经典电磁理论的建立.

经典电磁理论的建立.
经典电磁理论的建立.

经典电磁理论的建立

在古代,人们对静电和静磁现象已分别有一些认识,但从这门学科的发展来看,直到十八世纪末十九世纪初,电和磁之间的联系才被揭露出来,并逐步发展成为一门新的学科——电磁学。电磁学的发展之所以比较晚,主要是由于电磁学的研究需要借助于更为精密的仪器和更精确的实验方法,而这些条件只有生产发展到一定水平之后才能具备。

首先对于电和磁现象进行系统地实验研究的是英国的威廉·吉尔伯特。他通过一系列的实验认识到电力和磁力是性质不同的两种力。例如,磁力只对天然磁石起作用,而电力能作用于许多材料。他第一个将琥珀与毛皮摩擦后吸引轻小物体的性质叫做“电”。吉尔伯特这种关于电和磁在本质上不同的观点,给后来的电磁学的发展留下了深刻的影响,直至十九世纪初,许多科学家都把这两种现象看作是毫无联系的。吉尔伯特之后的整个十七世纪,对电和磁的研究进展不大。

到了十八世纪四十年代,起电装置的改善和大气现象的研究,引起了物理学家的极大兴趣。1745年荷兰莱顿大学的马森布罗克(1692~1761)和德国的克莱斯德(1700~1748)各自发明了“蓄电”的最早器具——莱顿瓶。1752年7月,美国的富兰克林进行了一次震动世界的吸取天电的风筝实验,从而使人们认识到天空的闪电和地面上的莱顿瓶放电现象是一致的。富兰克林还提出了电荷守恒的思想和电的“单流质”说,他认为一个物体所带的电流质是一个常量,如果流质在一个物体比常量多,就带负电,比常量少就带正电。他在风筝实验的基础上,发明了“避雷针”。由于他在电学方面做出了杰出贡献,而被誉为近代电学的奠基人。

我们知道,牛顿在发现万有引力的过程中,曾用数学方法证明过,如果引力随着引力中心距离的平方反比减少,一个均匀球壳对其内部的物体就没有引力的作用。1775年,富兰克林发现将一小块软木块悬于带电的金属罐内并不受到电力的作用。他的朋友普里斯特列(1733~1804)根据这个实验和牛顿对万有引力定律的数学证明推想电的作用力也遵守平方反比定律。1771年,英国物理学家卡文迪许也用类似的实验和推理的方法对电力相互作用的规律进行了研究,他从实验得到电力与距离的n

比定

律。库仑定律的发现为静电学奠定了理论基础。通过西蒙·泊松(1781~1840)、高斯(1777~1855)和乔治·格林(1793~1841)等人的工作,确定了处理静电场和静磁场的数学方法。

十八世纪末,1780年意大利的医生和动物学教授伽伐尼(1737~1798)在解剖青蛙时,发现了电流,这是电学发展史上的一个转折点。在伽伐尼发现的基础上,伏打于1800年制成伏打“电堆”,得到了比较强的电流,从而使人的认识由静电进入动电,由瞬时电流发展到恒定电流,为进一步研究电流运动的规律和电运动与其他运动形式的联系和转化创造了条件。

电池的出现立即引起了化学家的注意。1807年,英国化学家戴维在电解水时发现生成的氢气和氧气体积之比为2∶1。1834年法拉第发现了以他的名字命名的两个电解定律,为电化学的创立奠定了基础。

自古以来,电和磁一直被认为是两种彼此无关的现象。富兰克林虽然在1751年就己发现莱顿瓶放电可以使铁磁化或退磁的现象,也曾有过闪电改变磁针的磁性强度和使小刀变成磁体的报导,但却没有人对电和磁之间的联系作过系统的研究。德国自然哲学家谢林(1775~1845)认为世界上各种运动形式之间具有统一性,光、电、磁、化学力等都是相互联系的,是同一事物的不同侧面。丹麦的奥斯特在谢林的这种思想的指导下,经过长期的研究于1820年发现了电流的磁效应。奥斯特的发现初步揭开了电与磁的内在联系,为电磁学的迅速发展揭开了新的一页。奥斯特的发现一公布,安培等人立即从事这方面的研究,很快就得到了确定电流磁效应的安培定则和电流之间相互作用力的定量规律,即安培定律和毕奥—萨伐尔—拉普拉斯定律。“电动力学”这个名词也是安培首先提出来的。安培还以分子电流的假说解释了物体的磁性。1826年,德国物理学家欧姆利用电流的磁效应来量度电流强度,引入电阻的概念,得到了欧姆定律。

电可以转化为磁,那么磁是否也可以转化为电呢?进一步揭示电和磁之间辩证关系的最重要的研究是法拉第作出的。他以现象间存在着普遍联系的观点为指导,于1822年提出了“把磁转化为电”的研究课题,他经过了十年坚持不懈的努力,在1831年从实验中发现变化的磁场可以产生感生电流,从而得到电磁感应定律。接着楞次受到了法拉第、安培等人的启发,并作了一系列的实验,于1833年底得到了确定感生电流方向的楞次定律。电磁感应的发现,是科学史上最伟大的发现之一,它揭示了自然界中的机械运动、磁运动、电运动并不是独立的,而是普遍地联系着的,是可以相互转化的。这一发现在理论上为电磁场理论的诞生作好了最重要的准备;在实践上为电动机、发电机的发明制造奠定了基础,打开了通向电气时代的大门。

十九世纪六十年代,麦克斯韦于1855年到1865年间,总结了前人的成果,特别是总结了从库仑到安培、法拉第等人的电磁学的全部成果,并在前人工作的基础上提出了“位移电流”、“涡漩电场”等概念。他认为不仅传导电流产生磁场,在空间变化的电场也会产生磁场,而变化的磁场不仅在导线中感生出电流,在无导体的空间也会产生感生电场,这样就得到了变化的电场产生磁场,变化的磁场产生电场的结论。麦克斯韦以他的高度的抽象力和卓越的数学才华,于1864年,把纷繁复杂的电磁现象和电磁运动的一系列基本规律用四个偏微分组方程加以概括,建立了电动力学的基本运动方程——麦克斯韦方程组。麦克斯韦电磁理论方程的建立,是从牛顿的引力场到爱因斯坦的相对论这段时期中物理学史上最重大的理论成就。通过这些方程可以看出,自然界中由于电磁场的相互作用而存在着电磁波,从而揭示了电、磁、光现象的统一性,完成了经典物理学的第三次大综合。电磁波存在的预言,直到1887年,才由德国人赫兹用实验予以证实。他用一个感应圈产生高速振荡,近旁放一开口回路,当感应圈放电时,发现开口回路间隙也有火花跳过。这样就证实了电磁波的存在。他还证明了电磁波具有与光一样的传播速度及反射、折射、干涉、衍射、偏振等性质。由于赫兹的出色的实验,麦克斯韦的理论得到了广泛的承认。

经典电磁理论的建立.

