常涌水量0.35最大涌水量0.~1.5五、煤层顶底板岩性: 1、顶板岩性:工作面直接顶为灰白色中粒石英长石砂岩,厚层状,层面富含云母片,俗称大占砂岩,一般厚度为15~20米。伪顶为碳质泥岩或泥岩较松软,一般厚度为0~1.6米,局部发育,随采随落。 2、底板岩性:直接底为硅质泥岩或泥岩,松软遇水膨胀,容易造成底鼓或使巷道变形,平均厚度为6米。老底为泥灰岩,一般厚度米。4米,平均为5~3为

第1章覆岩与地表移动规律

第1篇覆岩与地表移动规律 第1章覆岩与地表移动规律 1.1 概述 各种有用的矿物赋存在地下岩体中的一定位置,与周围的岩体相接触,并保持其应力平衡状态。地下矿物开采后,采出空间周围的岩层失去支撑而向采空区内逐渐移动、弯曲和破坏。这一过程随着开采工作面的不断推进,逐渐地从采场向外、向上(顶板)扩展,直至波及到地表,引起地表下沉,形成所谓的下沉盆地(Subsidence basin)。采动覆岩与地表移动变形的过程是开采破坏了原岩应力状态形成新的平衡的必然过程。 开采引起矿层及围岩的移动和破坏在时间及空间上是一个复杂的运动破坏过程,其特点如下: (1)从采空区至地表,覆岩破坏范围逐渐扩大、破坏强度逐渐减弱,根据覆岩破坏特征一般将其划分为冒落带、裂隙带和弯曲下沉带,即所谓的“三带”如图1—1所示; 图1—1 采动覆岩移动破坏三带分布图 a-冒落带;b-裂隙带;c-弯曲下沉带 (2)覆岩移动状态可划分为5个区,如图1-2所示。其中: ①垂直下移区。该区域的岩层在重力作用下作垂直于矿层的运动。 ②垂直上移区。该区域的岩层在侧向及底板应力的作用下向上移动。 ③垂直与水平移动区。该区域的岩层在覆岩自重及水平应力的作用下,作向采空区中心方向的移动。 ④底板下移区。该区域的岩层在支撑压力的作用下,向底板卸压区移动。 ⑤开采支撑压力区。该区域的岩层要承受采空区上覆岩体重力的转移,形成开采支撑压力区,开采支撑压力区的应力值一般高达原岩应力的1.5~3.0倍。

第1章 覆岩与地表移动规律 第 页 2 图1-2覆岩内部移动状态分布图 1.2 覆岩移动破坏规律 1.2.1 “三带”的形成 矿层开采后,其覆岩要发生移动和破坏。经长期的观测证实,覆岩移动和破坏具有明显的分带性,它的特征与地质、采矿等因素有关。在采用走向长壁全部冒落法开采缓倾斜中厚矿层的条件下,只要采深达到一定深度(采深与采高之比H/m >40),覆岩的破坏和移动会出现三个代表性的部分,自下而上分别称为:冒落带(Caved zone)、裂隙带(Fractured zone)和弯曲下沉带(Continuous deformation zone)(见图1-1)。 1.冒落带 冒落带也称垮落带,是指岩层母体失去连续性,呈不规则岩块或似层状巨块向采空区冒落的那部分岩层。冒落带位于覆岩的最下部,紧贴矿层。矿层采空后,上覆岩层失去平衡,由直接顶岩层开始冒落,并逐渐向上发展,直到开采空间被冒落岩块充满为止。 冒落岩块由于碎胀,体积较冒落前增大,增大比率可用碎胀系数表示,碎胀系数大小与岩性及采厚有关。硬岩及采厚较大时,其值大,反之较小,平均约在1.2~1.6范围。在自由堆积状态下,由于冒落岩块碎胀性而逐渐充填开采空间,导致冒落带发展到一定高度而自行停止。表1-1给出了常见岩石的碎胀系数。 表1-1 常见岩石的碎胀系数 岩石名称 碎 胀 系 数 初始碎胀系数K p 残余碎胀系数K s 砂 1.06~1.15. 1.01~1.03 粘土 <1.20 1.03~1.07 碎煤 <1.20 1.05 粘土页岩 1.40 1.10 砂质页岩 1.60~1.80 1.10~1.15 硬砂岩 1.50~1.80 冒落带碎落岩块在上覆岩层沉降压力下可逐渐压实,甚至部分形成再生顶板。厚矿层分层开采时,冒落岩块受重复采动的多次破坏,岩体碎度增大,碎胀系数减小。 冒落带内岩块之间空隙多,连通性强,是水体和泥沙溃入井下的通道,也是瓦斯逸出或

相关文档
最新文档