经典电磁理论的建立 在古代,人们对静电和静磁现象已分别有一些认识,但从这门学科的发展来看,直到十八世纪末十九世纪初,电和磁之间的联系才被揭露出来,并逐步发展成为一门新的学科——电磁学。电磁学的发展之所以比较晚,主要是由于电磁学的研究需要借助于更为精密的仪器和更精确的实验方法,而这些条件只有生产发展到一定水平之后才能具备。 首先对于电和磁现象进行系统地实验研究的是英国的威廉·吉尔伯特。他通过一系列的实验认识到电力和磁力是性质不同的两种力。例如,磁力只对天然磁石起作用,而电力能作用于许多材料。他第一个将琥珀与毛皮摩擦后吸引轻小物体的性质叫做“电”。吉尔伯特这种关于电和磁在本质上不同的观点,给后来的电磁学的发展留下了深刻的影响,直至十九世纪初,许多科学家都把这两种现象看作是毫无联系的。吉尔伯特之后的整个十七世纪,对电和磁的研究进展不大。 到了十八世纪四十年代,起电装置的改善和大气现象的研究,引起了物理学家的极大兴趣。1745年荷兰莱顿大学的马森布罗克(1692~1761)和德国的克莱斯德(1700~1748)各自发明了“蓄电”的最早器具——莱顿瓶。1752年7月,美国的富兰克林进行了一次震动世界的吸取天电的风筝实验,从而使人们认识到天空的闪电和地面上的莱顿瓶放电现象是一致的。富兰克林还提出了电荷守恒的思想和电的“单流质”说,他认为一个物体所带的电流质是一个常量,如果流质在一个物体比常量多,就带负电,比常量少就带正电。他在风筝实验的基础上,发明了“避雷针”。由于他在电学方面做出了杰出贡献,而被誉为近代电学的奠基人。 我们知道,牛顿在发现万有引力的过程中,曾用数学方法证明过,如果引力随着引力中心距离的平方反比减少,一个均匀球壳对其内部的物体就没有引力的作用。1775年,富兰克林发现将一小块软木块悬于带电的金属罐内并不受到电力的作用。他的朋友普里斯特列(1733~1804)根据这个实验和牛顿对万有引力定律的数学证明推想电的作用力也遵守平方反比定律。1771年,英国物理学家卡文迪许也用类似的实验和推理的方法对电力相互作用的规律进行了研究,他从实验得到电力与距离的n 比定 律。库仑定律的发现为静电学奠定了理论基础。通过西蒙·泊松(1781~1840)、高斯(1777~1855)和乔治·格林(1793~1841)等人的工作,确定了处理静电场和静磁场的数学方法。 十八世纪末,1780年意大利的医生和动物学教授伽伐尼(1737~1798)在解剖青蛙时,发现了电流,这是电学发展史上的一个转折点。在伽伐尼发现的基础上,伏打于1800年制成伏打“电堆”,得到了比较强的电流,从而使人的认识由静电进入动电,由瞬时电流发展到恒定电流,为进一步研究电流运动的规律和电运动与其他运动形式的联系和转化创造了条件。

物理电磁学论文

物理电磁学论文 现代人的生活已经离不开电,与此同时,电磁也充斥着我们生活中的每一个角落。随着电磁学,电磁技术的发展,我们已经离不开它了,在越来越多的领域,越来越多的角落,电磁学都在发挥着它的作用。1电磁对家庭输电的影响 现在人们越来越关注周围的生活环境了,所谓的污染已经不再是我们的眼睛所能看到的垃圾,耳朵听到的噪声,鼻子闻到的恶臭,还有我们看不见,摸不着的电磁辐射。随着科学技术的发展和信息社会的到来,我们的居室内不仅有冰箱,彩色电视机,洗衣机,微波炉和空调机等家用电器,而且不少家庭中还有计算机,传真机等多种信息交流的工具,相应地,进入每个家庭的输电线强磁场对人体也特别有害处。 摘要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE 法可直接用于这类问题〔1〕。 3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。

高等电磁场理论

高等电磁场理论 教学目的:光学、电子科学与技术和信息与通讯工程等专业研究生的理论基础课。内容提要: 第一章电磁场理论基本方程 第一节麦克斯韦方程 第二节物质的电磁特性 第三节边界条件与辐射条件 第四节波动方程 第五节辅助位函数极其方程 第六节赫兹矢量 第七节电磁能量和能流 第二章基本原理和定理 第一节亥姆霍兹定理 第二节唯一性定理 第三节镜像原理 第四节等效原理 第五节感应原理 第六节巴比涅原理 第七节互易原理 第三章基本波函数 第一节标量波函数 第二节平面波、柱面波和球面波用标量基本波函数展开 第三节理想导电圆柱对平面波的散射 第四节理想导电圆柱对柱面波的散射 第五节理想导电劈对柱面波的散射 第六节理想导电圆筒上的孔隙辐射 第七节理想导电圆球对平面波的散射 第八节理想导电圆球对柱面波的散射 第九节分层介质中的波 第十节矢量波函数

第四章波动方程的积分解 第一节非齐次标量亥姆霍兹方程的积分解第二节非齐次矢量亥姆霍兹方程的积分解第三节辐射场与辐射矢量 第四节口径辐射场 第五节电场与磁场积分方程 第五章格林函数 第一节标量格林函数 第二节用镜像法标量格林函数 第三节标量格林函数的本征函数展开法 第四节标量格林函数的傅里叶变换解法 第五节并矢与并矢函数 第六节自由空间的并矢格林函数 第七节有界空间的并矢格林函数 第八节用镜像法建立半空间的并矢格林函数第九节并矢格林函数的本征函数展开 第六章导行电磁波 第一节规则波导中的场和参量 第二节模式的正交性 第三节规则波导中的能量和功率 第四节常用规则波导举例 第五节规则波导的一般分析 第六节波导的损耗 第七节波导的激励 第八节纵截面电模和磁模 第九节部分介质填充的矩形波导 第十节微带传输线 第十一节耦合微带线 第十二节介质波导 第十三节波导和微带不连续性的近似分析第十四节其它微波毫米波传输线简介

经典电磁场理论发展简史..

电磁场理论发展史 ——著名实验和相关科学家 纲要: 一、定性研究 1、吉尔伯特的研究 2、富兰克林 二、定量研究 1、反平方定律的提出 2、电流磁效应的发现 3、电磁感应定律及楞次定律 4、麦克斯韦方程 5、电磁波的发现 三、小结 一、定性研究 1、吉尔伯特的研究 他发现不仅摩擦过的琥珀有吸引轻小物体的性质,而且一系列其他物体如金刚石、水晶、硫磺、明矾等也有这种性质,他把这种性质称为电性,他是第一个用“电力”、“电吸引”、“磁极”等术语的人。吉尔伯特把电现象和磁现象进行比较,发现它们具有以下几个截然不同的性质: 1.磁性是磁体本身具有的,而电性是需要用摩擦的方法产生; 2.磁性有两种——吸引和排斥,而电性仅仅有吸引(吉尔伯特不知道有排斥); 3.磁石只对可以磁化的物质才有力的作用,而带电体可以吸引任何轻小物体; 4.磁体之间的作用不受中间的纸片、亚麻布等物体的影响,而带电体之间的作用要受到中间这些物质的影响。当带电体浸在水中,电力的作用可以消失,而磁体的磁力在水中不会消失; 5.磁力是一种定向力,而电力是一种移动力。

2、富兰克林的研究 富兰克林(公元1706一1790)原来是费城的印刷商,他通过书本和科学上的来往获得了丰富知识,他利用莱顿瓶做出的第一项重要工作,是根据莱顿瓶内外两种电荷的相消性,在杜菲的“玻璃电”和“树脂电”的基础上提出正电和负电的概念。 富兰克林所做的第二项重要工作是统一了天电和地电。 二、定量研究 1、反平方定律的提出 1750年前后,彼得堡科学院院士埃皮努斯在实验中发现;当发生相互作用的电荷之间的距离缩短时,两者之间的吸引力和排斥力便增加。1766年富兰克林写信给他在德国的一位朋友普利斯特利(公元1733一1804),介绍了他在实验中发现在金属杯中的软木球完全不受金属杯电性的影响的现象。他请普利斯特利给予验证。 英国科学家卡文迪许在1772年做了一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。 法国物理学家库仑(公元1736—1806),起先致力于扭转和摩擦方面的研究。由于发表了有关扭力的论文,于1781年当选为国家科学院院士。他从事研究毛发和金属丝的扭转弹性。1784年法国科学院发出船用罗盘最优结构的悬奖征文,库仑转而研究电力和磁力问题。 1785年库仑自制了一台精巧的扭秤,作了电的斥力实验,建立了著名的库仑定律:两电荷之间的作用力与其距离的平方成反比,和两者所带电量的乘积成正比。 公式:F=k*(q1*q2)/r^2 2、电流磁效应的发现 丹麦物理学家奥斯特(公元1777—1851)首次发现电流磁效应,揭开了电和磁两种现象的内在联系,从此开始了电磁学的真正研究。 1820年4月在一次关于电和磁的讲课快结束时,他抱着试试看的心情做了实验,在一根根细的铂丝导线的下面放一个用玻璃罩罩着的小磁针,用伽伐尼电池将铂丝通电,他发现磁针偏转,这现象虽然未引起听讲人的注意,却使他非常激

电磁学经典练习题与答案

高中物理电磁学练习题 一、在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确. 1.如图3-1所示,有一金属箔验电器,起初金属箔闭合,当带正电的棒靠近验电器上部的金属板时,金属箔开.在这个状态下,用手指接触验电器的金属板,金属箔闭合,问当手指从金属板上离开,然后使棒也远离验电器,金属箔的状态如何变化?从图3-1的①~④四个选项中选取一个正确的答案.[] 图3-1 A.图①B.图②C.图③D.图④ 2.下列关于静电场的说法中正确的是[] A.在点电荷形成的电场中没有场强相等的两点,但有电势相等的两点 B.正电荷只在电场力作用下,一定从高电势向低电势运动 C.场强为零处,电势不一定为零;电势为零处,场强不一定为零 D.初速为零的正电荷在电场力作用下不一定沿电场线运动 3.在静电场中,带电量大小为q的带电粒子(不计重力),仅在电场力的作用下,先后飞过相距为d的a、b两点,动能增加了ΔE,则[]A.a点的电势一定高于b点的电势 B.带电粒子的电势能一定减少 C.电场强度一定等于ΔE/dq D.a、b两点间的电势差大小一定等于ΔE/q 4.将原来相距较近的两个带同种电荷的小球同时由静止释放(小球放在光滑绝缘的水平面上),它们仅在相互间库仑力作用下运动的过程中[]A.它们的相互作用力不断减少 B.它们的加速度之比不断减小 C.它们的动量之和不断增加 D.它们的动能之和不断增加 5.如图3-2所示,两个正、负点电荷,在库仑力作用下,它们以两者连线上的某点为圆心做匀速圆周运动,以下说确的是[] 图3-2

A.它们所需要的向心力不相等 B.它们做圆周运动的角速度相等 C.它们的线速度与其质量成反比 D.它们的运动半径与电荷量成反比 6.如图3-3所示,水平固定的小圆盘A,带电量为Q,电势为零,从盘心处O由静止释放一质量为m,带电量为+q的小球,由于电场的作用,小球竖直上升的高度可达盘中心竖直线上的c点,Oc=h,又知道过竖直线上的b点时,小球速度最大,由此可知在Q所形成的电场中,可以确定的物理量是[] 图3-3 A.b点场强B.c点场强 C.b点电势D.c点电势 7.如图3-4所示,带电体Q固定,带电体P的带电量为q,质量为m,与绝缘的水平桌面间的动摩擦因数为μ,将P在A点由静止放开,则在Q的排斥下运动到B点停下,A、B相距为s,下列说确的是[] 图3-4 A.将P从B点由静止拉到A点,水平拉力最少做功2μmgs B.将P从B点由静止拉到A点,水平拉力做功μmgs C.P从A点运动到B点,电势能增加μmgs D.P从A点运动到B点,电势能减少μmgs 8.如图3-5所示,悬线下挂着一个带正电的小球,它的质量为m、电量为q,整个装置处于水平向右的匀强电场中,电场强度为E.[] 图3-5 A.小球平衡时,悬线与竖直方向夹角的正切为Eq/mg B.若剪断悬线,则小球做曲线运动 C.若剪断悬线,则小球做匀速运动 D.若剪断悬线,则小球做匀加速直线运动 9.将一个6V、6W的小灯甲连接在阻不能忽略的电源上,小灯恰好正常发光,现改将一个6V、3W的小灯乙连接到同电源上,则[]A.小灯乙可能正常发光 B.小灯乙可能因电压过高而烧毁 C.小灯乙可能因电压较低而不能正常发光 D.小灯乙一定正常发光 10.用三个电动势均为1.5V、阻均为0.5Ω的相同电池串联起来作电源,向三个阻值都是1Ω的用电器供电,要想获得最大的输出功率,在如图3-6所示电路中应选择的电路是[] 图3-6 11.如图3-10所示的电路中,R 1、R 2 、R 3 、R 4 、R 5 为阻值固定的 电阻,R 6 为可变电阻,A为阻可忽略的电流表,V为阻很大的电压表,电源的

高中物理选修1-1:2.4麦克斯韦电磁场理论+练习+

第二章电磁感应与电磁场 四、麦克斯韦电磁场理论 一、选择题 1.建立完整的电磁场理论并首先预言电磁波存在的科学家是 [ ] A.法拉第 B.奥斯特 C.赫兹 D.麦克斯韦 2. 关于电磁场和电磁波的正确说法是 [ ] A.电场和磁场总是相互联系的,它们统称为电磁场 B.电磁场由发生的区域向远处的传播就是电磁波 C.电磁波传播速度总是3×108m/s D.电磁波是一种物质,可以在真空中传播 3. 根据麦克斯韦电磁场理论,下列说法正确的是( ) A.稳定的电场周围产生稳定的磁场 B.均匀变化的电场周围产生的均匀变化的磁场 C.均匀变化的磁场周围产生的均匀变化的电场 D.不均匀变化的电场周围产生不均匀变化的磁场 4. 验证电磁波存在的科学家是 [ ] A.法拉第 B.奥斯特 C.赫兹 D.麦克斯韦 5. 电磁波和机械波相比较,下列说法正确的有 [ ] A.电磁波传播不需要介质,机械波传播需要介质 B.电磁波在任何物质中传播速度相同,机械波波速大小决定于介质 C.电磁波、机械波都不会产生衍射

D.电磁波和机械波都不会产生干涉 6. 以下有关在真空中传播的电磁波的说法正确的是 [ ] A.频率越大,传播的速度越大 B.频率不同,传播的速度相同 C.频率越大,其波长越大 D.频率不同,传播速度也不同 7. 下列关于电磁波的叙述中,正确的是[ ] A. 只要空间某个区域有振荡的电场或磁场,就能产生电磁波 B. 电磁波在任何介质中的传播速度均为3.00×108m/s C.电磁波中每一处的电场强度和磁感强度总是互相垂直,且与波的传播方向垂直 D.电磁波不能产生干涉,衍射现象 二、填空题 8.1864年,麦克斯韦提出电磁场的基本方程组(后称麦克斯韦方程组),并 推断电磁波的存在,预测光是一种_________,为光的电磁理论奠定了基础。 9. 不变化的磁场周围 (填“产生”或“不产生”)电场,变化 的磁场周围 (填“产生”或“不产生”)电场;均匀变化的磁场周围产生的电场;周期性(振荡)变化的磁场周围产生同频率的的电场,周期性的变化的电场周围也产生同频率周期性变化的场. 10. 在真空中,任何频率的电磁波传播的速度都等于 _____________________. 三、计算题 11.从地球向月球发射电磁波,电磁波在地球与月球间往返一次所用时间是多久?

电磁场理论的基本概念

第十三章 电磁场理论的基本概念 历史背景:十九世纪以来,在当时社会生产力发展的推动下,电磁学得到了迅速的发展: 1. 零星的电磁学规律相继问世(经验定律) 2. 理论的发展,促进了社会生产力的发展,特别是电工和通讯技术的发展→提出了建立理论的要求,提 供了必要的物质基础。 3. *(Maxwell,1931~1879)麦克斯韦:数学神童,十岁进入爱丁堡科学院的学校,十四岁获科学院的数 学奖; 1854,毕业于剑桥大学。以后,根据开尔文的建议,开始研究电学,研究法拉第的力线; 1855,“论法拉第的力线”问世,引入δ =???H H ,同年,父逝,据说研究中断; 1856,阿贝丁拉马利亚学院的自然哲学讲座教授,三年; 1860,与法拉第见面; 1861-1862,《论物理力线》分四部分发表;提出涡旋电场与位移电流的假设。 1864,《电磁场的动力理论》向英国皇家协会宣读; 1865,上述论文发表在《哲学杂志》上; 1873,公开出版《电磁学理论》一书,达到顶峰。这是一部几乎包括了库仑以来的全部关于电磁研究信息的经典著作;在数学上证明了方程组解的唯一性定理,从而证明了方程组内在的完备性。 1879,去世,48岁。(同年爱因斯坦诞生) * 法拉第-麦克斯韦电磁场理论,在物理学界只能被逐步接受。它的崭新的思想与数学形式,甚至象赫姆霍兹和波尔兹曼这样有异常才能的人,为了理解消化它也花了几年的时间。 §13-1 位移电流 一. 问题的提出 1. 如图,合上K , 对传I l d H :S =?? 1 对传I l d H :S =?? 2 2. 如图,合上K ,对C 充电: 对传I l d H :S =?? 1 对02=??l d H :S 3. M axwell 的看法:只要有电动力作用在导体上,它就产生一个电流,……作用在电介质上的电动力,使它的组成部分产生一种极化状态,有如铁的颗粒在磁力影响下的极性分布一样。……在一个受到感应的电介质中,我们可以想象,每个分子中的电发生移动,使得一端为正,另一端为负,但是依然和分子束缚在一起,并没有从一个分子到另一个分子上去。这种作用对整个电介质的影响是在一定方向上引起的总的位移。……当电位移不断变化时,就会形成一种电流,其沿正方向还是负方向,由电位移的增大或减小而定。”这就是麦克斯韦定义的位移电流的概念。

麦克斯韦电磁场理论的建立及意义

麦克斯韦电磁场理论的建立及意义 班级:物理系09本三班姓名:范日耀 摘要:文章通过对法拉第力线思想和W.汤姆孙的类比研究的阐述来引出麦克斯韦的电磁场理论。麦克斯韦经过三个艰难的过程建立了电磁场理论,为壮伟的物理大厦添砖加瓦,做出了巨大贡献。 关键字:法拉第力线思想W.汤姆孙类比研究麦克斯韦电磁场理论 一、引言 二、内容 1、前人的研究 (1)法拉第的力线思想 法拉第从广泛的实验研究中构想出描绘电磁作用的“力线”图像。他认为电荷和磁极周围的空间充满了力线,靠力线(包括电力线和磁力线)将电荷(或磁极)联系在一起。力线就像是从电荷(或磁极)发出、又落到电荷(或磁极)的一根根皮筋一样,具有在长度方向力图收缩,在侧向力图扩张的趋势。他以丰富的想象力阐述电磁作用的本质。 法拉第研究了电介质对电力作用的影响,认识到这一影响表明电力不可能是超距作用,而是通过电介质状态的变化;即使没有电介质,空间也会产生某种变化,布满了力线。后来,法拉第又进一步研究了磁介质,解释了顺磁性和反磁性。电磁感应现象则解释为磁铁周围存在某种“电应力状态”,当导线在其附近运动时,收到应力作用而有电荷做定向运动;回路中产生电动势则是由于穿过回路的磁力线数目发生了变化。 法拉第的力线思想实际上就是场的观念,这是近距理论的核心内容。 (2)W.汤姆孙的类比研究 在法拉第力线思想的激励下,W.汤姆孙对电磁作用的规律也进行过有益的研究。他从法国科学家傅里叶的热传导理论得到启示。傅里叶在1824年发表《热的分析理论》一书,详细的研究了在介质中热流的传播问题,建立了热传导方程。这本书W.汤姆孙对有很深的影响。 1842年,W.汤姆孙发表了第一篇关于热和电的数学论文,题为:《论热在均匀固体中的均匀运动及其与电的数学理论的联系》,他论述了热在均匀固体中的传导和法拉第电应力在均匀介质中传递这两种现象之间的相似性。他指出电的等势面对应于热的等温面,而电荷对应与热源。利用傅里叶的热分析法,他把法拉第的力线思想和拉普拉斯、泊松等人已经建立的完整的静电理论结合在一起,初步形成了电磁作用的统一理论。 1847年,W.汤姆孙进一步研究了电磁现象与弹性现象的相似性,在题为《论电力、磁力和伽伐尼力的力学表征》一文中,以不可压缩流体的流线连续性为基础,论述了电磁现象和流体力学现象的共性。1851年,他给除了磁场的定义,1856年,根据磁致旋光效应提出了磁具有旋转的特性,这样就为进一步借用流体力学中关于涡旋运动的理论,做好了准备。 W.汤姆孙运用类比方法,把法拉第的力线思想转变为定量的表述,为麦克斯韦的工作提供了十分有益的经验。 2、麦克斯韦建立电磁场理论 (1)电磁场理论建立的第一步 麦克斯韦在电磁理论方面的工作可以和牛顿在力学理论方面的工作相媲美。他和牛顿一样,是“站在巨人的肩上”,看得更深更远,作出了伟大的历史综合;他和牛顿一样,其丰硕的成果是一步一步提炼出来的。

电磁学——迈向电磁理论的统一

电磁学——迈向电磁理论的统一1873年,英国物理学家麦克斯韦的所著的《电磁学》出版,在这部著作中,麦克斯韦全面地总结并发展了19世纪中叶以前,以法拉第和高斯为代表的科学家在电磁领域研究中所取得的成果,他以严格的数学方法形成了在理论上的系统化,从而建立起严密的经典电磁理论体系。 将各种现象统一起来的思考 进入19世纪下半叶,尽管科学技术发展迅速,然而关于电磁学的理论还未能达成我们今天所看到的这样统一的状态。当时的情况正如革命导师恩格斯所描述的那样,“在电学中,只有一堆陈旧的,不可靠的,既没有最后证实也没有最后推翻的实验所凑成的杂乱的东西,只有许多孤立的学者在黑暗中胡乱摸索,从事毫无联系的研究和实验,他们像一群游牧的骑者一样,分散地向未知的领域进攻。……电学还处于这种支离破碎的状态,暂时还不能建立起一种无所不包的理论……”① 的确,尽管像电素和磁素这样一类不可称量的流体的概念已经发生了动摇,但人们还未能像今天这样彻底地从中挣脱出来,在取得显著进步的电化学方面“接触说”和“化学说”的争论也还尚未得出结果,充满片面性的议论仍然横行无忌。遵循牛顿力学的形式,从库仑定律开始,在毕奥和萨伐尔定律等电磁定律中,关于电流或磁极间的相互作用问题,存在着一种超距作用的解释,但对这种超距作用机制的研究却处于空白状态。 在上述背景当中,瞩目于各种自然力的相互作用,法拉第首先考虑在相互作用物体之间的介质当中,使用有物理性质的“力线”将两者连接起来。继承法拉第的这一思想,麦克斯韦在统一把握电磁理论方面迈出了具有决定意义的一大步。尽管所说的统一把握电磁理论的思想,也受到当时认识的一定局限,但它毕竟是向前迈出了一大步。麦克斯韦针对当时电学领域中各种理论之间缺乏相关性的批判,以及同法拉第一样注重用统一性观点看待自然界中诸现象的立场,无疑应当首先引起注意。 展露才华的少年 说来也凑巧,麦克斯韦(James Clerl Maxwell,1831-1879)刚好出生于法拉第发现了电磁感应的那一年,也就是1831年。所不同的是,麦克斯韦的家境要比法拉第优裕得多。麦克斯韦出生于苏格兰的邓弗里希尔庄园,他的父亲属于那里的知识阶层。麦克斯韦的童年教育是在母亲的精心呵护下完成的。从少年时起麦克斯韦就在数学方面表现出杰出的才能。13岁那年他获得了一年一度的数学奖,其后他父亲带他去参加爱丁堡皇家学会的各种学术活动。14岁时麦克斯韦发现了构成椭圆的新的数学方法.次年他的处女作论文提交给爱丁堡皇家学会。16岁的时候,麦克斯韦便进入爱丁堡大学,在该校三年的学习生涯中发展了他的数学技能。后来麦克斯韦又转到剑桥去读书,1854年毕业,以优秀的成绩获得荣誉学位考试第二名。麦克斯韦留校,被选为三一学院研究员,这时他只有24岁。麦克斯韦以后又在苏格兰和伦敦担任教职。他一生最为重要并值得在科学史上特书一笔的职务,是他回到剑桥担任卡文迪许实验室第一位主任教授。 从法拉第的研究出发 麦克斯韦的研究工作最初是流体力学和颜色理论,在气体运动论方面他的贡献也引人注目。关于电磁学的研究,他在开尔文勋爵的指导下,先从阅读法拉第的《电的实验研究》开始。法拉第的论文中未包含任何数学公式,而麦克斯韦首先着眼于寻求其中数学方法的研究。由于这个原因,从1855年12月开始的电磁学研究工作,麦克斯韦发表的最早的电磁学论文

电磁场理论发展历史及其在现代科技中的应用

电磁场理论发展历史及其在现代科技中的应用 摘要:电磁场理论在现代科技中有着广泛的应用。现代电子技术如通讯、广播、导航、雷达、遥感、测控、嗲面子对抗、电子仪器和测量系统,都离不开电磁场的发射,控制、传播和接收;从工业自动化到地质勘测,从电力、交通等工业农业到医疗卫生等国民经济领域,几乎全都涉及到电磁场理论的应用。不仅如此,电磁学一直是,将来仍是新兴科学的孕育点。在本文中主要介绍电磁场理论发现和发展的历史以及在现代科技中的也应用。 关键词:电磁学电磁场理论现代科技 对电磁场现象的研究是从十六世纪下半叶英国伊莉莎白女王的试医官吉尔伯特开始,然而他的研究方法很原始,基本上是定性地对现象的总结。对电磁场的近代研究是从十八世纪的卡文迪许、库伦开始,他们开创了用测量仪器对电磁场现象做定量的规律,引起了电磁场从定性到定量的飞跃。 库仑定律的建立基于英国科学家卡文迪许在1772年做的一个一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。库伦定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。安培在假设了两个电流元之间的相互作用力沿着它们的连线之间的作用力正比于它们的长度和电流强度,而与它们之间的距离的平方成反比的公式,即提出了著名的安培环路定理。基于这与牛顿万有引力定律十分类似,.泊松、.高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。 直到M.法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述,但是电磁感应定律的确认是在1851年,这一过程花了20年。1846年,M.法拉第还提出了光波是力线振动的设想,为以后麦克斯韦从数学上建立电磁场理论奠定了基础。.麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将电

电磁场理论发展史(DOC 6页)

电磁场理论发展史 引言 载法拉弟发现电磁感应现象的那一年,英国诞生了一位伟大的科学家——麦克斯韦,他因创立电磁场理论而成为十九世纪最伟大的物理学家.麦克斯韦创立电磁场理论系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。 一、历史的前奏 在麦克斯韦以前,解释电磁相互作用有两种相互对立的观点.一种是超距作用学说.即在研究两个电荷之间相互作用力时,忽略中介空间的作用,电荷会超越空间距离而互相作用,库仑、韦伯、安培等人都是主张用超距作用学说来解释电磁相互作用的.这种学说当时拥有数学基础.另一种是媒递作用学说.认为空间有一种能传递电力的媒质(称作以太)存在,电荷间通过媒质互相作用.法拉弟通过实验揭露了空间媒质的重要作用,他认为在空间媒质中充满了电力线,即通过场来传递,但媒递作用学说还没有数学基础,不易被人接受.也使其发展受到了阻碍.麦克斯韦功绩就在于建立了电磁场理论并促进了它的发展.他中学时曾在数学和诗歌比赛中获第一名,这显示了他的数学才华与丰富的想象力方面的潜力.他年轻时曾读过法拉弟的《电学实验研究》,对法拉弟的物理思想(如电力线和场的思想)十分推崇,同时也发现了它的弱点.麦克斯韦对电磁相互作用的超距观点早就表示“不能接受即时传播的思想”,在法拉弟的物理思想影响下,他决心“为法拉弟的场概念提供数学方法的基础”. 二、麦克斯韦创立电磁场理论 麦克斯韦创立电磁场理论可分为三个阶段: 第一阶段,统一已知电磁定律 麦克斯韦于1856年发表了他的第一篇论文《论法拉弟的力线》,在这篇文章中,他试图用数学语言精确地表述法拉弟的力线概念,他采用数学推论与物理类比相结合的方法,以假想流体的力学模型去模拟电磁现象.他说:“借助于这种类比,我试图以一种方便的和易于处理的形式为研究电现象提供必要的数学观念”他的目标是想据此统一已知的电磁学定律.麦克斯韦为达到此目的,他运用了“建立力学模型——引出基本公式——进行数学引伸推导”的解决科学问题的思路和方法. 第一步,建立力学模型 首先运用类比方法,麦克斯韦把电磁现象和力学现象做了类比,认为可以建立一种不可压缩流体的力学模型来模拟电磁现象.这种流体模型为:一是没有惯性,因而也就没有质量;二是不可压缩;三是可以从无产生,又可消失.显然这是一种假设理想流体.麦克斯韦在这篇文章中写道:“我企图把一个在空间画力线的清楚概念摆在一个几何学家的面前,并利用一个流体的流线的概念,说明如何画出这些流线来”“力线的切线方向就是电场力的方向,力线的密度表示电场力的大小”.他企图阐明电力线和电力线所在空间之间的几何关

电磁场理论发展史

电磁场理论 在法拉弟发现电磁感应现象的那一年,英国诞生了一位伟大的科学家--麦克斯韦,他因创立电磁场理论而成为十九世纪最伟大的物理学家.麦克斯韦创立电磁场理论的思路与方法大致如下. 一、历史的前奏 在麦克斯韦以前,解释电磁相互作用有两种相互对立的观点.一种是超距作用学说.即在研究两个电荷之间相互作用力时,忽略中介空间的作用,电荷会超越空间距离而互相作用,库仑、韦伯、安培等人都是主张用超距作用学说来解释电磁相互作用的.这种学说当时拥有数学基础.另一种是媒递作用学说.认为空间有一种能传递电力的媒质(称作以太)存在,电荷间通过媒质互相作用.法拉弟通过实验揭露了空间媒质的重要作用,他认为在空间媒质中充满了电力线,即通过场来传递,但媒递作用学说还没有数学基础,不易被人接受.也使其发展受到了阻碍.麦克斯韦功绩就在于建立了电磁场理论并促进了它的发展.他中学时曾在数学和诗歌比赛中获第一名,这显示了他的数学才华与丰富的想象力方面的潜力.他年轻时曾读过法拉弟的《电学实验研究》,对法拉弟的物理思想(如电力线和场的思想)十分推崇,同时也发现了它的弱点.麦克斯韦对电磁相互作用的超距观点早就表示"不能接受即时传播的思想",在法拉弟的物理思想影响下,他决心"为法拉弟的场概念提供数学方法的基础". 二、麦克斯韦创立电磁场理论 麦克斯韦创立电磁场理论可分为三个阶段: 第一阶段,统一已知电磁定律 麦克斯韦于1856年发表了他的第一篇论文《论法拉弟的力线》,在这篇文章中,他试图用数学语言精确地表述法拉弟的力线概念,他采用数学推论与物理类比相结合的方法,以假想流体的力学模型去模拟电磁现象.他说:"借助于这种类比,我试图以一种方便的和易于处理的形式为研究电现象提供必要的数学观念"他的目标是想据此统一已知的电磁学定律.麦克斯韦为达到此目的,他运用了"建立力学模型--引出基本公式--进行数学引伸推导"的解决科学问题的思路和方法. 第一步,建立力学模型 首先运用类比方法,麦克斯韦把电磁现象和力学现象做了类比,认为可以建立一种不可压缩流体的力学模型来模拟电磁现象.这种流体模型为:一是没有惯性,因而也就没有质量;二是不可压缩;三是可以从无产生,又可消失.显然这是一种假设理想流体.麦克斯韦在这篇文章中写道:"我企图把一个在空间画力线的清楚概念摆在一个几何学家的面前,并利用一个流体的流线的概念,说明如何画出这些流线来""力线的切线方向就是电场力的方向,力线的密度表示电场力的大小".他企图阐明电力线和电力线所在空间之间的几何关系.他还试图通过类比凭借已知的力学公式推导出电磁学公式,寻求这两种不同的现象在数学形式上的类似. 第二步,引出基本公式 早在1842年,W·汤姆逊就曾把拉普拉斯的势函数的二阶微分方程,普遍用于热、电和磁的运动,建立了这三种相似现象的数学联系.1847年,他又在不可压缩流体的流线连续性基础上,论述了电磁现象和流体力学现象的共同性.麦克斯韦正是吸收了W·汤姆逊这种类比方法,把它发展成为研究各种力线的重要工具.例如麦克斯韦把电学中的势等效于流

大学物理电磁学静电场经典习题详解

题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 3 2的上夸克和两个带e 3 1 -下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10-20 m ),中子内的两个下夸克之间相距2.60?10-15 m 。求它们之间的斥力。 题7.1解:由于夸克可视为经典点电荷,由库仑定律 r r 2 2 0r 2210N 78.394141 e e e F ===r e r q q πεπε F 与r e 方向相同表明它们之间为斥力。 题7.2:质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k 。证明电子的旋转频率满足 4 2k 202 32me E εν= 其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。 题7.2分析:根据题意将电子作为经典粒子处理。电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷。点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有 2 2 0241r e r v m πε= 由此出发命题可证。 证:由上述分析可得电子的动能为 r e mv E 2 02k 8121πε= = 电子旋转角速度为 3 02 2 4mr e πεω= 由上述两式消去r ,得 4 3k 20 222 324me E επων= = 题7.3:在氯化铯晶体中,一价氯离于Cl -与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。 题7.3分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。为方便计算可以利用晶格的对称性求氯离子所受的合力。 解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故 01=F (2)除了有缺陷的那条对角线外,其它铯离 子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为 N 1092.13492 022 0212-?== = a e r q q F πεπε 2F 方向如图所示。

电磁场理论发展史(DOC 6页)

电磁场理论发展史(DOC 6页)

电磁场理论发展史 引言 载法拉弟发现电磁感应现象的那一年,英国诞生了一位伟大的科学家——麦克斯韦,他因创立电磁场理论而成为十九世纪最伟大的物理学家.麦克斯韦创立电磁场理论系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在。 一、历史的前奏 在麦克斯韦以前,解释电磁相互作用有两种相互对立的观点.一种是超距作用学说.即在研究两个电荷之间相互作用力时,忽略中介空间的作用,电荷会超越空间距离而互相作用,库仑、韦伯、安培等人都是主张用超距作用学说来解释电磁相互作用的.这种学说当时拥有数学基础.另一种是媒递作用学说.认为空间有一种能传递电力的媒质(称作以太)存在,电荷间通过媒质互相作用.法拉弟通过实验揭露了空间媒质的重要作用,他认为在空间媒质中充满了电力线,即通过场来传递,但媒递作用学说还没有数学基础,不易被人接受.也使其发展受到了阻碍.麦克斯韦功绩就在于建立了电磁场理论并促进了它的发展.他中学时曾在数学和诗歌比赛中获第一名,这显示了他的数学才华与丰富的想象力方面的潜力.他年轻时曾读过法拉弟的《电学实验研究》,对法拉弟的物理思想(如电力线和场的思想)十分推崇,同时也发现了它的弱点.麦克斯韦对电磁相互作用的超距观点早就表示“不能接受即时传播的思想”,在法拉弟的物理思想影响下,他决心“为法拉弟的场概念提供数学方法的基础”. 二、麦克斯韦创立电磁场理论 麦克斯韦创立电磁场理论可分为三个阶段: 第一阶段,统一已知电磁定律 麦克斯韦于1856年发表了他的第一篇论文《论法拉弟的力线》,在这篇文章中,他试图用数学语言精确地表述法拉弟的力线概念,他采用数学推论与物理类比相结合的方法,以假想流体的力学模型去模拟电磁现象.他说:“借助于这种类比,我试图以一种方便的和易于处理的形式为研究电现象提供必要的数学观念”他的目标是想据此统一已知的电磁学定律.麦克斯韦为达到此目的,他运用了“建立力学模型——引出基本公式——进行数学引伸推导”的解决科学问题的思路和方法. 第一步,建立力学模型 首先运用类比方法,麦克斯韦把电磁现象和力学现象做了类比,认为可以建立一种不可压缩流体的力学模型来模拟电磁现象.这种流体模型为:一是没有惯性,因而也就没有质量;二是不可压缩;三是可以从无产生,又可消失.显然这是一种假设理想流体.麦克斯韦在这篇文章中写道:“我企图把一个在空间画力线的清楚概念摆在一个几何学家的面前,并利用一个流体的流线的概念,说明如何画出这些流线来”“力线的切线方向就是电场力的方向,

(完整版)电磁场理论试题

《电磁场理论》考试试卷(A 卷) (时间120分钟) 1. 关于有限区域内的矢量场的亥姆霍兹定理,下列说法中正确的是 (A )任意矢量场可以由其散度和旋度唯一地确定; (B )任意矢量场可以由其散度和边界条件唯一地确定; (C ) 任意矢量场可以由其旋度和边界条件唯一地确定; (D ) 任意矢量场可以由其散度、旋度和边界条件唯一地确定。 2. 谐变电 磁场所满足的麦克斯韦方程组中,能反映“变化的电场产生磁场”和“变化的磁场产生电场” 这一物理思想的两个方程是 (B 5关于高斯定理的理解有下面几种说法, 其中正确的是 、选择题(每小题2分,共20 分) (A) H 0, E — (B ) H J E, E (C H J, E 0 (D ) H 0, E - 3.—圆极化电磁波从媒质参数为 分量不产生反射,入射角应为 3 r 1的介质斜入射到空气中,要使电场的平行极化 (B ) (A) 15° (B ) 30° (C ) 45 (D) 60 4.在电磁场与电磁波的理论中分析中,常引入矢量位函数 A ,并令 B A ,其依据是 (C ) (A) B 0 ; (C ) B 0; (B) B J ; (D) B J

电磁学》试卷 第 2 页 共 7 页 (A) 如果高斯面内无电荷,则高斯面上 E 处处为零; (B) 如果高斯面上 E 处处不为零,则该面内必有电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零; (D) 如果高斯面上 E 处处为零,则该面内必无电荷。 6.若在某区域已知电位移矢量 ( A) 2 ( B ) 2 D xe x ( C ) ye y ,则该区域的电何体密度为 ( B ) 2 ( D ) 2 7. 两个载流线圈之间存在互感, 对互感没有影响的是 ( C ) (A )线圈的尺寸 (B ) 两个线圈的相对位置 (C )线圈上的电流 (D )线圈中的介质 8 . 以下关于时变电磁场的叙述中,正确的是 ( B ) (A )电场是无旋场 (B )电场和磁场相互激发 (C) 电场和磁场无关 (D )磁场是有源场 9. 两个相互平行的导体平板构成一个电容器, 与电容无关的是 10. 用镜像法求解静电场边值问题时, 判断镜像电荷设置是否正确的依据是 ( C ) (A) 镜像电荷的位置是否与原电荷对称 (B) 镜像电荷是否与原电荷等值异号 (C) 待求区域内的电位函数所满足的方程与边界条件是否保持不变 (D) 同时满足A 和B (A )导体板上的电荷 (C )导体板的几何形状 (B) 平板间的介质 (D) 两个导体板的相对位

谈谈关于电磁场理论

谈谈关于电磁场理论 电磁现象首先是从它们的力学效应开始的。 法拉第的电磁感应实验将机械功与电磁能联系起来,证明二者可以互相转化。麦克斯韦进一步提出:电磁场中各处有一定的能量密度,即能量定域于场中。根据这个理论,.坡印廷1884年提出在时变场中能量传播的坡印廷定理,矢量E×H代表场中穿过单位面积上单位时间内的能量流。这些理论为电能的广泛应用开辟了道路,为制造发电机、变压器、电动机等电工设备奠定了理论基础。 麦克斯韦预言的电磁辐射,在1887年由H.R.赫兹的实验所证实。电磁波可以不凭借导体的联系,在空间传播信息和能量。这就为无线电技术的广泛应用创造了条件。电磁场理论给出了场的分布及变化规律,若已知电场中介质的性质,再运用适当的数学手段,即可对电工设备的结构设计、材料选择、能量转换、运行特性等,进行分析计算,因而极大地促进电工技术的进步。电磁场理论所涉及的内容都属于大量带电粒子共同作用下的统计平均结果,不涉及物质构造的不均匀性及能量变化的不连续性。它属于宏观的理论,或称为经典的理论。涉及个别粒子的性质、行为的理论则属于微观的理论,不能仅仅依赖电磁场理论去分析微观起因的电磁现象,例如有关介质的电磁性质、激光、超导问题等。这并不否定在宏观意义上电磁场理论的正确性。电磁场理论不仅是物理学的重要组成部分,也是电工技术的理论基础 库仑定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。安培等人又发现电流元之间的作用力也符合平方反比关系,提出了安培环路定律。基于这与牛顿万有引力定律十分类似,泊松、高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。直到法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述。1846年,法拉第还提出了光波是力线振动的设想。麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将电磁场的基本定律归结为4个微分方程,人们称之为麦克斯韦方程组。在方程中麦克斯韦对安培环路定律补充了位移电流的作用,他认为位移电流也能产生磁场。根据这组方程,麦克斯韦还导出了场的传播是需要时间的,其传播速度为有限数值并等于光速,从而断定电磁波与光波有共同属性,预见到存在电磁辐射现象。静电场、恒定磁场及导体中的恒定电流的电场,也包括在麦克斯韦方程中,只是作为不随时间变化的特例。 麦克斯韦是继法拉第之后,又一位集电磁学大成于一身的伟大科学家。他全面地总结了电磁学研究的全部成果,并在此基础上提出了“感生电场”和“位移电流”的假说,建立了完整的电磁场理论体系,不仅科学地预言了电磁波的存在,而且揭示了光、电、磁现象的内在联系及统一性,完成了物理学的又一次大综合。他的理论成果为现代无线电电子工业奠定了理论基础。

相关文档
最新文档